/* * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1DirtyCardQueue.hpp" #include "gc/g1/g1FreeIdSet.hpp" #include "gc/g1/g1RemSet.hpp" #include "gc/g1/g1ThreadLocalData.hpp" #include "gc/g1/heapRegionRemSet.hpp" #include "gc/shared/suspendibleThreadSet.hpp" #include "gc/shared/workgroup.hpp" #include "runtime/atomic.hpp" #include "runtime/flags/flagSetting.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/safepoint.hpp" #include "runtime/thread.inline.hpp" #include "runtime/threadSMR.hpp" // Closure used for updating remembered sets and recording references that // point into the collection set while the mutator is running. // Assumed to be only executed concurrently with the mutator. Yields via // SuspendibleThreadSet after every card. class G1RefineCardConcurrentlyClosure: public G1CardTableEntryClosure { public: bool do_card_ptr(CardValue* card_ptr, uint worker_i) { G1CollectedHeap::heap()->rem_set()->refine_card_concurrently(card_ptr, worker_i); if (SuspendibleThreadSet::should_yield()) { // Caller will actually yield. return false; } // Otherwise, we finished successfully; return true. return true; } }; G1DirtyCardQueue::G1DirtyCardQueue(G1DirtyCardQueueSet* qset) : // Dirty card queues are always active, so we create them with their // active field set to true. PtrQueue(qset, true /* active */) { } G1DirtyCardQueue::~G1DirtyCardQueue() { flush(); } G1DirtyCardQueueSet::G1DirtyCardQueueSet(bool notify_when_complete) : PtrQueueSet(notify_when_complete), _free_ids(NULL), _processed_buffers_mut(0), _processed_buffers_rs_thread(0), _cur_par_buffer_node(NULL) { _all_active = true; } G1DirtyCardQueueSet::~G1DirtyCardQueueSet() { delete _free_ids; } // Determines how many mutator threads can process the buffers in parallel. uint G1DirtyCardQueueSet::num_par_ids() { return (uint)os::initial_active_processor_count(); } void G1DirtyCardQueueSet::initialize(Monitor* cbl_mon, BufferNode::Allocator* allocator, bool init_free_ids) { PtrQueueSet::initialize(cbl_mon, allocator); if (init_free_ids) { _free_ids = new G1FreeIdSet(0, num_par_ids()); } } void G1DirtyCardQueueSet::handle_zero_index_for_thread(Thread* t) { G1ThreadLocalData::dirty_card_queue(t).handle_zero_index(); } bool G1DirtyCardQueueSet::apply_closure_to_buffer(G1CardTableEntryClosure* cl, BufferNode* node, bool consume, uint worker_i) { if (cl == NULL) return true; bool result = true; void** buf = BufferNode::make_buffer_from_node(node); size_t i = node->index(); size_t limit = buffer_size(); for ( ; i < limit; ++i) { CardTable::CardValue* card_ptr = static_cast(buf[i]); assert(card_ptr != NULL, "invariant"); if (!cl->do_card_ptr(card_ptr, worker_i)) { result = false; // Incomplete processing. break; } } if (consume) { assert(i <= buffer_size(), "invariant"); node->set_index(i); } return result; } #ifndef ASSERT #define assert_fully_consumed(node, buffer_size) #else #define assert_fully_consumed(node, buffer_size) \ do { \ size_t _afc_index = (node)->index(); \ size_t _afc_size = (buffer_size); \ assert(_afc_index == _afc_size, \ "Buffer was not fully consumed as claimed: index: " \ SIZE_FORMAT ", size: " SIZE_FORMAT, \ _afc_index, _afc_size); \ } while (0) #endif // ASSERT bool G1DirtyCardQueueSet::mut_process_buffer(BufferNode* node) { guarantee(_free_ids != NULL, "must be"); uint worker_i = _free_ids->claim_par_id(); // temporarily claim an id G1RefineCardConcurrentlyClosure cl; bool result = apply_closure_to_buffer(&cl, node, true, worker_i); _free_ids->release_par_id(worker_i); // release the id if (result) { assert_fully_consumed(node, buffer_size()); Atomic::inc(&_processed_buffers_mut); } return result; } bool G1DirtyCardQueueSet::refine_completed_buffer_concurrently(uint worker_i, size_t stop_at) { G1RefineCardConcurrentlyClosure cl; return apply_closure_to_completed_buffer(&cl, worker_i, stop_at, false); } bool G1DirtyCardQueueSet::apply_closure_during_gc(G1CardTableEntryClosure* cl, uint worker_i) { assert_at_safepoint(); return apply_closure_to_completed_buffer(cl, worker_i, 0, true); } bool G1DirtyCardQueueSet::apply_closure_to_completed_buffer(G1CardTableEntryClosure* cl, uint worker_i, size_t stop_at, bool during_pause) { assert(!during_pause || stop_at == 0, "Should not leave any completed buffers during a pause"); BufferNode* nd = get_completed_buffer(stop_at); if (nd == NULL) { return false; } else { if (apply_closure_to_buffer(cl, nd, true, worker_i)) { assert_fully_consumed(nd, buffer_size()); // Done with fully processed buffer. deallocate_buffer(nd); Atomic::inc(&_processed_buffers_rs_thread); } else { // Return partially processed buffer to the queue. guarantee(!during_pause, "Should never stop early"); enqueue_completed_buffer(nd); } return true; } } void G1DirtyCardQueueSet::par_apply_closure_to_all_completed_buffers(G1CardTableEntryClosure* cl) { BufferNode* nd = _cur_par_buffer_node; while (nd != NULL) { BufferNode* next = nd->next(); BufferNode* actual = Atomic::cmpxchg(next, &_cur_par_buffer_node, nd); if (actual == nd) { bool b = apply_closure_to_buffer(cl, nd, false); guarantee(b, "Should not stop early."); nd = next; } else { nd = actual; } } } void G1DirtyCardQueueSet::abandon_logs() { assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint."); abandon_completed_buffers(); // Since abandon is done only at safepoints, we can safely manipulate // these queues. struct AbandonThreadLogClosure : public ThreadClosure { virtual void do_thread(Thread* t) { G1ThreadLocalData::dirty_card_queue(t).reset(); } } closure; Threads::threads_do(&closure); G1BarrierSet::shared_dirty_card_queue().reset(); } void G1DirtyCardQueueSet::concatenate_logs() { // Iterate over all the threads, if we find a partial log add it to // the global list of logs. Temporarily turn off the limit on the number // of outstanding buffers. assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint."); size_t old_limit = max_completed_buffers(); set_max_completed_buffers(MaxCompletedBuffersUnlimited); struct ConcatenateThreadLogClosure : public ThreadClosure { virtual void do_thread(Thread* t) { G1DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(t); if (!dcq.is_empty()) { dcq.flush(); } } } closure; Threads::threads_do(&closure); G1BarrierSet::shared_dirty_card_queue().flush(); set_max_completed_buffers(old_limit); }