/* * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2016 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_FrameMap.hpp" #include "c1/c1_LIR.hpp" #include "runtime/sharedRuntime.hpp" #include "vmreg_s390.inline.hpp" const int FrameMap::pd_c_runtime_reserved_arg_size = 7; LIR_Opr FrameMap::map_to_opr(BasicType type, VMRegPair* reg, bool outgoing) { LIR_Opr opr = LIR_OprFact::illegalOpr; VMReg r_1 = reg->first(); VMReg r_2 = reg->second(); if (r_1->is_stack()) { // Convert stack slot to an SP offset. // The calling convention does not count the SharedRuntime::out_preserve_stack_slots() value // so we must add it in here. int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; opr = LIR_OprFact::address(new LIR_Address(Z_SP_opr, st_off, type)); } else if (r_1->is_Register()) { Register reg = r_1->as_Register(); if (r_2->is_Register() && (type == T_LONG || type == T_DOUBLE)) { opr = as_long_opr(reg); } else if (type == T_OBJECT || type == T_ARRAY) { opr = as_oop_opr(reg); } else if (type == T_METADATA) { opr = as_metadata_opr(reg); } else { opr = as_opr(reg); } } else if (r_1->is_FloatRegister()) { assert(type == T_DOUBLE || type == T_FLOAT, "wrong type"); FloatRegister f = r_1->as_FloatRegister(); if (type == T_FLOAT) { opr = as_float_opr(f); } else { opr = as_double_opr(f); } } else { ShouldNotReachHere(); } return opr; } // FrameMap //-------------------------------------------------------- FloatRegister FrameMap::_fpu_rnr2reg [FrameMap::nof_fpu_regs]; // mapping c1 regnr. -> FloatRegister int FrameMap::_fpu_reg2rnr [FrameMap::nof_fpu_regs]; // mapping assembler encoding -> c1 regnr. // Some useful constant RInfo's: LIR_Opr FrameMap::Z_R0_opr; LIR_Opr FrameMap::Z_R1_opr; LIR_Opr FrameMap::Z_R2_opr; LIR_Opr FrameMap::Z_R3_opr; LIR_Opr FrameMap::Z_R4_opr; LIR_Opr FrameMap::Z_R5_opr; LIR_Opr FrameMap::Z_R6_opr; LIR_Opr FrameMap::Z_R7_opr; LIR_Opr FrameMap::Z_R8_opr; LIR_Opr FrameMap::Z_R9_opr; LIR_Opr FrameMap::Z_R10_opr; LIR_Opr FrameMap::Z_R11_opr; LIR_Opr FrameMap::Z_R12_opr; LIR_Opr FrameMap::Z_R13_opr; LIR_Opr FrameMap::Z_R14_opr; LIR_Opr FrameMap::Z_R15_opr; LIR_Opr FrameMap::Z_R0_oop_opr; LIR_Opr FrameMap::Z_R1_oop_opr; LIR_Opr FrameMap::Z_R2_oop_opr; LIR_Opr FrameMap::Z_R3_oop_opr; LIR_Opr FrameMap::Z_R4_oop_opr; LIR_Opr FrameMap::Z_R5_oop_opr; LIR_Opr FrameMap::Z_R6_oop_opr; LIR_Opr FrameMap::Z_R7_oop_opr; LIR_Opr FrameMap::Z_R8_oop_opr; LIR_Opr FrameMap::Z_R9_oop_opr; LIR_Opr FrameMap::Z_R10_oop_opr; LIR_Opr FrameMap::Z_R11_oop_opr; LIR_Opr FrameMap::Z_R12_oop_opr; LIR_Opr FrameMap::Z_R13_oop_opr; LIR_Opr FrameMap::Z_R14_oop_opr; LIR_Opr FrameMap::Z_R15_oop_opr; LIR_Opr FrameMap::Z_R0_metadata_opr; LIR_Opr FrameMap::Z_R1_metadata_opr; LIR_Opr FrameMap::Z_R2_metadata_opr; LIR_Opr FrameMap::Z_R3_metadata_opr; LIR_Opr FrameMap::Z_R4_metadata_opr; LIR_Opr FrameMap::Z_R5_metadata_opr; LIR_Opr FrameMap::Z_R6_metadata_opr; LIR_Opr FrameMap::Z_R7_metadata_opr; LIR_Opr FrameMap::Z_R8_metadata_opr; LIR_Opr FrameMap::Z_R9_metadata_opr; LIR_Opr FrameMap::Z_R10_metadata_opr; LIR_Opr FrameMap::Z_R11_metadata_opr; LIR_Opr FrameMap::Z_R12_metadata_opr; LIR_Opr FrameMap::Z_R13_metadata_opr; LIR_Opr FrameMap::Z_R14_metadata_opr; LIR_Opr FrameMap::Z_R15_metadata_opr; LIR_Opr FrameMap::Z_SP_opr; LIR_Opr FrameMap::Z_FP_opr; LIR_Opr FrameMap::Z_R2_long_opr; LIR_Opr FrameMap::Z_R10_long_opr; LIR_Opr FrameMap::Z_R11_long_opr; LIR_Opr FrameMap::Z_F0_opr; LIR_Opr FrameMap::Z_F0_double_opr; LIR_Opr FrameMap::_caller_save_cpu_regs[] = { 0, }; LIR_Opr FrameMap::_caller_save_fpu_regs[] = { 0, }; // c1 rnr -> FloatRegister FloatRegister FrameMap::nr2floatreg (int rnr) { assert(_init_done, "tables not initialized"); debug_only(fpu_range_check(rnr);) return _fpu_rnr2reg[rnr]; } void FrameMap::map_float_register(int rnr, FloatRegister reg) { debug_only(fpu_range_check(rnr);) debug_only(fpu_range_check(reg->encoding());) _fpu_rnr2reg[rnr] = reg; // mapping c1 regnr. -> FloatRegister _fpu_reg2rnr[reg->encoding()] = rnr; // mapping assembler encoding -> c1 regnr. } void FrameMap::initialize() { assert(!_init_done, "once"); DEBUG_ONLY(int allocated = 0;) DEBUG_ONLY(int unallocated = 0;) // Register usage: // Z_thread (Z_R8) // Z_fp (Z_R9) // Z_SP (Z_R15) DEBUG_ONLY(allocated++); map_register(0, Z_R2); DEBUG_ONLY(allocated++); map_register(1, Z_R3); DEBUG_ONLY(allocated++); map_register(2, Z_R4); DEBUG_ONLY(allocated++); map_register(3, Z_R5); DEBUG_ONLY(allocated++); map_register(4, Z_R6); DEBUG_ONLY(allocated++); map_register(5, Z_R7); DEBUG_ONLY(allocated++); map_register(6, Z_R10); DEBUG_ONLY(allocated++); map_register(7, Z_R11); DEBUG_ONLY(allocated++); map_register(8, Z_R12); DEBUG_ONLY(allocated++); map_register(9, Z_R13); // <- last register visible in RegAlloc DEBUG_ONLY(unallocated++); map_register(11, Z_R0); // Z_R0_scratch DEBUG_ONLY(unallocated++); map_register(12, Z_R1); // Z_R1_scratch DEBUG_ONLY(unallocated++); map_register(10, Z_R14); // return pc; TODO: Try to let c1/c2 allocate R14. // The following registers are usually unavailable. DEBUG_ONLY(unallocated++); map_register(13, Z_R8); DEBUG_ONLY(unallocated++); map_register(14, Z_R9); DEBUG_ONLY(unallocated++); map_register(15, Z_R15); assert(allocated-1 == pd_last_cpu_reg, "wrong number/mapping of allocated CPU registers"); assert(unallocated == pd_nof_cpu_regs_unallocated, "wrong number of unallocated CPU registers"); assert(nof_cpu_regs == allocated+unallocated, "wrong number of CPU registers"); int j = 0; for (int i = 0; i < nof_fpu_regs; i++) { if (as_FloatRegister(i) == Z_fscratch_1) continue; // unallocated map_float_register(j++, as_FloatRegister(i)); } assert(j == nof_fpu_regs-1, "missed one fpu reg?"); map_float_register(j++, Z_fscratch_1); _init_done = true; Z_R0_opr = as_opr(Z_R0); Z_R1_opr = as_opr(Z_R1); Z_R2_opr = as_opr(Z_R2); Z_R3_opr = as_opr(Z_R3); Z_R4_opr = as_opr(Z_R4); Z_R5_opr = as_opr(Z_R5); Z_R6_opr = as_opr(Z_R6); Z_R7_opr = as_opr(Z_R7); Z_R8_opr = as_opr(Z_R8); Z_R9_opr = as_opr(Z_R9); Z_R10_opr = as_opr(Z_R10); Z_R11_opr = as_opr(Z_R11); Z_R12_opr = as_opr(Z_R12); Z_R13_opr = as_opr(Z_R13); Z_R14_opr = as_opr(Z_R14); Z_R15_opr = as_opr(Z_R15); Z_R0_oop_opr = as_oop_opr(Z_R0); Z_R1_oop_opr = as_oop_opr(Z_R1); Z_R2_oop_opr = as_oop_opr(Z_R2); Z_R3_oop_opr = as_oop_opr(Z_R3); Z_R4_oop_opr = as_oop_opr(Z_R4); Z_R5_oop_opr = as_oop_opr(Z_R5); Z_R6_oop_opr = as_oop_opr(Z_R6); Z_R7_oop_opr = as_oop_opr(Z_R7); Z_R8_oop_opr = as_oop_opr(Z_R8); Z_R9_oop_opr = as_oop_opr(Z_R9); Z_R10_oop_opr = as_oop_opr(Z_R10); Z_R11_oop_opr = as_oop_opr(Z_R11); Z_R12_oop_opr = as_oop_opr(Z_R12); Z_R13_oop_opr = as_oop_opr(Z_R13); Z_R14_oop_opr = as_oop_opr(Z_R14); Z_R15_oop_opr = as_oop_opr(Z_R15); Z_R0_metadata_opr = as_metadata_opr(Z_R0); Z_R1_metadata_opr = as_metadata_opr(Z_R1); Z_R2_metadata_opr = as_metadata_opr(Z_R2); Z_R3_metadata_opr = as_metadata_opr(Z_R3); Z_R4_metadata_opr = as_metadata_opr(Z_R4); Z_R5_metadata_opr = as_metadata_opr(Z_R5); Z_R6_metadata_opr = as_metadata_opr(Z_R6); Z_R7_metadata_opr = as_metadata_opr(Z_R7); Z_R8_metadata_opr = as_metadata_opr(Z_R8); Z_R9_metadata_opr = as_metadata_opr(Z_R9); Z_R10_metadata_opr = as_metadata_opr(Z_R10); Z_R11_metadata_opr = as_metadata_opr(Z_R11); Z_R12_metadata_opr = as_metadata_opr(Z_R12); Z_R13_metadata_opr = as_metadata_opr(Z_R13); Z_R14_metadata_opr = as_metadata_opr(Z_R14); Z_R15_metadata_opr = as_metadata_opr(Z_R15); // TODO: needed? Or can we make Z_R9 available for linear scan allocation. Z_FP_opr = as_pointer_opr(Z_fp); Z_SP_opr = as_pointer_opr(Z_SP); Z_R2_long_opr = LIR_OprFact::double_cpu(cpu_reg2rnr(Z_R2), cpu_reg2rnr(Z_R2)); Z_R10_long_opr = LIR_OprFact::double_cpu(cpu_reg2rnr(Z_R10), cpu_reg2rnr(Z_R10)); Z_R11_long_opr = LIR_OprFact::double_cpu(cpu_reg2rnr(Z_R11), cpu_reg2rnr(Z_R11)); Z_F0_opr = as_float_opr(Z_F0); Z_F0_double_opr = as_double_opr(Z_F0); // All allocated cpu regs are caller saved. for (int c1rnr = 0; c1rnr < max_nof_caller_save_cpu_regs; c1rnr++) { _caller_save_cpu_regs[c1rnr] = as_opr(cpu_rnr2reg(c1rnr)); } // All allocated fpu regs are caller saved. for (int c1rnr = 0; c1rnr < nof_caller_save_fpu_regs; c1rnr++) { _caller_save_fpu_regs[c1rnr] = as_float_opr(nr2floatreg(c1rnr)); } } Address FrameMap::make_new_address(ByteSize sp_offset) const { return Address(Z_SP, sp_offset); } VMReg FrameMap::fpu_regname (int n) { return nr2floatreg(n)->as_VMReg(); } LIR_Opr FrameMap::stack_pointer() { return Z_SP_opr; } // JSR 292 // On ZARCH_64, there is no need to save the SP, because neither // method handle intrinsics nor compiled lambda forms modify it. LIR_Opr FrameMap::method_handle_invoke_SP_save_opr() { return LIR_OprFact::illegalOpr; } bool FrameMap::validate_frame() { return true; }