/* * Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_GC_G1_G1POLICY_HPP #define SHARE_GC_G1_G1POLICY_HPP #include "gc/g1/g1CollectorState.hpp" #include "gc/g1/g1GCPhaseTimes.hpp" #include "gc/g1/g1InCSetState.hpp" #include "gc/g1/g1InitialMarkToMixedTimeTracker.hpp" #include "gc/g1/g1MMUTracker.hpp" #include "gc/g1/g1RemSetTrackingPolicy.hpp" #include "gc/g1/g1Predictions.hpp" #include "gc/g1/g1YoungGenSizer.hpp" #include "gc/shared/gcCause.hpp" #include "utilities/pair.hpp" // A G1Policy makes policy decisions that determine the // characteristics of the collector. Examples include: // * choice of collection set. // * when to collect. class HeapRegion; class G1CollectionSet; class G1CollectionSetCandidates; class G1CollectionSetChooser; class G1IHOPControl; class G1Analytics; class G1SurvivorRegions; class G1YoungGenSizer; class GCPolicyCounters; class STWGCTimer; class G1Policy: public CHeapObj { private: static G1IHOPControl* create_ihop_control(const G1Predictions* predictor); // Update the IHOP control with necessary statistics. void update_ihop_prediction(double mutator_time_s, size_t mutator_alloc_bytes, size_t young_gen_size, bool this_gc_was_young_only); void report_ihop_statistics(); G1Predictions _predictor; G1Analytics* _analytics; G1RemSetTrackingPolicy _remset_tracker; G1MMUTracker* _mmu_tracker; G1IHOPControl* _ihop_control; GCPolicyCounters* _policy_counters; double _full_collection_start_sec; jlong _collection_pause_end_millis; uint _young_list_target_length; uint _young_list_fixed_length; // The max number of regions we can extend the eden by while the GC // locker is active. This should be >= _young_list_target_length; uint _young_list_max_length; // SurvRateGroups below must be initialized after the predictor because they // indirectly use it through this object passed to their constructor. SurvRateGroup* _short_lived_surv_rate_group; SurvRateGroup* _survivor_surv_rate_group; double _reserve_factor; // This will be set when the heap is expanded // for the first time during initialization. uint _reserve_regions; G1YoungGenSizer* _young_gen_sizer; uint _free_regions_at_end_of_collection; size_t _max_rs_lengths; size_t _rs_lengths_prediction; size_t _pending_cards; // The amount of allocated bytes in old gen during the last mutator and the following // young GC phase. size_t _bytes_allocated_in_old_since_last_gc; G1InitialMarkToMixedTimeTracker _initial_mark_to_mixed; bool should_update_surv_rate_group_predictors() { return collector_state()->in_young_only_phase() && !collector_state()->mark_or_rebuild_in_progress(); } public: const G1Predictions& predictor() const { return _predictor; } const G1Analytics* analytics() const { return const_cast(_analytics); } G1RemSetTrackingPolicy* remset_tracker() { return &_remset_tracker; } // Add the given number of bytes to the total number of allocated bytes in the old gen. void add_bytes_allocated_in_old_since_last_gc(size_t bytes) { _bytes_allocated_in_old_since_last_gc += bytes; } void set_region_eden(HeapRegion* hr) { hr->set_eden(); hr->install_surv_rate_group(_short_lived_surv_rate_group); } void set_region_survivor(HeapRegion* hr) { assert(hr->is_survivor(), "pre-condition"); hr->install_surv_rate_group(_survivor_surv_rate_group); } void record_max_rs_lengths(size_t rs_lengths) { _max_rs_lengths = rs_lengths; } double predict_base_elapsed_time_ms(size_t pending_cards) const; double predict_base_elapsed_time_ms(size_t pending_cards, size_t scanned_cards) const; size_t predict_bytes_to_copy(HeapRegion* hr) const; double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc) const; double predict_survivor_regions_evac_time() const; void cset_regions_freed() { bool update = should_update_surv_rate_group_predictors(); _short_lived_surv_rate_group->all_surviving_words_recorded(predictor(), update); _survivor_surv_rate_group->all_surviving_words_recorded(predictor(), update); } G1MMUTracker* mmu_tracker() { return _mmu_tracker; } const G1MMUTracker* mmu_tracker() const { return _mmu_tracker; } double max_pause_time_ms() const { return _mmu_tracker->max_gc_time() * 1000.0; } double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const; double predict_yg_surv_rate(int age) const; double accum_yg_surv_rate_pred(int age) const; private: G1CollectionSet* _collection_set; double average_time_ms(G1GCPhaseTimes::GCParPhases phase) const; double other_time_ms(double pause_time_ms) const; double young_other_time_ms() const; double non_young_other_time_ms() const; double constant_other_time_ms(double pause_time_ms) const; G1CollectionSetChooser* cset_chooser() const; // The number of bytes copied during the GC. size_t _bytes_copied_during_gc; // Stash a pointer to the g1 heap. G1CollectedHeap* _g1h; G1GCPhaseTimes* _phase_times; // This set of variables tracks the collector efficiency, in order to // determine whether we should initiate a new marking. double _mark_remark_start_sec; double _mark_cleanup_start_sec; // Updates the internal young list maximum and target lengths. Returns the // unbounded young list target length. uint update_young_list_max_and_target_length(); uint update_young_list_max_and_target_length(size_t rs_lengths); // Update the young list target length either by setting it to the // desired fixed value or by calculating it using G1's pause // prediction model. If no rs_lengths parameter is passed, predict // the RS lengths using the prediction model, otherwise use the // given rs_lengths as the prediction. // Returns the unbounded young list target length. uint update_young_list_target_length(size_t rs_lengths); // Calculate and return the minimum desired young list target // length. This is the minimum desired young list length according // to the user's inputs. uint calculate_young_list_desired_min_length(uint base_min_length) const; // Calculate and return the maximum desired young list target // length. This is the maximum desired young list length according // to the user's inputs. uint calculate_young_list_desired_max_length() const; // Calculate and return the maximum young list target length that // can fit into the pause time goal. The parameters are: rs_lengths // represent the prediction of how large the young RSet lengths will // be, base_min_length is the already existing number of regions in // the young list, min_length and max_length are the desired min and // max young list length according to the user's inputs. uint calculate_young_list_target_length(size_t rs_lengths, uint base_min_length, uint desired_min_length, uint desired_max_length) const; // Result of the bounded_young_list_target_length() method, containing both the // bounded as well as the unbounded young list target lengths in this order. typedef Pair YoungTargetLengths; YoungTargetLengths young_list_target_lengths(size_t rs_lengths) const; void update_rs_lengths_prediction(); void update_rs_lengths_prediction(size_t prediction); // Check whether a given young length (young_length) fits into the // given target pause time and whether the prediction for the amount // of objects to be copied for the given length will fit into the // given free space (expressed by base_free_regions). It is used by // calculate_young_list_target_length(). bool predict_will_fit(uint young_length, double base_time_ms, uint base_free_regions, double target_pause_time_ms) const; public: size_t pending_cards() const { return _pending_cards; } // Calculate the minimum number of old regions we'll add to the CSet // during a mixed GC. uint calc_min_old_cset_length() const; // Calculate the maximum number of old regions we'll add to the CSet // during a mixed GC. uint calc_max_old_cset_length() const; // Returns the given amount of reclaimable bytes (that represents // the amount of reclaimable space still to be collected) as a // percentage of the current heap capacity. double reclaimable_bytes_percent(size_t reclaimable_bytes) const; jlong collection_pause_end_millis() { return _collection_pause_end_millis; } private: void clear_collection_set_candidates(); // Sets up marking if proper conditions are met. void maybe_start_marking(); // The kind of STW pause. enum PauseKind { FullGC, YoungOnlyGC, MixedGC, LastYoungGC, InitialMarkGC, Cleanup, Remark }; // Calculate PauseKind from internal state. PauseKind young_gc_pause_kind() const; // Record the given STW pause with the given start and end times (in s). void record_pause(PauseKind kind, double start, double end); // Indicate that we aborted marking before doing any mixed GCs. void abort_time_to_mixed_tracking(); public: G1Policy(STWGCTimer* gc_timer); virtual ~G1Policy(); static G1Policy* create_policy(STWGCTimer* gc_timer_stw); G1CollectorState* collector_state() const; G1GCPhaseTimes* phase_times() const { return _phase_times; } // Check the current value of the young list RSet lengths and // compare it against the last prediction. If the current value is // higher, recalculate the young list target length prediction. void revise_young_list_target_length_if_necessary(size_t rs_lengths); // This should be called after the heap is resized. void record_new_heap_size(uint new_number_of_regions); virtual void init(G1CollectedHeap* g1h, G1CollectionSet* collection_set); void note_gc_start(); bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0); bool about_to_start_mixed_phase() const; // Record the start and end of an evacuation pause. void record_collection_pause_start(double start_time_sec); virtual void record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc); // Record the start and end of a full collection. void record_full_collection_start(); virtual void record_full_collection_end(); // Must currently be called while the world is stopped. void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms); // Record start and end of remark. void record_concurrent_mark_remark_start(); void record_concurrent_mark_remark_end(); // Record start, end, and completion of cleanup. void record_concurrent_mark_cleanup_start(); void record_concurrent_mark_cleanup_end(); void print_phases(); // Record how much space we copied during a GC. This is typically // called when a GC alloc region is being retired. void record_bytes_copied_during_gc(size_t bytes) { _bytes_copied_during_gc += bytes; } // The amount of space we copied during a GC. size_t bytes_copied_during_gc() const { return _bytes_copied_during_gc; } bool next_gc_should_be_mixed(const char* true_action_str, const char* false_action_str) const; // Calculate and return the number of initial and optional old gen regions from // the given collection set candidates and the remaining time. void calculate_old_collection_set_regions(G1CollectionSetCandidates* candidates, double time_remaining_ms, uint& num_initial_regions, uint& num_optional_regions); // Calculate the number of optional regions from the given collection set candidates, // the remaining time and the maximum number of these regions and return the number // of actually selected regions in num_optional_regions. void calculate_optional_collection_set_regions(G1CollectionSetCandidates* candidates, uint const max_optional_regions, double time_remaining_ms, uint& num_optional_regions); private: // Set the state to start a concurrent marking cycle and clear // _initiate_conc_mark_if_possible because it has now been // acted on. void initiate_conc_mark(); public: // This sets the initiate_conc_mark_if_possible() flag to start a // new cycle, as long as we are not already in one. It's best if it // is called during a safepoint when the test whether a cycle is in // progress or not is stable. bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause); // This is called at the very beginning of an evacuation pause (it // has to be the first thing that the pause does). If // initiate_conc_mark_if_possible() is true, and the concurrent // marking thread has completed its work during the previous cycle, // it will set in_initial_mark_gc() to so that the pause does // the initial-mark work and start a marking cycle. void decide_on_conc_mark_initiation(); void finished_recalculating_age_indexes(bool is_survivors) { if (is_survivors) { _survivor_surv_rate_group->finished_recalculating_age_indexes(); } else { _short_lived_surv_rate_group->finished_recalculating_age_indexes(); } } size_t young_list_target_length() const { return _young_list_target_length; } bool should_allocate_mutator_region() const; bool can_expand_young_list() const; uint young_list_max_length() const { return _young_list_max_length; } bool use_adaptive_young_list_length() const; void transfer_survivors_to_cset(const G1SurvivorRegions* survivors); private: // // Survivor regions policy. // // Current tenuring threshold, set to 0 if the collector reaches the // maximum amount of survivors regions. uint _tenuring_threshold; // The limit on the number of regions allocated for survivors. uint _max_survivor_regions; AgeTable _survivors_age_table; size_t desired_survivor_size(uint max_regions) const; // Fraction used when predicting how many optional regions to include in // the CSet. This fraction of the available time is used for optional regions, // the rest is used to add old regions to the normal CSet. double optional_prediction_fraction() { return 0.2; } public: // Fraction used when evacuating the optional regions. This fraction of the // remaining time is used to choose what regions to include in the evacuation. double optional_evacuation_fraction() { return 0.75; } uint tenuring_threshold() const { return _tenuring_threshold; } uint max_survivor_regions() { return _max_survivor_regions; } void note_start_adding_survivor_regions() { _survivor_surv_rate_group->start_adding_regions(); } void note_stop_adding_survivor_regions() { _survivor_surv_rate_group->stop_adding_regions(); } void record_age_table(AgeTable* age_table) { _survivors_age_table.merge(age_table); } void print_age_table(); void update_max_gc_locker_expansion(); void update_survivors_policy(); virtual bool force_upgrade_to_full() { return false; } }; #endif // SHARE_GC_G1_G1POLICY_HPP