/* * Copyright 1999-2010 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ #include "incls/_precompiled.incl" #include "incls/_ciMethod.cpp.incl" // ciMethod // // This class represents a methodOop in the HotSpot virtual // machine. // ------------------------------------------------------------------ // ciMethod::ciMethod // // Loaded method. ciMethod::ciMethod(methodHandle h_m) : ciObject(h_m) { assert(h_m() != NULL, "no null method"); // These fields are always filled in in loaded methods. _flags = ciFlags(h_m()->access_flags()); // Easy to compute, so fill them in now. _max_stack = h_m()->max_stack(); _max_locals = h_m()->max_locals(); _code_size = h_m()->code_size(); _intrinsic_id = h_m()->intrinsic_id(); _handler_count = h_m()->exception_table()->length() / 4; _uses_monitors = h_m()->access_flags().has_monitor_bytecodes(); _balanced_monitors = !_uses_monitors || h_m()->access_flags().is_monitor_matching(); _is_compilable = !h_m()->is_not_compilable(); // Lazy fields, filled in on demand. Require allocation. _code = NULL; _exception_handlers = NULL; _liveness = NULL; _bcea = NULL; _method_blocks = NULL; #ifdef COMPILER2 _flow = NULL; #endif // COMPILER2 ciEnv *env = CURRENT_ENV; if (env->jvmti_can_hotswap_or_post_breakpoint() && _is_compilable) { // 6328518 check hotswap conditions under the right lock. MutexLocker locker(Compile_lock); if (Dependencies::check_evol_method(h_m()) != NULL) { _is_compilable = false; } } else { CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops()); } if (instanceKlass::cast(h_m()->method_holder())->is_linked()) { _can_be_statically_bound = h_m()->can_be_statically_bound(); } else { // Have to use a conservative value in this case. _can_be_statically_bound = false; } // Adjust the definition of this condition to be more useful: // %%% take these conditions into account in vtable generation if (!_can_be_statically_bound && h_m()->is_private()) _can_be_statically_bound = true; if (_can_be_statically_bound && h_m()->is_abstract()) _can_be_statically_bound = false; // generating _signature may allow GC and therefore move m. // These fields are always filled in. _name = env->get_object(h_m()->name())->as_symbol(); _holder = env->get_object(h_m()->method_holder())->as_instance_klass(); ciSymbol* sig_symbol = env->get_object(h_m()->signature())->as_symbol(); _signature = new (env->arena()) ciSignature(_holder, sig_symbol); _method_data = NULL; // Take a snapshot of these values, so they will be commensurate with the MDO. if (ProfileInterpreter) { int invcnt = h_m()->interpreter_invocation_count(); // if the value overflowed report it as max int _interpreter_invocation_count = invcnt < 0 ? max_jint : invcnt ; _interpreter_throwout_count = h_m()->interpreter_throwout_count(); } else { _interpreter_invocation_count = 0; _interpreter_throwout_count = 0; } if (_interpreter_invocation_count == 0) _interpreter_invocation_count = 1; } // ------------------------------------------------------------------ // ciMethod::ciMethod // // Unloaded method. ciMethod::ciMethod(ciInstanceKlass* holder, ciSymbol* name, ciSymbol* signature) : ciObject(ciMethodKlass::make()) { // These fields are always filled in. _name = name; _holder = holder; _signature = new (CURRENT_ENV->arena()) ciSignature(_holder, signature); _intrinsic_id = vmIntrinsics::_none; _liveness = NULL; _can_be_statically_bound = false; _bcea = NULL; _method_blocks = NULL; _method_data = NULL; #ifdef COMPILER2 _flow = NULL; #endif // COMPILER2 } // ------------------------------------------------------------------ // ciMethod::load_code // // Load the bytecodes and exception handler table for this method. void ciMethod::load_code() { VM_ENTRY_MARK; assert(is_loaded(), "only loaded methods have code"); methodOop me = get_methodOop(); Arena* arena = CURRENT_THREAD_ENV->arena(); // Load the bytecodes. _code = (address)arena->Amalloc(code_size()); memcpy(_code, me->code_base(), code_size()); // Revert any breakpoint bytecodes in ci's copy if (me->number_of_breakpoints() > 0) { BreakpointInfo* bp = instanceKlass::cast(me->method_holder())->breakpoints(); for (; bp != NULL; bp = bp->next()) { if (bp->match(me)) { code_at_put(bp->bci(), bp->orig_bytecode()); } } } // And load the exception table. typeArrayOop exc_table = me->exception_table(); // Allocate one extra spot in our list of exceptions. This // last entry will be used to represent the possibility that // an exception escapes the method. See ciExceptionHandlerStream // for details. _exception_handlers = (ciExceptionHandler**)arena->Amalloc(sizeof(ciExceptionHandler*) * (_handler_count + 1)); if (_handler_count > 0) { for (int i=0; i<_handler_count; i++) { int base = i*4; _exception_handlers[i] = new (arena) ciExceptionHandler( holder(), /* start */ exc_table->int_at(base), /* limit */ exc_table->int_at(base+1), /* goto pc */ exc_table->int_at(base+2), /* cp index */ exc_table->int_at(base+3)); } } // Put an entry at the end of our list to represent the possibility // of exceptional exit. _exception_handlers[_handler_count] = new (arena) ciExceptionHandler(holder(), 0, code_size(), -1, 0); if (CIPrintMethodCodes) { print_codes(); } } // ------------------------------------------------------------------ // ciMethod::has_linenumber_table // // length unknown until decompression bool ciMethod::has_linenumber_table() const { check_is_loaded(); VM_ENTRY_MARK; return get_methodOop()->has_linenumber_table(); } // ------------------------------------------------------------------ // ciMethod::compressed_linenumber_table u_char* ciMethod::compressed_linenumber_table() const { check_is_loaded(); VM_ENTRY_MARK; return get_methodOop()->compressed_linenumber_table(); } // ------------------------------------------------------------------ // ciMethod::line_number_from_bci int ciMethod::line_number_from_bci(int bci) const { check_is_loaded(); VM_ENTRY_MARK; return get_methodOop()->line_number_from_bci(bci); } // ------------------------------------------------------------------ // ciMethod::vtable_index // // Get the position of this method's entry in the vtable, if any. int ciMethod::vtable_index() { check_is_loaded(); assert(holder()->is_linked(), "must be linked"); VM_ENTRY_MARK; return get_methodOop()->vtable_index(); } // ------------------------------------------------------------------ // ciMethod::native_entry // // Get the address of this method's native code, if any. address ciMethod::native_entry() { check_is_loaded(); assert(flags().is_native(), "must be native method"); VM_ENTRY_MARK; methodOop method = get_methodOop(); address entry = method->native_function(); assert(entry != NULL, "must be valid entry point"); return entry; } // ------------------------------------------------------------------ // ciMethod::interpreter_entry // // Get the entry point for running this method in the interpreter. address ciMethod::interpreter_entry() { check_is_loaded(); VM_ENTRY_MARK; methodHandle mh(THREAD, get_methodOop()); return Interpreter::entry_for_method(mh); } // ------------------------------------------------------------------ // ciMethod::uses_balanced_monitors // // Does this method use monitors in a strict stack-disciplined manner? bool ciMethod::has_balanced_monitors() { check_is_loaded(); if (_balanced_monitors) return true; // Analyze the method to see if monitors are used properly. VM_ENTRY_MARK; methodHandle method(THREAD, get_methodOop()); assert(method->has_monitor_bytecodes(), "should have checked this"); // Check to see if a previous compilation computed the // monitor-matching analysis. if (method->guaranteed_monitor_matching()) { _balanced_monitors = true; return true; } { EXCEPTION_MARK; ResourceMark rm(THREAD); GeneratePairingInfo gpi(method); gpi.compute_map(CATCH); if (!gpi.monitor_safe()) { return false; } method->set_guaranteed_monitor_matching(); _balanced_monitors = true; } return true; } // ------------------------------------------------------------------ // ciMethod::get_flow_analysis ciTypeFlow* ciMethod::get_flow_analysis() { #ifdef COMPILER2 if (_flow == NULL) { ciEnv* env = CURRENT_ENV; _flow = new (env->arena()) ciTypeFlow(env, this); _flow->do_flow(); } return _flow; #else // COMPILER2 ShouldNotReachHere(); return NULL; #endif // COMPILER2 } // ------------------------------------------------------------------ // ciMethod::get_osr_flow_analysis ciTypeFlow* ciMethod::get_osr_flow_analysis(int osr_bci) { #ifdef COMPILER2 // OSR entry points are always place after a call bytecode of some sort assert(osr_bci >= 0, "must supply valid OSR entry point"); ciEnv* env = CURRENT_ENV; ciTypeFlow* flow = new (env->arena()) ciTypeFlow(env, this, osr_bci); flow->do_flow(); return flow; #else // COMPILER2 ShouldNotReachHere(); return NULL; #endif // COMPILER2 } // ------------------------------------------------------------------ // ciMethod::raw_liveness_at_bci // // Which local variables are live at a specific bci? MethodLivenessResult ciMethod::raw_liveness_at_bci(int bci) { check_is_loaded(); if (_liveness == NULL) { // Create the liveness analyzer. Arena* arena = CURRENT_ENV->arena(); _liveness = new (arena) MethodLiveness(arena, this); _liveness->compute_liveness(); } return _liveness->get_liveness_at(bci); } // ------------------------------------------------------------------ // ciMethod::liveness_at_bci // // Which local variables are live at a specific bci? When debugging // will return true for all locals in some cases to improve debug // information. MethodLivenessResult ciMethod::liveness_at_bci(int bci) { MethodLivenessResult result = raw_liveness_at_bci(bci); if (CURRENT_ENV->jvmti_can_access_local_variables() || DeoptimizeALot || CompileTheWorld) { // Keep all locals live for the user's edification and amusement. result.at_put_range(0, result.size(), true); } return result; } // ciMethod::live_local_oops_at_bci // // find all the live oops in the locals array for a particular bci // Compute what the interpreter believes by using the interpreter // oopmap generator. This is used as a double check during osr to // guard against conservative result from MethodLiveness making us // think a dead oop is live. MethodLiveness is conservative in the // sense that it may consider locals to be live which cannot be live, // like in the case where a local could contain an oop or a primitive // along different paths. In that case the local must be dead when // those paths merge. Since the interpreter's viewpoint is used when // gc'ing an interpreter frame we need to use its viewpoint during // OSR when loading the locals. BitMap ciMethod::live_local_oops_at_bci(int bci) { VM_ENTRY_MARK; InterpreterOopMap mask; OopMapCache::compute_one_oop_map(get_methodOop(), bci, &mask); int mask_size = max_locals(); BitMap result(mask_size); result.clear(); int i; for (i = 0; i < mask_size ; i++ ) { if (mask.is_oop(i)) result.set_bit(i); } return result; } #ifdef COMPILER1 // ------------------------------------------------------------------ // ciMethod::bci_block_start // // Marks all bcis where a new basic block starts const BitMap ciMethod::bci_block_start() { check_is_loaded(); if (_liveness == NULL) { // Create the liveness analyzer. Arena* arena = CURRENT_ENV->arena(); _liveness = new (arena) MethodLiveness(arena, this); _liveness->compute_liveness(); } return _liveness->get_bci_block_start(); } #endif // COMPILER1 // ------------------------------------------------------------------ // ciMethod::call_profile_at_bci // // Get the ciCallProfile for the invocation of this method. // Also reports receiver types for non-call type checks (if TypeProfileCasts). ciCallProfile ciMethod::call_profile_at_bci(int bci) { ResourceMark rm; ciCallProfile result; if (method_data() != NULL && method_data()->is_mature()) { ciProfileData* data = method_data()->bci_to_data(bci); if (data != NULL && data->is_CounterData()) { // Every profiled call site has a counter. int count = data->as_CounterData()->count(); if (!data->is_ReceiverTypeData()) { result._receiver_count[0] = 0; // that's a definite zero } else { // ReceiverTypeData is a subclass of CounterData ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData(); // In addition, virtual call sites have receiver type information int receivers_count_total = 0; int morphism = 0; for (uint i = 0; i < call->row_limit(); i++) { ciKlass* receiver = call->receiver(i); if (receiver == NULL) continue; morphism += 1; int rcount = call->receiver_count(i); if (rcount == 0) rcount = 1; // Should be valid value receivers_count_total += rcount; // Add the receiver to result data. result.add_receiver(receiver, rcount); // If we extend profiling to record methods, // we will set result._method also. } // Determine call site's morphism. // The call site count is 0 with known morphism (onlt 1 or 2 receivers) // or < 0 in the case of a type check failured for checkcast, aastore, instanceof. // The call site count is > 0 in the case of a polymorphic virtual call. if (morphism > 0 && morphism == result._limit) { // The morphism <= MorphismLimit. if ((morphism < ciCallProfile::MorphismLimit) || (morphism == ciCallProfile::MorphismLimit && count == 0)) { #ifdef ASSERT if (count > 0) { this->print_short_name(tty); tty->print_cr(" @ bci:%d", bci); this->print_codes(); assert(false, "this call site should not be polymorphic"); } #endif result._morphism = morphism; } } // Make the count consistent if this is a call profile. If count is // zero or less, presume that this is a typecheck profile and // do nothing. Otherwise, increase count to be the sum of all // receiver's counts. if (count >= 0) { count += receivers_count_total; } } result._count = count; } } return result; } // ------------------------------------------------------------------ // Add new receiver and sort data by receiver's profile count. void ciCallProfile::add_receiver(ciKlass* receiver, int receiver_count) { // Add new receiver and sort data by receiver's counts when we have space // for it otherwise replace the less called receiver (less called receiver // is placed to the last array element which is not used). // First array's element contains most called receiver. int i = _limit; for (; i > 0 && receiver_count > _receiver_count[i-1]; i--) { _receiver[i] = _receiver[i-1]; _receiver_count[i] = _receiver_count[i-1]; } _receiver[i] = receiver; _receiver_count[i] = receiver_count; if (_limit < MorphismLimit) _limit++; } // ------------------------------------------------------------------ // ciMethod::find_monomorphic_target // // Given a certain calling environment, find the monomorphic target // for the call. Return NULL if the call is not monomorphic in // its calling environment, or if there are only abstract methods. // The returned method is never abstract. // Note: If caller uses a non-null result, it must inform dependencies // via assert_unique_concrete_method or assert_leaf_type. ciMethod* ciMethod::find_monomorphic_target(ciInstanceKlass* caller, ciInstanceKlass* callee_holder, ciInstanceKlass* actual_recv) { check_is_loaded(); if (actual_recv->is_interface()) { // %%% We cannot trust interface types, yet. See bug 6312651. return NULL; } ciMethod* root_m = resolve_invoke(caller, actual_recv); if (root_m == NULL) { // Something went wrong looking up the actual receiver method. return NULL; } assert(!root_m->is_abstract(), "resolve_invoke promise"); // Make certain quick checks even if UseCHA is false. // Is it private or final? if (root_m->can_be_statically_bound()) { return root_m; } if (actual_recv->is_leaf_type() && actual_recv == root_m->holder()) { // Easy case. There is no other place to put a method, so don't bother // to go through the VM_ENTRY_MARK and all the rest. return root_m; } // Array methods (clone, hashCode, etc.) are always statically bound. // If we were to see an array type here, we'd return root_m. // However, this method processes only ciInstanceKlasses. (See 4962591.) // The inline_native_clone intrinsic narrows Object to T[] properly, // so there is no need to do the same job here. if (!UseCHA) return NULL; VM_ENTRY_MARK; methodHandle target; { MutexLocker locker(Compile_lock); klassOop context = actual_recv->get_klassOop(); target = Dependencies::find_unique_concrete_method(context, root_m->get_methodOop()); // %%% Should upgrade this ciMethod API to look for 1 or 2 concrete methods. } #ifndef PRODUCT if (TraceDependencies && target() != NULL && target() != root_m->get_methodOop()) { tty->print("found a non-root unique target method"); tty->print_cr(" context = %s", instanceKlass::cast(actual_recv->get_klassOop())->external_name()); tty->print(" method = "); target->print_short_name(tty); tty->cr(); } #endif //PRODUCT if (target() == NULL) { return NULL; } if (target() == root_m->get_methodOop()) { return root_m; } if (!root_m->is_public() && !root_m->is_protected()) { // If we are going to reason about inheritance, it's easiest // if the method in question is public, protected, or private. // If the answer is not root_m, it is conservatively correct // to return NULL, even if the CHA encountered irrelevant // methods in other packages. // %%% TO DO: Work out logic for package-private methods // with the same name but different vtable indexes. return NULL; } return CURRENT_THREAD_ENV->get_object(target())->as_method(); } // ------------------------------------------------------------------ // ciMethod::resolve_invoke // // Given a known receiver klass, find the target for the call. // Return NULL if the call has no target or the target is abstract. ciMethod* ciMethod::resolve_invoke(ciKlass* caller, ciKlass* exact_receiver) { check_is_loaded(); VM_ENTRY_MARK; KlassHandle caller_klass (THREAD, caller->get_klassOop()); KlassHandle h_recv (THREAD, exact_receiver->get_klassOop()); KlassHandle h_resolved (THREAD, holder()->get_klassOop()); symbolHandle h_name (THREAD, name()->get_symbolOop()); symbolHandle h_signature (THREAD, signature()->get_symbolOop()); methodHandle m; // Only do exact lookup if receiver klass has been linked. Otherwise, // the vtable has not been setup, and the LinkResolver will fail. if (h_recv->oop_is_javaArray() || instanceKlass::cast(h_recv())->is_linked() && !exact_receiver->is_interface()) { if (holder()->is_interface()) { m = LinkResolver::resolve_interface_call_or_null(h_recv, h_resolved, h_name, h_signature, caller_klass); } else { m = LinkResolver::resolve_virtual_call_or_null(h_recv, h_resolved, h_name, h_signature, caller_klass); } } if (m.is_null()) { // Return NULL only if there was a problem with lookup (uninitialized class, etc.) return NULL; } ciMethod* result = this; if (m() != get_methodOop()) { result = CURRENT_THREAD_ENV->get_object(m())->as_method(); } // Don't return abstract methods because they aren't // optimizable or interesting. if (result->is_abstract()) { return NULL; } else { return result; } } // ------------------------------------------------------------------ // ciMethod::resolve_vtable_index // // Given a known receiver klass, find the vtable index for the call. // Return methodOopDesc::invalid_vtable_index if the vtable_index is unknown. int ciMethod::resolve_vtable_index(ciKlass* caller, ciKlass* receiver) { check_is_loaded(); int vtable_index = methodOopDesc::invalid_vtable_index; // Only do lookup if receiver klass has been linked. Otherwise, // the vtable has not been setup, and the LinkResolver will fail. if (!receiver->is_interface() && (!receiver->is_instance_klass() || receiver->as_instance_klass()->is_linked())) { VM_ENTRY_MARK; KlassHandle caller_klass (THREAD, caller->get_klassOop()); KlassHandle h_recv (THREAD, receiver->get_klassOop()); symbolHandle h_name (THREAD, name()->get_symbolOop()); symbolHandle h_signature (THREAD, signature()->get_symbolOop()); vtable_index = LinkResolver::resolve_virtual_vtable_index(h_recv, h_recv, h_name, h_signature, caller_klass); if (vtable_index == methodOopDesc::nonvirtual_vtable_index) { // A statically bound method. Return "no such index". vtable_index = methodOopDesc::invalid_vtable_index; } } return vtable_index; } // ------------------------------------------------------------------ // ciMethod::interpreter_call_site_count int ciMethod::interpreter_call_site_count(int bci) { if (method_data() != NULL) { ResourceMark rm; ciProfileData* data = method_data()->bci_to_data(bci); if (data != NULL && data->is_CounterData()) { return scale_count(data->as_CounterData()->count()); } } return -1; // unknown } // ------------------------------------------------------------------ // Adjust a CounterData count to be commensurate with // interpreter_invocation_count. If the MDO exists for // only 25% of the time the method exists, then the // counts in the MDO should be scaled by 4X, so that // they can be usefully and stably compared against the // invocation counts in methods. int ciMethod::scale_count(int count, float prof_factor) { if (count > 0 && method_data() != NULL) { int current_mileage = method_data()->current_mileage(); int creation_mileage = method_data()->creation_mileage(); int counter_life = current_mileage - creation_mileage; int method_life = interpreter_invocation_count(); // counter_life due to backedge_counter could be > method_life if (counter_life > method_life) counter_life = method_life; if (0 < counter_life && counter_life <= method_life) { count = (int)((double)count * prof_factor * method_life / counter_life + 0.5); count = (count > 0) ? count : 1; } } return count; } // ------------------------------------------------------------------ // invokedynamic support // ------------------------------------------------------------------ // ciMethod::is_method_handle_invoke // // Return true if the method is a MethodHandle target. bool ciMethod::is_method_handle_invoke() const { bool flag = (holder()->name() == ciSymbol::java_dyn_MethodHandle() && methodOopDesc::is_method_handle_invoke_name(name()->sid())); #ifdef ASSERT if (is_loaded()) { bool flag2 = ((flags().as_int() & JVM_MH_INVOKE_BITS) == JVM_MH_INVOKE_BITS); { VM_ENTRY_MARK; bool flag3 = get_methodOop()->is_method_handle_invoke(); assert(flag2 == flag3, "consistent"); assert(flag == flag3, "consistent"); } } #endif //ASSERT return flag; } // ------------------------------------------------------------------ // ciMethod::is_method_handle_adapter // // Return true if the method is a generated MethodHandle adapter. bool ciMethod::is_method_handle_adapter() const { check_is_loaded(); VM_ENTRY_MARK; return get_methodOop()->is_method_handle_adapter(); } ciInstance* ciMethod::method_handle_type() { check_is_loaded(); VM_ENTRY_MARK; oop mtype = get_methodOop()->method_handle_type(); return CURRENT_THREAD_ENV->get_object(mtype)->as_instance(); } // ------------------------------------------------------------------ // ciMethod::build_method_data // // Generate new methodDataOop objects at compile time. void ciMethod::build_method_data(methodHandle h_m) { EXCEPTION_CONTEXT; if (is_native() || is_abstract() || h_m()->is_accessor()) return; if (h_m()->method_data() == NULL) { methodOopDesc::build_interpreter_method_data(h_m, THREAD); if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; } } if (h_m()->method_data() != NULL) { _method_data = CURRENT_ENV->get_object(h_m()->method_data())->as_method_data(); _method_data->load_data(); } else { _method_data = CURRENT_ENV->get_empty_methodData(); } } // public, retroactive version void ciMethod::build_method_data() { if (_method_data == NULL || _method_data->is_empty()) { GUARDED_VM_ENTRY({ build_method_data(get_methodOop()); }); } } // ------------------------------------------------------------------ // ciMethod::method_data // ciMethodData* ciMethod::method_data() { if (_method_data != NULL) { return _method_data; } VM_ENTRY_MARK; ciEnv* env = CURRENT_ENV; Thread* my_thread = JavaThread::current(); methodHandle h_m(my_thread, get_methodOop()); if (Tier1UpdateMethodData && is_tier1_compile(env->comp_level())) { build_method_data(h_m); } if (h_m()->method_data() != NULL) { _method_data = CURRENT_ENV->get_object(h_m()->method_data())->as_method_data(); _method_data->load_data(); } else { _method_data = CURRENT_ENV->get_empty_methodData(); } return _method_data; } // ------------------------------------------------------------------ // ciMethod::will_link // // Will this method link in a specific calling context? bool ciMethod::will_link(ciKlass* accessing_klass, ciKlass* declared_method_holder, Bytecodes::Code bc) { if (!is_loaded()) { // Method lookup failed. return false; } // The link checks have been front-loaded into the get_method // call. This method (ciMethod::will_link()) will be removed // in the future. return true; } // ------------------------------------------------------------------ // ciMethod::should_exclude // // Should this method be excluded from compilation? bool ciMethod::should_exclude() { check_is_loaded(); VM_ENTRY_MARK; methodHandle mh(THREAD, get_methodOop()); bool ignore; return CompilerOracle::should_exclude(mh, ignore); } // ------------------------------------------------------------------ // ciMethod::should_inline // // Should this method be inlined during compilation? bool ciMethod::should_inline() { check_is_loaded(); VM_ENTRY_MARK; methodHandle mh(THREAD, get_methodOop()); return CompilerOracle::should_inline(mh); } // ------------------------------------------------------------------ // ciMethod::should_not_inline // // Should this method be disallowed from inlining during compilation? bool ciMethod::should_not_inline() { check_is_loaded(); VM_ENTRY_MARK; methodHandle mh(THREAD, get_methodOop()); return CompilerOracle::should_not_inline(mh); } // ------------------------------------------------------------------ // ciMethod::should_print_assembly // // Should the compiler print the generated code for this method? bool ciMethod::should_print_assembly() { check_is_loaded(); VM_ENTRY_MARK; methodHandle mh(THREAD, get_methodOop()); return CompilerOracle::should_print(mh); } // ------------------------------------------------------------------ // ciMethod::break_at_execute // // Should the compiler insert a breakpoint into the generated code // method? bool ciMethod::break_at_execute() { check_is_loaded(); VM_ENTRY_MARK; methodHandle mh(THREAD, get_methodOop()); return CompilerOracle::should_break_at(mh); } // ------------------------------------------------------------------ // ciMethod::has_option // bool ciMethod::has_option(const char* option) { check_is_loaded(); VM_ENTRY_MARK; methodHandle mh(THREAD, get_methodOop()); return CompilerOracle::has_option_string(mh, option); } // ------------------------------------------------------------------ // ciMethod::can_be_compiled // // Have previous compilations of this method succeeded? bool ciMethod::can_be_compiled() { check_is_loaded(); return _is_compilable; } // ------------------------------------------------------------------ // ciMethod::set_not_compilable // // Tell the VM that this method cannot be compiled at all. void ciMethod::set_not_compilable() { check_is_loaded(); VM_ENTRY_MARK; _is_compilable = false; get_methodOop()->set_not_compilable(); } // ------------------------------------------------------------------ // ciMethod::can_be_osr_compiled // // Have previous compilations of this method succeeded? // // Implementation note: the VM does not currently keep track // of failed OSR compilations per bci. The entry_bci parameter // is currently unused. bool ciMethod::can_be_osr_compiled(int entry_bci) { check_is_loaded(); VM_ENTRY_MARK; return !get_methodOop()->access_flags().is_not_osr_compilable(); } // ------------------------------------------------------------------ // ciMethod::has_compiled_code bool ciMethod::has_compiled_code() { VM_ENTRY_MARK; return get_methodOop()->code() != NULL; } // ------------------------------------------------------------------ // ciMethod::instructions_size // This is a rough metric for "fat" methods, compared // before inlining with InlineSmallCode. // The CodeBlob::instructions_size accessor includes // junk like exception handler, stubs, and constant table, // which are not highly relevant to an inlined method. // So we use the more specific accessor nmethod::code_size. int ciMethod::instructions_size() { GUARDED_VM_ENTRY( nmethod* code = get_methodOop()->code(); // if there's no compiled code or the code was produced by the // tier1 profiler return 0 for the code size. This should // probably be based on the compilation level of the nmethod but // that currently isn't properly recorded. if (code == NULL || (TieredCompilation && code->compiler() != NULL && code->compiler()->is_c1())) { return 0; } return code->code_end() - code->verified_entry_point(); ) } // ------------------------------------------------------------------ // ciMethod::log_nmethod_identity void ciMethod::log_nmethod_identity(xmlStream* log) { GUARDED_VM_ENTRY( nmethod* code = get_methodOop()->code(); if (code != NULL) { code->log_identity(log); } ) } // ------------------------------------------------------------------ // ciMethod::is_not_reached bool ciMethod::is_not_reached(int bci) { check_is_loaded(); VM_ENTRY_MARK; return Interpreter::is_not_reached( methodHandle(THREAD, get_methodOop()), bci); } // ------------------------------------------------------------------ // ciMethod::was_never_executed bool ciMethod::was_executed_more_than(int times) { VM_ENTRY_MARK; return get_methodOop()->was_executed_more_than(times); } // ------------------------------------------------------------------ // ciMethod::has_unloaded_classes_in_signature bool ciMethod::has_unloaded_classes_in_signature() { VM_ENTRY_MARK; { EXCEPTION_MARK; methodHandle m(THREAD, get_methodOop()); bool has_unloaded = methodOopDesc::has_unloaded_classes_in_signature(m, (JavaThread *)THREAD); if( HAS_PENDING_EXCEPTION ) { CLEAR_PENDING_EXCEPTION; return true; // Declare that we may have unloaded classes } return has_unloaded; } } // ------------------------------------------------------------------ // ciMethod::is_klass_loaded bool ciMethod::is_klass_loaded(int refinfo_index, bool must_be_resolved) const { VM_ENTRY_MARK; return get_methodOop()->is_klass_loaded(refinfo_index, must_be_resolved); } // ------------------------------------------------------------------ // ciMethod::check_call bool ciMethod::check_call(int refinfo_index, bool is_static) const { VM_ENTRY_MARK; { EXCEPTION_MARK; HandleMark hm(THREAD); constantPoolHandle pool (THREAD, get_methodOop()->constants()); methodHandle spec_method; KlassHandle spec_klass; LinkResolver::resolve_method(spec_method, spec_klass, pool, refinfo_index, THREAD); if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; return false; } else { return (spec_method->is_static() == is_static); } } return false; } // ------------------------------------------------------------------ // ciMethod::print_codes // // Print the bytecodes for this method. void ciMethod::print_codes_on(outputStream* st) { check_is_loaded(); GUARDED_VM_ENTRY(get_methodOop()->print_codes_on(st);) } #define FETCH_FLAG_FROM_VM(flag_accessor) { \ check_is_loaded(); \ VM_ENTRY_MARK; \ return get_methodOop()->flag_accessor(); \ } bool ciMethod::is_empty_method() const { FETCH_FLAG_FROM_VM(is_empty_method); } bool ciMethod::is_vanilla_constructor() const { FETCH_FLAG_FROM_VM(is_vanilla_constructor); } bool ciMethod::has_loops () const { FETCH_FLAG_FROM_VM(has_loops); } bool ciMethod::has_jsrs () const { FETCH_FLAG_FROM_VM(has_jsrs); } bool ciMethod::is_accessor () const { FETCH_FLAG_FROM_VM(is_accessor); } bool ciMethod::is_initializer () const { FETCH_FLAG_FROM_VM(is_initializer); } BCEscapeAnalyzer *ciMethod::get_bcea() { if (_bcea == NULL) { _bcea = new (CURRENT_ENV->arena()) BCEscapeAnalyzer(this, NULL); } return _bcea; } ciMethodBlocks *ciMethod::get_method_blocks() { Arena *arena = CURRENT_ENV->arena(); if (_method_blocks == NULL) { _method_blocks = new (arena) ciMethodBlocks(arena, this); } return _method_blocks; } #undef FETCH_FLAG_FROM_VM // ------------------------------------------------------------------ // ciMethod::print_codes // // Print a range of the bytecodes for this method. void ciMethod::print_codes_on(int from, int to, outputStream* st) { check_is_loaded(); GUARDED_VM_ENTRY(get_methodOop()->print_codes_on(from, to, st);) } // ------------------------------------------------------------------ // ciMethod::print_name // // Print the name of this method, including signature and some flags. void ciMethod::print_name(outputStream* st) { check_is_loaded(); GUARDED_VM_ENTRY(get_methodOop()->print_name(st);) } // ------------------------------------------------------------------ // ciMethod::print_short_name // // Print the name of this method, without signature. void ciMethod::print_short_name(outputStream* st) { check_is_loaded(); GUARDED_VM_ENTRY(get_methodOop()->print_short_name(st);) } // ------------------------------------------------------------------ // ciMethod::print_impl // // Implementation of the print method. void ciMethod::print_impl(outputStream* st) { ciObject::print_impl(st); st->print(" name="); name()->print_symbol_on(st); st->print(" holder="); holder()->print_name_on(st); st->print(" signature="); signature()->as_symbol()->print_symbol_on(st); if (is_loaded()) { st->print(" loaded=true flags="); flags().print_member_flags(st); } else { st->print(" loaded=false"); } }