/* * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "code/debugInfo.hpp" #include "oops/oop.inline.hpp" #include "runtime/frame.inline.hpp" #include "runtime/handles.inline.hpp" #include "runtime/stackValue.hpp" StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv) { if (sv->is_location()) { // Stack or register value Location loc = ((LocationValue *)sv)->location(); #ifdef SPARC // %%%%% Callee-save floats will NOT be working on a Sparc until we // handle the case of a 2 floats in a single double register. assert( !(loc.is_register() && loc.type() == Location::float_in_dbl), "Sparc does not handle callee-save floats yet" ); #endif // SPARC // First find address of value address value_addr = loc.is_register() // Value was in a callee-save register ? reg_map->location(VMRegImpl::as_VMReg(loc.register_number())) // Else value was directly saved on the stack. The frame's original stack pointer, // before any extension by its callee (due to Compiler1 linkage on SPARC), must be used. : ((address)fr->unextended_sp()) + loc.stack_offset(); // Then package it right depending on type // Note: the transfer of the data is thru a union that contains // an intptr_t. This is because an interpreter stack slot is // really an intptr_t. The use of a union containing an intptr_t // ensures that on a 64 bit platform we have proper alignment // and that we store the value where the interpreter will expect // to find it (i.e. proper endian). Similarly on a 32bit platform // using the intptr_t ensures that when a value is larger than // a stack slot (jlong/jdouble) that we capture the proper part // of the value for the stack slot in question. // switch( loc.type() ) { case Location::float_in_dbl: { // Holds a float in a double register? // The callee has no clue whether the register holds a float, // double or is unused. He always saves a double. Here we know // a double was saved, but we only want a float back. Narrow the // saved double to the float that the JVM wants. assert( loc.is_register(), "floats always saved to stack in 1 word" ); union { intptr_t p; jfloat jf; } value; value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); value.jf = (jfloat) *(jdouble*) value_addr; return new StackValue(value.p); // 64-bit high half is stack junk } case Location::int_in_long: { // Holds an int in a long register? // The callee has no clue whether the register holds an int, // long or is unused. He always saves a long. Here we know // a long was saved, but we only want an int back. Narrow the // saved long to the int that the JVM wants. assert( loc.is_register(), "ints always saved to stack in 1 word" ); union { intptr_t p; jint ji;} value; value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); value.ji = (jint) *(jlong*) value_addr; return new StackValue(value.p); // 64-bit high half is stack junk } #ifdef _LP64 case Location::dbl: // Double value in an aligned adjacent pair return new StackValue(*(intptr_t*)value_addr); case Location::lng: // Long value in an aligned adjacent pair return new StackValue(*(intptr_t*)value_addr); case Location::narrowoop: { union { intptr_t p; narrowOop noop;} value; value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); if (loc.is_register()) { // The callee has no clue whether the register holds an int, // long or is unused. He always saves a long. Here we know // a long was saved, but we only want an int back. Narrow the // saved long to the int that the JVM wants. value.noop = (narrowOop) *(julong*) value_addr; } else { value.noop = *(narrowOop*) value_addr; } // Decode narrowoop and wrap a handle around the oop Handle h(oopDesc::decode_heap_oop(value.noop)); return new StackValue(h); } #endif case Location::oop: { oop val = *(oop *)value_addr; #ifdef _LP64 if (Universe::is_narrow_oop_base(val)) { // Compiled code may produce decoded oop = narrow_oop_base // when a narrow oop implicit null check is used. // The narrow_oop_base could be NULL or be the address // of the page below heap. Use NULL value for both cases. val = (oop)NULL; } #endif Handle h(val); // Wrap a handle around the oop return new StackValue(h); } case Location::addr: { ShouldNotReachHere(); // both C1 and C2 now inline jsrs } case Location::normal: { // Just copy all other bits straight through union { intptr_t p; jint ji;} value; value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); value.ji = *(jint*)value_addr; return new StackValue(value.p); } case Location::invalid: return new StackValue(); default: ShouldNotReachHere(); } } else if (sv->is_constant_int()) { // Constant int: treat same as register int. union { intptr_t p; jint ji;} value; value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); value.ji = (jint)((ConstantIntValue*)sv)->value(); return new StackValue(value.p); } else if (sv->is_constant_oop()) { // constant oop return new StackValue(sv->as_ConstantOopReadValue()->value()); #ifdef _LP64 } else if (sv->is_constant_double()) { // Constant double in a single stack slot union { intptr_t p; double d; } value; value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); value.d = ((ConstantDoubleValue *)sv)->value(); return new StackValue(value.p); } else if (sv->is_constant_long()) { // Constant long in a single stack slot union { intptr_t p; jlong jl; } value; value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); value.jl = ((ConstantLongValue *)sv)->value(); return new StackValue(value.p); #endif } else if (sv->is_object()) { // Scalar replaced object in compiled frame Handle ov = ((ObjectValue *)sv)->value(); return new StackValue(ov, (ov.is_null()) ? 1 : 0); } // Unknown ScopeValue type ShouldNotReachHere(); return new StackValue((intptr_t) 0); // dummy } BasicLock* StackValue::resolve_monitor_lock(const frame* fr, Location location) { assert(location.is_stack(), "for now we only look at the stack"); int word_offset = location.stack_offset() / wordSize; // (stack picture) // high: [ ] word_offset + 1 // low [ ] word_offset // // sp-> [ ] 0 // the word_offset is the distance from the stack pointer to the lowest address // The frame's original stack pointer, before any extension by its callee // (due to Compiler1 linkage on SPARC), must be used. return (BasicLock*) (fr->unextended_sp() + word_offset); } #ifndef PRODUCT void StackValue::print_on(outputStream* st) const { switch(_type) { case T_INT: st->print("%d (int) %f (float) %x (hex)", *(int *)&_i, *(float *)&_i, *(int *)&_i); break; case T_OBJECT: _o()->print_value_on(st); st->print(" <" INTPTR_FORMAT ">", p2i((address)_o())); break; case T_CONFLICT: st->print("conflict"); break; default: ShouldNotReachHere(); } } #endif