/* * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/codeBuffer.hpp" #include "c1/c1_CodeStubs.hpp" #include "c1/c1_Defs.hpp" #include "c1/c1_FrameMap.hpp" #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_Runtime1.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "code/codeBlob.hpp" #include "code/compiledIC.hpp" #include "code/pcDesc.hpp" #include "code/scopeDesc.hpp" #include "code/vtableStubs.hpp" #include "compiler/disassembler.hpp" #include "gc/shared/barrierSet.hpp" #include "gc/shared/collectedHeap.hpp" #include "interpreter/bytecode.hpp" #include "interpreter/interpreter.hpp" #include "logging/log.hpp" #include "memory/allocation.inline.hpp" #include "memory/oopFactory.hpp" #include "memory/resourceArea.hpp" #include "oops/access.inline.hpp" #include "oops/objArrayOop.inline.hpp" #include "oops/objArrayKlass.hpp" #include "oops/oop.inline.hpp" #include "runtime/atomic.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/compilationPolicy.hpp" #include "runtime/interfaceSupport.inline.hpp" #include "runtime/frame.inline.hpp" #include "runtime/javaCalls.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/threadCritical.hpp" #include "runtime/vframe.inline.hpp" #include "runtime/vframeArray.hpp" #include "runtime/vm_version.hpp" #include "utilities/copy.hpp" #include "utilities/events.hpp" // Implementation of StubAssembler StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) { _name = name; _must_gc_arguments = false; _frame_size = no_frame_size; _num_rt_args = 0; _stub_id = stub_id; } void StubAssembler::set_info(const char* name, bool must_gc_arguments) { _name = name; _must_gc_arguments = must_gc_arguments; } void StubAssembler::set_frame_size(int size) { if (_frame_size == no_frame_size) { _frame_size = size; } assert(_frame_size == size, "can't change the frame size"); } void StubAssembler::set_num_rt_args(int args) { if (_num_rt_args == 0) { _num_rt_args = args; } assert(_num_rt_args == args, "can't change the number of args"); } // Implementation of Runtime1 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids]; const char *Runtime1::_blob_names[] = { RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME) }; #ifndef PRODUCT // statistics int Runtime1::_generic_arraycopy_cnt = 0; int Runtime1::_generic_arraycopystub_cnt = 0; int Runtime1::_arraycopy_slowcase_cnt = 0; int Runtime1::_arraycopy_checkcast_cnt = 0; int Runtime1::_arraycopy_checkcast_attempt_cnt = 0; int Runtime1::_new_type_array_slowcase_cnt = 0; int Runtime1::_new_object_array_slowcase_cnt = 0; int Runtime1::_new_instance_slowcase_cnt = 0; int Runtime1::_new_multi_array_slowcase_cnt = 0; int Runtime1::_monitorenter_slowcase_cnt = 0; int Runtime1::_monitorexit_slowcase_cnt = 0; int Runtime1::_patch_code_slowcase_cnt = 0; int Runtime1::_throw_range_check_exception_count = 0; int Runtime1::_throw_index_exception_count = 0; int Runtime1::_throw_div0_exception_count = 0; int Runtime1::_throw_null_pointer_exception_count = 0; int Runtime1::_throw_class_cast_exception_count = 0; int Runtime1::_throw_incompatible_class_change_error_count = 0; int Runtime1::_throw_array_store_exception_count = 0; int Runtime1::_throw_count = 0; static int _byte_arraycopy_stub_cnt = 0; static int _short_arraycopy_stub_cnt = 0; static int _int_arraycopy_stub_cnt = 0; static int _long_arraycopy_stub_cnt = 0; static int _oop_arraycopy_stub_cnt = 0; address Runtime1::arraycopy_count_address(BasicType type) { switch (type) { case T_BOOLEAN: case T_BYTE: return (address)&_byte_arraycopy_stub_cnt; case T_CHAR: case T_SHORT: return (address)&_short_arraycopy_stub_cnt; case T_FLOAT: case T_INT: return (address)&_int_arraycopy_stub_cnt; case T_DOUBLE: case T_LONG: return (address)&_long_arraycopy_stub_cnt; case T_ARRAY: case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt; default: ShouldNotReachHere(); return NULL; } } #endif // Simple helper to see if the caller of a runtime stub which // entered the VM has been deoptimized static bool caller_is_deopted() { JavaThread* thread = JavaThread::current(); RegisterMap reg_map(thread, false); frame runtime_frame = thread->last_frame(); frame caller_frame = runtime_frame.sender(®_map); assert(caller_frame.is_compiled_frame(), "must be compiled"); return caller_frame.is_deoptimized_frame(); } // Stress deoptimization static void deopt_caller() { if ( !caller_is_deopted()) { JavaThread* thread = JavaThread::current(); RegisterMap reg_map(thread, false); frame runtime_frame = thread->last_frame(); frame caller_frame = runtime_frame.sender(®_map); Deoptimization::deoptimize_frame(thread, caller_frame.id()); assert(caller_is_deopted(), "Must be deoptimized"); } } void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) { assert(0 <= id && id < number_of_ids, "illegal stub id"); ResourceMark rm; // create code buffer for code storage CodeBuffer code(buffer_blob); OopMapSet* oop_maps; int frame_size; bool must_gc_arguments; Compilation::setup_code_buffer(&code, 0); // create assembler for code generation StubAssembler* sasm = new StubAssembler(&code, name_for(id), id); // generate code for runtime stub oop_maps = generate_code_for(id, sasm); assert(oop_maps == NULL || sasm->frame_size() != no_frame_size, "if stub has an oop map it must have a valid frame size"); #ifdef ASSERT // Make sure that stubs that need oopmaps have them switch (id) { // These stubs don't need to have an oopmap case dtrace_object_alloc_id: case g1_pre_barrier_slow_id: case g1_post_barrier_slow_id: case slow_subtype_check_id: case fpu2long_stub_id: case unwind_exception_id: case counter_overflow_id: #if defined(SPARC) || defined(PPC32) case handle_exception_nofpu_id: // Unused on sparc #endif break; // All other stubs should have oopmaps default: assert(oop_maps != NULL, "must have an oopmap"); } #endif // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned) sasm->align(BytesPerWord); // make sure all code is in code buffer sasm->flush(); frame_size = sasm->frame_size(); must_gc_arguments = sasm->must_gc_arguments(); // create blob - distinguish a few special cases CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id), &code, CodeOffsets::frame_never_safe, frame_size, oop_maps, must_gc_arguments); // install blob assert(blob != NULL, "blob must exist"); _blobs[id] = blob; } void Runtime1::initialize(BufferBlob* blob) { // platform-dependent initialization initialize_pd(); // generate stubs for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id); // printing #ifndef PRODUCT if (PrintSimpleStubs) { ResourceMark rm; for (int id = 0; id < number_of_ids; id++) { _blobs[id]->print(); if (_blobs[id]->oop_maps() != NULL) { _blobs[id]->oop_maps()->print(); } } } #endif } CodeBlob* Runtime1::blob_for(StubID id) { assert(0 <= id && id < number_of_ids, "illegal stub id"); return _blobs[id]; } const char* Runtime1::name_for(StubID id) { assert(0 <= id && id < number_of_ids, "illegal stub id"); return _blob_names[id]; } const char* Runtime1::name_for_address(address entry) { for (int id = 0; id < number_of_ids; id++) { if (entry == entry_for((StubID)id)) return name_for((StubID)id); } #define FUNCTION_CASE(a, f) \ if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f FUNCTION_CASE(entry, os::javaTimeMillis); FUNCTION_CASE(entry, os::javaTimeNanos); FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end); FUNCTION_CASE(entry, SharedRuntime::d2f); FUNCTION_CASE(entry, SharedRuntime::d2i); FUNCTION_CASE(entry, SharedRuntime::d2l); FUNCTION_CASE(entry, SharedRuntime::dcos); FUNCTION_CASE(entry, SharedRuntime::dexp); FUNCTION_CASE(entry, SharedRuntime::dlog); FUNCTION_CASE(entry, SharedRuntime::dlog10); FUNCTION_CASE(entry, SharedRuntime::dpow); FUNCTION_CASE(entry, SharedRuntime::drem); FUNCTION_CASE(entry, SharedRuntime::dsin); FUNCTION_CASE(entry, SharedRuntime::dtan); FUNCTION_CASE(entry, SharedRuntime::f2i); FUNCTION_CASE(entry, SharedRuntime::f2l); FUNCTION_CASE(entry, SharedRuntime::frem); FUNCTION_CASE(entry, SharedRuntime::l2d); FUNCTION_CASE(entry, SharedRuntime::l2f); FUNCTION_CASE(entry, SharedRuntime::ldiv); FUNCTION_CASE(entry, SharedRuntime::lmul); FUNCTION_CASE(entry, SharedRuntime::lrem); FUNCTION_CASE(entry, SharedRuntime::lrem); FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry); FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit); FUNCTION_CASE(entry, is_instance_of); FUNCTION_CASE(entry, trace_block_entry); #ifdef TRACE_HAVE_INTRINSICS FUNCTION_CASE(entry, TRACE_TIME_METHOD); #endif FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32()); FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C()); FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch()); FUNCTION_CASE(entry, StubRoutines::dexp()); FUNCTION_CASE(entry, StubRoutines::dlog()); FUNCTION_CASE(entry, StubRoutines::dlog10()); FUNCTION_CASE(entry, StubRoutines::dpow()); FUNCTION_CASE(entry, StubRoutines::dsin()); FUNCTION_CASE(entry, StubRoutines::dcos()); FUNCTION_CASE(entry, StubRoutines::dtan()); #undef FUNCTION_CASE // Soft float adds more runtime names. return pd_name_for_address(entry); } JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass)) NOT_PRODUCT(_new_instance_slowcase_cnt++;) assert(klass->is_klass(), "not a class"); Handle holder(THREAD, klass->klass_holder()); // keep the klass alive InstanceKlass* h = InstanceKlass::cast(klass); h->check_valid_for_instantiation(true, CHECK); // make sure klass is initialized h->initialize(CHECK); // allocate instance and return via TLS oop obj = h->allocate_instance(CHECK); thread->set_vm_result(obj); JRT_END JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length)) NOT_PRODUCT(_new_type_array_slowcase_cnt++;) // Note: no handle for klass needed since they are not used // anymore after new_typeArray() and no GC can happen before. // (This may have to change if this code changes!) assert(klass->is_klass(), "not a class"); BasicType elt_type = TypeArrayKlass::cast(klass)->element_type(); oop obj = oopFactory::new_typeArray(elt_type, length, CHECK); thread->set_vm_result(obj); // This is pretty rare but this runtime patch is stressful to deoptimization // if we deoptimize here so force a deopt to stress the path. if (DeoptimizeALot) { deopt_caller(); } JRT_END JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length)) NOT_PRODUCT(_new_object_array_slowcase_cnt++;) // Note: no handle for klass needed since they are not used // anymore after new_objArray() and no GC can happen before. // (This may have to change if this code changes!) assert(array_klass->is_klass(), "not a class"); Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK); thread->set_vm_result(obj); // This is pretty rare but this runtime patch is stressful to deoptimization // if we deoptimize here so force a deopt to stress the path. if (DeoptimizeALot) { deopt_caller(); } JRT_END JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims)) NOT_PRODUCT(_new_multi_array_slowcase_cnt++;) assert(klass->is_klass(), "not a class"); assert(rank >= 1, "rank must be nonzero"); Handle holder(THREAD, klass->klass_holder()); // keep the klass alive oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); thread->set_vm_result(obj); JRT_END JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id)) tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id); JRT_END JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj)) ResourceMark rm(thread); const char* klass_name = obj->klass()->external_name(); SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name); JRT_END // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method // associated with the top activation record. The inlinee (that is possibly included in the enclosing // method) method oop is passed as an argument. In order to do that it is embedded in the code as // a constant. static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) { nmethod* osr_nm = NULL; methodHandle method(THREAD, m); RegisterMap map(THREAD, false); frame fr = THREAD->last_frame().sender(&map); nmethod* nm = (nmethod*) fr.cb(); assert(nm!= NULL && nm->is_nmethod(), "Sanity check"); methodHandle enclosing_method(THREAD, nm->method()); CompLevel level = (CompLevel)nm->comp_level(); int bci = InvocationEntryBci; if (branch_bci != InvocationEntryBci) { // Compute destination bci address pc = method()->code_base() + branch_bci; Bytecodes::Code branch = Bytecodes::code_at(method(), pc); int offset = 0; switch (branch) { case Bytecodes::_if_icmplt: case Bytecodes::_iflt: case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt: case Bytecodes::_if_icmple: case Bytecodes::_ifle: case Bytecodes::_if_icmpge: case Bytecodes::_ifge: case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq: case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne: case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto: offset = (int16_t)Bytes::get_Java_u2(pc + 1); break; case Bytecodes::_goto_w: offset = Bytes::get_Java_u4(pc + 1); break; default: ; } bci = branch_bci + offset; } assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending"); osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD); assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions"); return osr_nm; } JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method)) nmethod* osr_nm; JRT_BLOCK osr_nm = counter_overflow_helper(thread, bci, method); if (osr_nm != NULL) { RegisterMap map(thread, false); frame fr = thread->last_frame().sender(&map); Deoptimization::deoptimize_frame(thread, fr.id()); } JRT_BLOCK_END return NULL; JRT_END extern void vm_exit(int code); // Enter this method from compiled code handler below. This is where we transition // to VM mode. This is done as a helper routine so that the method called directly // from compiled code does not have to transition to VM. This allows the entry // method to see if the nmethod that we have just looked up a handler for has // been deoptimized while we were in the vm. This simplifies the assembly code // cpu directories. // // We are entering here from exception stub (via the entry method below) // If there is a compiled exception handler in this method, we will continue there; // otherwise we will unwind the stack and continue at the caller of top frame method // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to // control the area where we can allow a safepoint. After we exit the safepoint area we can // check to see if the handler we are going to return is now in a nmethod that has // been deoptimized. If that is the case we return the deopt blob // unpack_with_exception entry instead. This makes life for the exception blob easier // because making that same check and diverting is painful from assembly language. JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm)) // Reset method handle flag. thread->set_is_method_handle_return(false); Handle exception(thread, ex); nm = CodeCache::find_nmethod(pc); assert(nm != NULL, "this is not an nmethod"); // Adjust the pc as needed/ if (nm->is_deopt_pc(pc)) { RegisterMap map(thread, false); frame exception_frame = thread->last_frame().sender(&map); // if the frame isn't deopted then pc must not correspond to the caller of last_frame assert(exception_frame.is_deoptimized_frame(), "must be deopted"); pc = exception_frame.pc(); } #ifdef ASSERT assert(exception.not_null(), "NULL exceptions should be handled by throw_exception"); // Check that exception is a subclass of Throwable, otherwise we have a VerifyError if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { if (ExitVMOnVerifyError) vm_exit(-1); ShouldNotReachHere(); } #endif // Check the stack guard pages and reenable them if necessary and there is // enough space on the stack to do so. Use fast exceptions only if the guard // pages are enabled. bool guard_pages_enabled = thread->stack_guards_enabled(); if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); if (JvmtiExport::can_post_on_exceptions()) { // To ensure correct notification of exception catches and throws // we have to deoptimize here. If we attempted to notify the // catches and throws during this exception lookup it's possible // we could deoptimize on the way out of the VM and end back in // the interpreter at the throw site. This would result in double // notifications since the interpreter would also notify about // these same catches and throws as it unwound the frame. RegisterMap reg_map(thread); frame stub_frame = thread->last_frame(); frame caller_frame = stub_frame.sender(®_map); // We don't really want to deoptimize the nmethod itself since we // can actually continue in the exception handler ourselves but I // don't see an easy way to have the desired effect. Deoptimization::deoptimize_frame(thread, caller_frame.id()); assert(caller_is_deopted(), "Must be deoptimized"); return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); } // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions if (guard_pages_enabled) { address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); if (fast_continuation != NULL) { // Set flag if return address is a method handle call site. thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); return fast_continuation; } } // If the stack guard pages are enabled, check whether there is a handler in // the current method. Otherwise (guard pages disabled), force an unwind and // skip the exception cache update (i.e., just leave continuation==NULL). address continuation = NULL; if (guard_pages_enabled) { // New exception handling mechanism can support inlined methods // with exception handlers since the mappings are from PC to PC // debugging support // tracing if (log_is_enabled(Info, exceptions)) { ResourceMark rm; stringStream tempst; tempst.print("compiled method <%s>\n" " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, nm->method()->print_value_string(), p2i(pc), p2i(thread)); Exceptions::log_exception(exception, tempst); } // for AbortVMOnException flag Exceptions::debug_check_abort(exception); // Clear out the exception oop and pc since looking up an // exception handler can cause class loading, which might throw an // exception and those fields are expected to be clear during // normal bytecode execution. thread->clear_exception_oop_and_pc(); bool recursive_exception = false; continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); // If an exception was thrown during exception dispatch, the exception oop may have changed thread->set_exception_oop(exception()); thread->set_exception_pc(pc); // the exception cache is used only by non-implicit exceptions // Update the exception cache only when there didn't happen // another exception during the computation of the compiled // exception handler. Checking for exception oop equality is not // sufficient because some exceptions are pre-allocated and reused. if (continuation != NULL && !recursive_exception) { nm->add_handler_for_exception_and_pc(exception, pc, continuation); } } thread->set_vm_result(exception()); // Set flag if return address is a method handle call site. thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); if (log_is_enabled(Info, exceptions)) { ResourceMark rm; log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT, p2i(thread), p2i(continuation), p2i(pc)); } return continuation; JRT_END // Enter this method from compiled code only if there is a Java exception handler // in the method handling the exception. // We are entering here from exception stub. We don't do a normal VM transition here. // We do it in a helper. This is so we can check to see if the nmethod we have just // searched for an exception handler has been deoptimized in the meantime. address Runtime1::exception_handler_for_pc(JavaThread* thread) { oop exception = thread->exception_oop(); address pc = thread->exception_pc(); // Still in Java mode DEBUG_ONLY(ResetNoHandleMark rnhm); nmethod* nm = NULL; address continuation = NULL; { // Enter VM mode by calling the helper ResetNoHandleMark rnhm; continuation = exception_handler_for_pc_helper(thread, exception, pc, nm); } // Back in JAVA, use no oops DON'T safepoint // Now check to see if the nmethod we were called from is now deoptimized. // If so we must return to the deopt blob and deoptimize the nmethod if (nm != NULL && caller_is_deopted()) { continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); } assert(continuation != NULL, "no handler found"); return continuation; } JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index)) NOT_PRODUCT(_throw_range_check_exception_count++;) char message[jintAsStringSize]; sprintf(message, "%d", index); SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message); JRT_END JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index)) NOT_PRODUCT(_throw_index_exception_count++;) char message[16]; sprintf(message, "%d", index); SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message); JRT_END JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread)) NOT_PRODUCT(_throw_div0_exception_count++;) SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); JRT_END JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread)) NOT_PRODUCT(_throw_null_pointer_exception_count++;) SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); JRT_END JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object)) NOT_PRODUCT(_throw_class_cast_exception_count++;) ResourceMark rm(thread); char* message = SharedRuntime::generate_class_cast_message( thread, object->klass()); SharedRuntime::throw_and_post_jvmti_exception( thread, vmSymbols::java_lang_ClassCastException(), message); JRT_END JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread)) NOT_PRODUCT(_throw_incompatible_class_change_error_count++;) ResourceMark rm(thread); SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError()); JRT_END JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock)) NOT_PRODUCT(_monitorenter_slowcase_cnt++;) if (PrintBiasedLockingStatistics) { Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); } Handle h_obj(thread, obj); if (UseBiasedLocking) { // Retry fast entry if bias is revoked to avoid unnecessary inflation ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK); } else { if (UseFastLocking) { // When using fast locking, the compiled code has already tried the fast case assert(obj == lock->obj(), "must match"); ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD); } else { lock->set_obj(obj); ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD); } } JRT_END JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock)) NOT_PRODUCT(_monitorexit_slowcase_cnt++;) assert(thread == JavaThread::current(), "threads must correspond"); assert(thread->last_Java_sp(), "last_Java_sp must be set"); // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown EXCEPTION_MARK; oop obj = lock->obj(); assert(oopDesc::is_oop(obj), "must be NULL or an object"); if (UseFastLocking) { // When using fast locking, the compiled code has already tried the fast case ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD); } else { ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD); } JRT_END // Cf. OptoRuntime::deoptimize_caller_frame JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request)) // Called from within the owner thread, so no need for safepoint RegisterMap reg_map(thread, false); frame stub_frame = thread->last_frame(); assert(stub_frame.is_runtime_frame(), "Sanity check"); frame caller_frame = stub_frame.sender(®_map); nmethod* nm = caller_frame.cb()->as_nmethod_or_null(); assert(nm != NULL, "Sanity check"); methodHandle method(thread, nm->method()); assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same"); Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); if (action == Deoptimization::Action_make_not_entrant) { if (nm->make_not_entrant()) { if (reason == Deoptimization::Reason_tenured) { MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/); if (trap_mdo != NULL) { trap_mdo->inc_tenure_traps(); } } } } // Deoptimize the caller frame. Deoptimization::deoptimize_frame(thread, caller_frame.id()); // Return to the now deoptimized frame. JRT_END #ifndef DEOPTIMIZE_WHEN_PATCHING static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) { Bytecode_field field_access(caller, bci); // This can be static or non-static field access Bytecodes::Code code = field_access.code(); // We must load class, initialize class and resolve the field fieldDescriptor result; // initialize class if needed constantPoolHandle constants(THREAD, caller->constants()); LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL); return result.field_holder(); } // // This routine patches sites where a class wasn't loaded or // initialized at the time the code was generated. It handles // references to classes, fields and forcing of initialization. Most // of the cases are straightforward and involving simply forcing // resolution of a class, rewriting the instruction stream with the // needed constant and replacing the call in this function with the // patched code. The case for static field is more complicated since // the thread which is in the process of initializing a class can // access it's static fields but other threads can't so the code // either has to deoptimize when this case is detected or execute a // check that the current thread is the initializing thread. The // current // // Patches basically look like this: // // // patch_site: jmp patch stub ;; will be patched // continue: ... // ... // ... // ... // // They have a stub which looks like this: // // ;; patch body // movl , reg (for class constants) // movl [reg1 + ], reg (for field offsets) // movl reg, [reg1 + ] (for field offsets) // // patch_stub: call Runtime1::patch_code (through a runtime stub) // jmp patch_site // // // A normal patch is done by rewriting the patch body, usually a move, // and then copying it into place over top of the jmp instruction // being careful to flush caches and doing it in an MP-safe way. The // constants following the patch body are used to find various pieces // of the patch relative to the call site for Runtime1::patch_code. // The case for getstatic and putstatic is more complicated because // getstatic and putstatic have special semantics when executing while // the class is being initialized. getstatic/putstatic on a class // which is being_initialized may be executed by the initializing // thread but other threads have to block when they execute it. This // is accomplished in compiled code by executing a test of the current // thread against the initializing thread of the class. It's emitted // as boilerplate in their stub which allows the patched code to be // executed before it's copied back into the main body of the nmethod. // // being_init: get_thread( // cmpl [reg1 + ], // jne patch_stub // movl [reg1 + ], reg (for field offsets) // movl reg, [reg1 + ] (for field offsets) // jmp continue // // patch_stub: jmp Runtim1::patch_code (through a runtime stub) // jmp patch_site // // If the class is being initialized the patch body is rewritten and // the patch site is rewritten to jump to being_init, instead of // patch_stub. Whenever this code is executed it checks the current // thread against the intializing thread so other threads will enter // the runtime and end up blocked waiting the class to finish // initializing inside the calls to resolve_field below. The // initializing class will continue on it's way. Once the class is // fully_initialized, the intializing_thread of the class becomes // NULL, so the next thread to execute this code will fail the test, // call into patch_code and complete the patching process by copying // the patch body back into the main part of the nmethod and resume // executing. // // JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id )) NOT_PRODUCT(_patch_code_slowcase_cnt++;) ResourceMark rm(thread); RegisterMap reg_map(thread, false); frame runtime_frame = thread->last_frame(); frame caller_frame = runtime_frame.sender(®_map); // last java frame on stack vframeStream vfst(thread, true); assert(!vfst.at_end(), "Java frame must exist"); methodHandle caller_method(THREAD, vfst.method()); // Note that caller_method->code() may not be same as caller_code because of OSR's // Note also that in the presence of inlining it is not guaranteed // that caller_method() == caller_code->method() int bci = vfst.bci(); Bytecodes::Code code = caller_method()->java_code_at(bci); // this is used by assertions in the access_field_patching_id BasicType patch_field_type = T_ILLEGAL; bool deoptimize_for_volatile = false; bool deoptimize_for_atomic = false; int patch_field_offset = -1; Klass* init_klass = NULL; // klass needed by load_klass_patching code Klass* load_klass = NULL; // klass needed by load_klass_patching code Handle mirror(THREAD, NULL); // oop needed by load_mirror_patching code Handle appendix(THREAD, NULL); // oop needed by appendix_patching code bool load_klass_or_mirror_patch_id = (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id); if (stub_id == Runtime1::access_field_patching_id) { Bytecode_field field_access(caller_method, bci); fieldDescriptor result; // initialize class if needed Bytecodes::Code code = field_access.code(); constantPoolHandle constants(THREAD, caller_method->constants()); LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK); patch_field_offset = result.offset(); // If we're patching a field which is volatile then at compile it // must not have been know to be volatile, so the generated code // isn't correct for a volatile reference. The nmethod has to be // deoptimized so that the code can be regenerated correctly. // This check is only needed for access_field_patching since this // is the path for patching field offsets. load_klass is only // used for patching references to oops which don't need special // handling in the volatile case. deoptimize_for_volatile = result.access_flags().is_volatile(); // If we are patching a field which should be atomic, then // the generated code is not correct either, force deoptimizing. // We need to only cover T_LONG and T_DOUBLE fields, as we can // break access atomicity only for them. // Strictly speaking, the deoptimizaation on 64-bit platforms // is unnecessary, and T_LONG stores on 32-bit platforms need // to be handled by special patching code when AlwaysAtomicAccesses // becomes product feature. At this point, we are still going // for the deoptimization for consistency against volatile // accesses. patch_field_type = result.field_type(); deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)); } else if (load_klass_or_mirror_patch_id) { Klass* k = NULL; switch (code) { case Bytecodes::_putstatic: case Bytecodes::_getstatic: { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK); init_klass = klass; mirror = Handle(THREAD, klass->java_mirror()); } break; case Bytecodes::_new: { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci)); k = caller_method->constants()->klass_at(bnew.index(), CHECK); } break; case Bytecodes::_multianewarray: { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci)); k = caller_method->constants()->klass_at(mna.index(), CHECK); } break; case Bytecodes::_instanceof: { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci)); k = caller_method->constants()->klass_at(io.index(), CHECK); } break; case Bytecodes::_checkcast: { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci)); k = caller_method->constants()->klass_at(cc.index(), CHECK); } break; case Bytecodes::_anewarray: { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci)); Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK); k = ek->array_klass(CHECK); } break; case Bytecodes::_ldc: case Bytecodes::_ldc_w: { Bytecode_loadconstant cc(caller_method, bci); oop m = cc.resolve_constant(CHECK); mirror = Handle(THREAD, m); } break; default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id"); } load_klass = k; } else if (stub_id == load_appendix_patching_id) { Bytecode_invoke bytecode(caller_method, bci); Bytecodes::Code bc = bytecode.invoke_code(); CallInfo info; constantPoolHandle pool(thread, caller_method->constants()); int index = bytecode.index(); LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK); switch (bc) { case Bytecodes::_invokehandle: { int cache_index = ConstantPool::decode_cpcache_index(index, true); assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index"); ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index); cpce->set_method_handle(pool, info); appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry break; } case Bytecodes::_invokedynamic: { ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index); cpce->set_dynamic_call(pool, info); appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry break; } default: fatal("unexpected bytecode for load_appendix_patching_id"); } } else { ShouldNotReachHere(); } if (deoptimize_for_volatile || deoptimize_for_atomic) { // At compile time we assumed the field wasn't volatile/atomic but after // loading it turns out it was volatile/atomic so we have to throw the // compiled code out and let it be regenerated. if (TracePatching) { if (deoptimize_for_volatile) { tty->print_cr("Deoptimizing for patching volatile field reference"); } if (deoptimize_for_atomic) { tty->print_cr("Deoptimizing for patching atomic field reference"); } } // It's possible the nmethod was invalidated in the last // safepoint, but if it's still alive then make it not_entrant. nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); if (nm != NULL) { nm->make_not_entrant(); } Deoptimization::deoptimize_frame(thread, caller_frame.id()); // Return to the now deoptimized frame. } // Now copy code back { MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag); // // Deoptimization may have happened while we waited for the lock. // In that case we don't bother to do any patching we just return // and let the deopt happen if (!caller_is_deopted()) { NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc()); address instr_pc = jump->jump_destination(); NativeInstruction* ni = nativeInstruction_at(instr_pc); if (ni->is_jump() ) { // the jump has not been patched yet // The jump destination is slow case and therefore not part of the stubs // (stubs are only for StaticCalls) // format of buffer // .... // instr byte 0 <-- copy_buff // instr byte 1 // .. // instr byte n-1 // n // .... <-- call destination address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset(); unsigned char* byte_count = (unsigned char*) (stub_location - 1); unsigned char* byte_skip = (unsigned char*) (stub_location - 2); unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3); address copy_buff = stub_location - *byte_skip - *byte_count; address being_initialized_entry = stub_location - *being_initialized_entry_offset; if (TracePatching) { ttyLocker ttyl; tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci, p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass"); nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc()); assert(caller_code != NULL, "nmethod not found"); // NOTE we use pc() not original_pc() because we already know they are // identical otherwise we'd have never entered this block of code const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc()); assert(map != NULL, "null check"); map->print(); tty->cr(); Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); } // depending on the code below, do_patch says whether to copy the patch body back into the nmethod bool do_patch = true; if (stub_id == Runtime1::access_field_patching_id) { // The offset may not be correct if the class was not loaded at code generation time. // Set it now. NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff); assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type"); assert(patch_field_offset >= 0, "illegal offset"); n_move->add_offset_in_bytes(patch_field_offset); } else if (load_klass_or_mirror_patch_id) { // If a getstatic or putstatic is referencing a klass which // isn't fully initialized, the patch body isn't copied into // place until initialization is complete. In this case the // patch site is setup so that any threads besides the // initializing thread are forced to come into the VM and // block. do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) || InstanceKlass::cast(init_klass)->is_initialized(); NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc); if (jump->jump_destination() == being_initialized_entry) { assert(do_patch == true, "initialization must be complete at this point"); } else { // patch the instruction NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); assert(n_copy->data() == 0 || n_copy->data() == (intptr_t)Universe::non_oop_word(), "illegal init value"); if (stub_id == Runtime1::load_klass_patching_id) { assert(load_klass != NULL, "klass not set"); n_copy->set_data((intx) (load_klass)); } else { assert(mirror() != NULL, "klass not set"); // Don't need a G1 pre-barrier here since we assert above that data isn't an oop. n_copy->set_data(cast_from_oop(mirror())); } if (TracePatching) { Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); } } } else if (stub_id == Runtime1::load_appendix_patching_id) { NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); assert(n_copy->data() == 0 || n_copy->data() == (intptr_t)Universe::non_oop_word(), "illegal init value"); n_copy->set_data(cast_from_oop(appendix())); if (TracePatching) { Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); } } else { ShouldNotReachHere(); } #if defined(SPARC) || defined(PPC32) if (load_klass_or_mirror_patch_id || stub_id == Runtime1::load_appendix_patching_id) { // Update the location in the nmethod with the proper // metadata. When the code was generated, a NULL was stuffed // in the metadata table and that table needs to be update to // have the right value. On intel the value is kept // directly in the instruction instead of in the metadata // table, so set_data above effectively updated the value. nmethod* nm = CodeCache::find_nmethod(instr_pc); assert(nm != NULL, "invalid nmethod_pc"); RelocIterator mds(nm, copy_buff, copy_buff + 1); bool found = false; while (mds.next() && !found) { if (mds.type() == relocInfo::oop_type) { assert(stub_id == Runtime1::load_mirror_patching_id || stub_id == Runtime1::load_appendix_patching_id, "wrong stub id"); oop_Relocation* r = mds.oop_reloc(); oop* oop_adr = r->oop_addr(); *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix(); r->fix_oop_relocation(); found = true; } else if (mds.type() == relocInfo::metadata_type) { assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id"); metadata_Relocation* r = mds.metadata_reloc(); Metadata** metadata_adr = r->metadata_addr(); *metadata_adr = load_klass; r->fix_metadata_relocation(); found = true; } } assert(found, "the metadata must exist!"); } #endif if (do_patch) { // replace instructions // first replace the tail, then the call #ifdef ARM if((load_klass_or_mirror_patch_id || stub_id == Runtime1::load_appendix_patching_id) && nativeMovConstReg_at(copy_buff)->is_pc_relative()) { nmethod* nm = CodeCache::find_nmethod(instr_pc); address addr = NULL; assert(nm != NULL, "invalid nmethod_pc"); RelocIterator mds(nm, copy_buff, copy_buff + 1); while (mds.next()) { if (mds.type() == relocInfo::oop_type) { assert(stub_id == Runtime1::load_mirror_patching_id || stub_id == Runtime1::load_appendix_patching_id, "wrong stub id"); oop_Relocation* r = mds.oop_reloc(); addr = (address)r->oop_addr(); break; } else if (mds.type() == relocInfo::metadata_type) { assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id"); metadata_Relocation* r = mds.metadata_reloc(); addr = (address)r->metadata_addr(); break; } } assert(addr != NULL, "metadata relocation must exist"); copy_buff -= *byte_count; NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff); n_copy2->set_pc_relative_offset(addr, instr_pc); } #endif for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) { address ptr = copy_buff + i; int a_byte = (*ptr) & 0xFF; address dst = instr_pc + i; *(unsigned char*)dst = (unsigned char) a_byte; } ICache::invalidate_range(instr_pc, *byte_count); NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff); if (load_klass_or_mirror_patch_id || stub_id == Runtime1::load_appendix_patching_id) { relocInfo::relocType rtype = (stub_id == Runtime1::load_klass_patching_id) ? relocInfo::metadata_type : relocInfo::oop_type; // update relocInfo to metadata nmethod* nm = CodeCache::find_nmethod(instr_pc); assert(nm != NULL, "invalid nmethod_pc"); // The old patch site is now a move instruction so update // the reloc info so that it will get updated during // future GCs. RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1)); relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc, relocInfo::none, rtype); #ifdef SPARC // Sparc takes two relocations for an metadata so update the second one. address instr_pc2 = instr_pc + NativeMovConstReg::add_offset; RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1); relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, relocInfo::none, rtype); #endif #ifdef PPC32 { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset; RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1); relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, relocInfo::none, rtype); } #endif } } else { ICache::invalidate_range(copy_buff, *byte_count); NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry); } } } } // If we are patching in a non-perm oop, make sure the nmethod // is on the right list. if (ScavengeRootsInCode) { MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag); nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); guarantee(nm != NULL, "only nmethods can contain non-perm oops"); // Since we've patched some oops in the nmethod, // (re)register it with the heap. Universe::heap()->register_nmethod(nm); } JRT_END #else // DEOPTIMIZE_WHEN_PATCHING JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id )) RegisterMap reg_map(thread, false); NOT_PRODUCT(_patch_code_slowcase_cnt++;) if (TracePatching) { tty->print_cr("Deoptimizing because patch is needed"); } frame runtime_frame = thread->last_frame(); frame caller_frame = runtime_frame.sender(®_map); // It's possible the nmethod was invalidated in the last // safepoint, but if it's still alive then make it not_entrant. nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); if (nm != NULL) { nm->make_not_entrant(); } Deoptimization::deoptimize_frame(thread, caller_frame.id()); // Return to the now deoptimized frame. JRT_END #endif // DEOPTIMIZE_WHEN_PATCHING // // Entry point for compiled code. We want to patch a nmethod. // We don't do a normal VM transition here because we want to // know after the patching is complete and any safepoint(s) are taken // if the calling nmethod was deoptimized. We do this by calling a // helper method which does the normal VM transition and when it // completes we can check for deoptimization. This simplifies the // assembly code in the cpu directories. // int Runtime1::move_klass_patching(JavaThread* thread) { // // NOTE: we are still in Java // Thread* THREAD = thread; debug_only(NoHandleMark nhm;) { // Enter VM mode ResetNoHandleMark rnhm; patch_code(thread, load_klass_patching_id); } // Back in JAVA, use no oops DON'T safepoint // Return true if calling code is deoptimized return caller_is_deopted(); } int Runtime1::move_mirror_patching(JavaThread* thread) { // // NOTE: we are still in Java // Thread* THREAD = thread; debug_only(NoHandleMark nhm;) { // Enter VM mode ResetNoHandleMark rnhm; patch_code(thread, load_mirror_patching_id); } // Back in JAVA, use no oops DON'T safepoint // Return true if calling code is deoptimized return caller_is_deopted(); } int Runtime1::move_appendix_patching(JavaThread* thread) { // // NOTE: we are still in Java // Thread* THREAD = thread; debug_only(NoHandleMark nhm;) { // Enter VM mode ResetNoHandleMark rnhm; patch_code(thread, load_appendix_patching_id); } // Back in JAVA, use no oops DON'T safepoint // Return true if calling code is deoptimized return caller_is_deopted(); } // // Entry point for compiled code. We want to patch a nmethod. // We don't do a normal VM transition here because we want to // know after the patching is complete and any safepoint(s) are taken // if the calling nmethod was deoptimized. We do this by calling a // helper method which does the normal VM transition and when it // completes we can check for deoptimization. This simplifies the // assembly code in the cpu directories. // int Runtime1::access_field_patching(JavaThread* thread) { // // NOTE: we are still in Java // Thread* THREAD = thread; debug_only(NoHandleMark nhm;) { // Enter VM mode ResetNoHandleMark rnhm; patch_code(thread, access_field_patching_id); } // Back in JAVA, use no oops DON'T safepoint // Return true if calling code is deoptimized return caller_is_deopted(); JRT_END JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id)) // for now we just print out the block id tty->print("%d ", block_id); JRT_END JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj)) // had to return int instead of bool, otherwise there may be a mismatch // between the C calling convention and the Java one. // e.g., on x86, GCC may clear only %al when returning a bool false, but // JVM takes the whole %eax as the return value, which may misinterpret // the return value as a boolean true. assert(mirror != NULL, "should null-check on mirror before calling"); Klass* k = java_lang_Class::as_Klass(mirror); return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0; JRT_END JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread)) ResourceMark rm; assert(!TieredCompilation, "incompatible with tiered compilation"); RegisterMap reg_map(thread, false); frame runtime_frame = thread->last_frame(); frame caller_frame = runtime_frame.sender(®_map); nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); assert (nm != NULL, "no more nmethod?"); nm->make_not_entrant(); methodHandle m(nm->method()); MethodData* mdo = m->method_data(); if (mdo == NULL && !HAS_PENDING_EXCEPTION) { // Build an MDO. Ignore errors like OutOfMemory; // that simply means we won't have an MDO to update. Method::build_interpreter_method_data(m, THREAD); if (HAS_PENDING_EXCEPTION) { assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); CLEAR_PENDING_EXCEPTION; } mdo = m->method_data(); } if (mdo != NULL) { mdo->inc_trap_count(Deoptimization::Reason_none); } if (TracePredicateFailedTraps) { stringStream ss1, ss2; vframeStream vfst(thread); methodHandle inlinee = methodHandle(vfst.method()); inlinee->print_short_name(&ss1); m->print_short_name(&ss2); tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc())); } Deoptimization::deoptimize_frame(thread, caller_frame.id()); JRT_END #ifndef PRODUCT void Runtime1::print_statistics() { tty->print_cr("C1 Runtime statistics:"); tty->print_cr(" _resolve_invoke_virtual_cnt: %d", SharedRuntime::_resolve_virtual_ctr); tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr); tty->print_cr(" _resolve_invoke_static_cnt: %d", SharedRuntime::_resolve_static_ctr); tty->print_cr(" _handle_wrong_method_cnt: %d", SharedRuntime::_wrong_method_ctr); tty->print_cr(" _ic_miss_cnt: %d", SharedRuntime::_ic_miss_ctr); tty->print_cr(" _generic_arraycopy_cnt: %d", _generic_arraycopy_cnt); tty->print_cr(" _generic_arraycopystub_cnt: %d", _generic_arraycopystub_cnt); tty->print_cr(" _byte_arraycopy_cnt: %d", _byte_arraycopy_stub_cnt); tty->print_cr(" _short_arraycopy_cnt: %d", _short_arraycopy_stub_cnt); tty->print_cr(" _int_arraycopy_cnt: %d", _int_arraycopy_stub_cnt); tty->print_cr(" _long_arraycopy_cnt: %d", _long_arraycopy_stub_cnt); tty->print_cr(" _oop_arraycopy_cnt: %d", _oop_arraycopy_stub_cnt); tty->print_cr(" _arraycopy_slowcase_cnt: %d", _arraycopy_slowcase_cnt); tty->print_cr(" _arraycopy_checkcast_cnt: %d", _arraycopy_checkcast_cnt); tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt); tty->print_cr(" _new_type_array_slowcase_cnt: %d", _new_type_array_slowcase_cnt); tty->print_cr(" _new_object_array_slowcase_cnt: %d", _new_object_array_slowcase_cnt); tty->print_cr(" _new_instance_slowcase_cnt: %d", _new_instance_slowcase_cnt); tty->print_cr(" _new_multi_array_slowcase_cnt: %d", _new_multi_array_slowcase_cnt); tty->print_cr(" _monitorenter_slowcase_cnt: %d", _monitorenter_slowcase_cnt); tty->print_cr(" _monitorexit_slowcase_cnt: %d", _monitorexit_slowcase_cnt); tty->print_cr(" _patch_code_slowcase_cnt: %d", _patch_code_slowcase_cnt); tty->print_cr(" _throw_range_check_exception_count: %d:", _throw_range_check_exception_count); tty->print_cr(" _throw_index_exception_count: %d:", _throw_index_exception_count); tty->print_cr(" _throw_div0_exception_count: %d:", _throw_div0_exception_count); tty->print_cr(" _throw_null_pointer_exception_count: %d:", _throw_null_pointer_exception_count); tty->print_cr(" _throw_class_cast_exception_count: %d:", _throw_class_cast_exception_count); tty->print_cr(" _throw_incompatible_class_change_error_count: %d:", _throw_incompatible_class_change_error_count); tty->print_cr(" _throw_array_store_exception_count: %d:", _throw_array_store_exception_count); tty->print_cr(" _throw_count: %d:", _throw_count); SharedRuntime::print_ic_miss_histogram(); tty->cr(); } #endif // PRODUCT