/* * Copyright (c) 2022, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package org.openjdk.bench.java.lang; import org.openjdk.jmh.annotations.Benchmark; import org.openjdk.jmh.annotations.BenchmarkMode; import org.openjdk.jmh.annotations.CompilerControl; import org.openjdk.jmh.annotations.Fork; import org.openjdk.jmh.annotations.Measurement; import org.openjdk.jmh.annotations.Mode; import org.openjdk.jmh.annotations.OperationsPerInvocation; import org.openjdk.jmh.annotations.OutputTimeUnit; import org.openjdk.jmh.annotations.Scope; import org.openjdk.jmh.annotations.Setup; import org.openjdk.jmh.annotations.State; import org.openjdk.jmh.annotations.Param; import org.openjdk.jmh.annotations.Warmup; import java.util.random.RandomGenerator; import java.util.random.RandomGeneratorFactory; import java.util.concurrent.TimeUnit; @BenchmarkMode(Mode.AverageTime) @OutputTimeUnit(TimeUnit.NANOSECONDS) @State(Scope.Thread) @Warmup(iterations = 5, time = 1) @Measurement(iterations = 5, time = 1) @Fork(3) public class FloatClassCheck { RandomGenerator rng; static final int BUFFER_SIZE = 1024; float[] inputs; boolean[] storeOutputs; int[] cmovOutputs; int[] branchOutputs; @CompilerControl(CompilerControl.Mode.DONT_INLINE) static int call() { return 1; } @Setup public void setup() { storeOutputs = new boolean[BUFFER_SIZE]; cmovOutputs = new int[BUFFER_SIZE]; branchOutputs = new int[BUFFER_SIZE]; inputs = new float[BUFFER_SIZE]; RandomGenerator rng = RandomGeneratorFactory.getDefault().create(0); float input; for (int i = 0; i < BUFFER_SIZE; i++) { if (i % 5 == 0) { input = (i % 2 == 0) ? Float.NEGATIVE_INFINITY : Float.POSITIVE_INFINITY; } else if (i % 3 == 0) input = Float.NaN; else input = rng.nextFloat(); inputs[i] = input; } } @Benchmark @OperationsPerInvocation(BUFFER_SIZE) public void testIsInfiniteStore() { for (int i = 0; i < BUFFER_SIZE; i++) { storeOutputs[i] = Float.isInfinite(inputs[i]); } } @Benchmark @OperationsPerInvocation(BUFFER_SIZE) public void testIsInfiniteCMov() { for (int i = 0; i < BUFFER_SIZE; i++) { cmovOutputs[i] = Float.isInfinite(inputs[i]) ? 9 : 7; } } @Benchmark @OperationsPerInvocation(BUFFER_SIZE) public void testIsInfiniteBranch() { for (int i = 0; i < BUFFER_SIZE; i++) { cmovOutputs[i] = Float.isInfinite(inputs[i]) ? call() : 7; } } }