/* * Copyright (c) 2011, 2022, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @bug 4900206 * @summary Test worst case behavior of exp, log, sin, cos, etc. * @build Tests * @build WorstCaseTests * @run main WorstCaseTests * @run main/othervm -Xcomp WorstCaseTests */ /** * Use "Table Maker's Dilemma" results from Jean-Michel Muller and * Vincent Lefèvre, to test the math library. See * http://perso.ens-lyon.fr/jean-michel.muller/TMD.html for original * test vectors from 2000 and see * http://perso.ens-lyon.fr/jean-michel.muller/TMDworstcases.pdf with * additional test vectors from 2003. The latter link also contains * some information about the methodology used to produce the test * vectors. * * Most of the Java math library methods tested here have a 1-ulp * error bound from their specifications. This implies the returned * value must be one of the two representable floating-point numbers * bracketing the exact result. The expected value in the test * vectors below is the truncation of the exact value. Therefore, the * computed result must either be that value or the value next larger * in magnitude. The hyperbolic transcendental functions sinh and cosh * have a larger 2.5 ulp error bound in their specification, but the * JDK implementation complies with a 1 ulp bound on the worst-case * values. Therefore, no addition leeway is afforded when testing * sinh and cosh. */ public class WorstCaseTests { private WorstCaseTests() {throw new AssertionError("No instances for you.");} public static void main(String... args) { int failures = 0; failures += testWorstExp(); failures += testWorstLog(); failures += testWorstSin(); failures += testWorstAsin(); failures += testWorstCos(); failures += testWorstAcos(); failures += testWorstTan(); failures += testWorstAtan(); failures += testWorstPow2(); failures += testWorstSinh(); failures += testWorstCosh(); if (failures > 0) { System.err.printf("Testing worst cases incurred %d failures.%n", failures); throw new RuntimeException(); } } private static int testWorstExp() { int failures = 0; double [][] testCases = { {-0x1.E8BDBFCD9144Ep3, 0x1.F3E558CF4DE54p-23}, {-0x1.71E0B869B5E79p2, 0x1.951C6DC5D24E2p-9}, {-0x1.02393D5976769p1, 0x1.1064B2C103DDAp-3}, {-0x1.2A9CAD9998262p0, 0x1.3EF1E9B3A81C7p-2}, {-0x1.CC37EF7DE7501p0, 0x1.534D4DE870713p-3}, {-0x1.22E24FA3D5CF9p-1, 0x1.2217147B85EA9p-1}, {-0x1.DC2B5DF1F7D3Dp-1, 0x1.9403FD0EE51C8p-2}, {-0x1.290EA09E36479p-3, 0x1.BADED30CBF1C3p-1}, {-0x1.A2FEFEFD580DFp-13, 0x1.FFE5D0BB7EABFp-1}, {-0x1.ED318EFB627EAp-27, 0x1.FFFFFF84B39C4p-1}, {-0x1.4BD46601AE1EFp-31, 0x1.FFFFFFFAD0AE6p-1}, {-0x1.1000000000242p-42, 0x1.FFFFFFFFFF780p-1}, {-0x1.2000000000288p-42, 0x1.FFFFFFFFFF700p-1}, {-0x1.8000000000012p-48, 0x1.FFFFFFFFFFFD0p-1}, {-0x1.0000000000001p-51, 0x1.FFFFFFFFFFFFCp-1}, {+0x1.FFFFFFFFFFFFFp-53, 0x1.0000000000000p0}, {+0x1.FFFFFFFFFFFE0p-48, 0x1.000000000001Fp0}, {+0x1.7FFE7FFEE0024p-32, 0x1.000000017FFE8p0}, {+0x1.80017FFEDFFDCp-32, 0x1.0000000180017p0}, {+0x1.9E9CBBFD6080Bp-31, 0x1.000000033D397p0}, {+0x1.D7A7D893609E5p-26, 0x1.00000075E9F64p0}, {+0x1.BA07D73250DE7p-14, 0x1.0006E83736F8Cp0}, {+0x1.D77FD13D27FFFp-11, 0x1.003AF6C37C1D3p0}, {+0x1.6A4D1AF9CC989p-8, 0x1.016B4DF3299D7p0}, {+0x1.ACCFBE46B4EF0p-1, 0x2.4F85C9783DCE0p0}, {+0x1.ACA7AE8DA5A7Bp0, 0x5.55F52B35F955Ap0}, {+0x1.D6336A88077AAp0, 0x6.46A37FD503FDCp0}, {+0x2.85DC78FB8928Cp0, 0xC.76F2496CB038Fp0}, {+0x1.76E7E5D7B6EACp3, 0x1.DE7CD6751029Ap16}, {+0x1.A8EAD058BC6B8p3, 0x1.1D71965F516ADp19}, {+0x1.1D5C2DAEBE367p4, 0x1.A8C02E974C314p25}, {+0x1.C44CE0D716A1Ap4, 0x1.B890CA8637AE1p40}, }; for(double[] testCase: testCases) { failures += testExpCase(testCase[0], testCase[1]); } return failures; } private static int testExpCase(double input, double expected) { int failures = 0; double out = Tests.nextOut(expected); failures += Tests.testBounds("Math.exp", input, Math::exp, expected, out); failures += Tests.testBounds("StrictMath.exp", input, StrictMath::exp, expected, out); return failures; } private static int testWorstLog() { int failures = 0; double [][] testCases = { {+0x1.0000000000001p0, +0x1.FFFFFFFFFFFFFp-53}, {+0x2.0012ECB039C9Cp0, +0x1.62F71C4656B60p-1}, {+0x6.46A37FD503FDCp0, +0x1.D6336A88077A9p+0}, {+0x7.78DFECC7F57Fp0, +0x2.02DD059DB46Bp+0}, {+0x9.588CCF24BB9C8p0, +0x2.3C24DEBB2BE7p+0}, {+0xA.AF87550D97E4p0, +0x2.5E706595A7ABEp+0}, {+0xC.76F2496CB039p0, +0x2.85DC78FB8928Cp+0}, {+0x11.1867637CBD03p0, +0x2.D6BBEFC79A842p+0}, {+0x13.D9D7D597A9DDp0, +0x2.FCFE12AE07DDCp+0}, {+0x17.F3825778AAAFp0, +0x3.2D0F907F5E00Cp+0}, {+0x1AC.50B409C8AEEp0, +0x6.0F52F37AECFCCp+0}, {+0x1.DE7CD6751029Ap16, +0x1.76E7E5D7B6EABp+3}, }; for(double[] testCase: testCases) { failures += testLogCase(testCase[0], testCase[1]); } return failures; } private static int testLogCase(double input, double expected) { int failures = 0; double out = Tests.nextOut(expected); failures += Tests.testBounds("Math.log", input, Math::log, expected, out); failures += Tests.testBounds("StrictMath.log", input, StrictMath::log, expected, out); return failures; } private static int testWorstSin() { int failures = 0; double [][] testCases = { {+0x1.E0000000001C2p-20, +0x1.DFFFFFFFFF02Ep-20}, {+0x1.598BAE9E632F6p-7, +0x1.598A0AEA48996p-7}, {+0x1.9283586503FEp-5, +0x1.9259E3708BD39p-5}, {+0x1.D7BDCD778049Fp-5, +0x1.D77B117F230D5p-5}, {+0x1.A202B3FB84788p-4, +0x1.A1490C8C06BA6p-4}, {+0x1.D037CB27EE6DFp-3, +0x1.CC40C3805229Ap-3}, {+0x1.D5064E6FE82C5p-3, +0x1.D0EF799001BA9p-3}, {+0x1.FE767739D0F6Dp-2, +0x1.E9950730C4695p-2}, {+0x1.D98C4C612718Dp-1, +0x1.98DCD09337792p-1}, {+0x1.921FB54442D18p-0, +0x1.FFFFFFFFFFFFFp-1}, {+0x1.6756745770A51p+1, +0x1.4FF350E412821p-2}, }; for(double[] testCase: testCases) { failures += testSinCase(testCase[0], testCase[1]); } return failures; } private static int testSinCase(double input, double expected) { int failures = 0; double out = Tests.nextOut(expected); failures += Tests.testBounds("Math.sin", input, Math::sin, expected, out); failures += Tests.testBounds("StrictMath.sin", input, StrictMath::sin, expected, out); return failures; } private static int testWorstAsin() { int failures = 0; double [][] testCases = { {+0x1.DFFFFFFFFF02Ep-20, +0x1.E0000000001C1p-20}, {+0x1.DFFFFFFFFC0B8p-19, +0x1.E000000000707p-19}, {+0x1.9259E3708BD3Ap-5, +0x1.9283586503FEp-5}, {+0x1.D77B117F230D6p-5, +0x1.D7BDCD778049Fp-5}, {+0x1.A1490C8C06BA7p-4, +0x1.A202B3FB84788p-4}, {+0x1.9697CB602C582p-3, +0x1.994FFB5DAF0F9p-3}, {+0x1.D0EF799001BA9p-3, +0x1.D5064E6FE82C4p-3}, {+0x1.E9950730C4696p-2, +0x1.FE767739D0F6Dp-2}, {+0x1.1ED06D50F7E88p-1, +0x1.30706F699466Dp-1}, {+0x1.D5B05A89D3E77p-1, +0x1.29517AB4C132Ap+0}, {+0x1.E264357EA0E29p-1, +0x1.3AA301F6EBB1Dp+0}, }; for(double[] testCase: testCases) { failures += testAsinCase(testCase[0], testCase[1]); } return failures; } private static int testAsinCase(double input, double expected) { int failures = 0; double out = Tests.nextOut(expected); failures += Tests.testBounds("Math.asin", input, Math::asin, expected, out); failures += Tests.testBounds("StrictMath.asin", input, StrictMath::asin, expected, out); return failures; } private static int testWorstCos() { int failures = 0; double [][] testCases = { {+0x1.8000000000009p-23, +0x0.FFFFFFFFFFFB8p+0}, {+0x1.8000000000024p-22, +0x0.FFFFFFFFFFEE0p+0}, {+0x1.2000000000F30p-18, +0x0.FFFFFFFFF5E00p+0}, {+0x1.06B505550E6B2p-9, +0x0.FFFFDE4D1FDFFp+0}, {+0x1.97CCD3D2C438Fp-6, +0x0.FFEBB35D43854p+0}, {+0x1.549EC0C0C5AFAp-5, +0x1.FF8EB6A91ECB0p-1}, {+0x1.16E534EE36580p-4, +0x1.FED0476FC75C9p-1}, {+0x1.EFEEF61D39AC2p-3, +0x1.F10FC61E2C78Ep-1}, {+0x1.FEB1F7920E248p-2, +0x1.C1A27AE836F12p-1}, {+0x1.7CB7648526F99p-1, +0x1.78DAF01036D0Cp-1}, {+0x1.C65A170474549p-1, +0x1.434A3645BE208p-1}, {+0x1.6B8A6273D7C21p+0, +0x1.337FC5B072C52p-3}, }; for(double[] testCase: testCases) { failures += testCosCase(testCase[0], testCase[1]); } return failures; } private static int testCosCase(double input, double expected) { int failures = 0; double out = Tests.nextOut(expected); failures += Tests.testBounds("Math.cos", input, Math::cos, expected, out); failures += Tests.testBounds("StrictMath.cos", input, StrictMath::cos, expected, out); return failures; } private static int testWorstAcos() { int failures = 0; double [][] testCases = { {+0x1.FD737BE914578p-11, +0x1.91E006D41D8D8p+0}, {+0x1.4182199998587p-1, +0x1.C8A538AE83D1Fp-1}, {+0x1.E45A1C93651ECp-1, +0x1.520DC553F6B23p-2}, {+0x1.F10FC61E2C78Fp-1, +0x1.EFEEF61D39AC1p-3}, }; for(double[] testCase: testCases) { failures += testAcosCase(testCase[0], testCase[1]); } return failures; } private static int testAcosCase(double input, double expected) { int failures = 0; double out = Tests.nextOut(expected); failures += Tests.testBounds("Math.acos", input, Math::acos, expected, out); failures += Tests.testBounds("StrictMath.acos", input, StrictMath::acos, expected, out); return failures; } private static int testWorstTan() { int failures = 0; double [][] testCases = { {+0x1.DFFFFFFFFFF1Fp-22, +0x1.E000000000151p-22}, {+0x1.67FFFFFFFA114p-18, +0x1.6800000008E61p-18}, {+0x1.50486B2F87014p-5, +0x1.5078CEBFF9C72p-5}, {+0x1.52C39EF070CADp-4, +0x1.5389E6DF41978p-4}, {+0x1.A33F32AC5CEB5p-3, +0x1.A933FE176B375p-3}, {+0x1.D696BFA988DB9p-2, +0x1.FAC71CD34EEA6p-2}, {+0x1.46AC372243536p-1, +0x1.7BA49F739829Ep-1}, {+0x0.A3561B9121A9Bp+0, +0x0.BDD24FB9CC14Fp+0}, }; for(double[] testCase: testCases) { failures += testTanCase(testCase[0], testCase[1]); } return failures; } private static int testTanCase(double input, double expected) { int failures = 0; double out = Tests.nextOut(expected); failures += Tests.testBounds("Math.tan", input, Math::tan, expected, out); failures += Tests.testBounds("StrictMath.tan", input, StrictMath::tan, expected, out); return failures; } private static int testWorstAtan() { int failures = 0; double [][] testCases = { {+0x1.E000000000546p-21, +0x1.DFFFFFFFFFC7Cp-21}, {+0x1.22E8D75E2BC7Fp-11, +0x1.22E8D5694AD2Bp-11}, {+0x1.0FC9F1FABE658p-5, +0x1.0FB06EDE9973Ap-5}, {+0x1.1BBE9C255698Dp-5, +0x1.1BA1951DB1D6Dp-5}, {+0x1.8DDD25AB90CA1p-5, +0x1.8D8D2D4BD6FA2p-5}, {+0x1.5389E6DF41979p-4, +0x1.52C39EF070CADp-4}, {+0x1.A933FE176B375p-3, +0x1.A33F32AC5CEB4p-3}, {+0x1.0F6E5D9960397p-2, +0x1.09544B71AD4A6p-2}, {+0x1.7BA49F739829Fp-1, +0x1.46AC372243536p-1}, {+0x0.BDD24FB9CC14F8p+0, +0x0.A3561B9121A9Bp+0}, }; for(double[] testCase: testCases) { failures += testAtanCase(testCase[0], testCase[1]); } return failures; } private static int testAtanCase(double input, double expected) { int failures = 0; double out = Tests.nextOut(expected); failures += Tests.testBounds("Math.atan", input, Math::atan, expected, out); failures += Tests.testBounds("StrictMath.atan", input, StrictMath::atan, expected, out); return failures; } private static int testWorstPow2() { int failures = 0; double [][] testCases = { {+0x1.16A76EC41B516p-1, +0x1.7550685A42C63p+0}, {+0x1.3E34FA6AB969Ep-1, +0x1.89D948A94FE16p+0}, {+0x1.4A63FF1D53F53p-1, +0x1.90661DA12D528p+0}, {+0x1.B32A6C92D1185p-1, +0x1.CD6B37EDECEAFp+0}, {+0x1.25DD9EEDAC79Ap+0, +0x1.1BA39FF28E3E9p+1}, }; for(double[] testCase: testCases) { failures += testPow2Case(testCase[0], testCase[1]); } return failures; } private static int testPow2Case(double input, double expected) { int failures = 0; double out = Tests.nextOut(expected); failures += Tests.testBounds("Math.pow2", input, d -> Math.pow(2, d), expected, out); failures += Tests.testBounds("StrictMath.pow2", input, d -> StrictMath.pow(2, d), expected, out); return failures; } // 2.5 ulp error bound in the specification; the implementation // does better on the tested values. private static int testWorstSinh() { int failures = 0; double [][] testCases = { {+0x1.DFFFFFFFFFE3Ep-20, +0x1.E000000000FD1p-20}, {+0x1.DFFFFFFFFE3E0p-18, +0x1.E00000000FD1Fp-18}, {+0x1.135E31FDD05D3p-5, +0x1.136B78B25CC57p-5}, {+0x1.0DC68D5E8F959p-3, +0x1.0E8E73DC4FEE3p-3}, {+0x1.616CC75D49226p-2, +0x1.687BD068C1C1Ep-2}, {+0x1.3FFC12B81CBC2p+0, +0x1.9A0FF413A1AF2p+0}, {+0x2.FE008C44BACA2p+0, +0x9.F08A43ED03AEp+0}, {+0x1.C089FCF166171p+4, +0x1.5C452E0E37569p+39}, {+0x1.E07E71BFCF06Fp+5, +0x1.91EC4412C344Fp+85}, {+0x1.54CD1FEA7663Ap+7, +0x1.C90810D354618p+244}, {+0x1.D6479EBA7C971p+8, +0x1.62A88613629B5p+677}, }; for(double[] testCase: testCases) { failures += testSinhCase(testCase[0], testCase[1]); } return failures; } private static int testSinhCase(double input, double expected) { int failures = 0; double out = Tests.nextOut(expected); failures += Tests.testBounds("Math.sinh", input, Math::sinh, expected, out); failures += Tests.testBounds("StrictMath.sinh", input, StrictMath::sinh, expected, out); return failures; } // 2.5 ulp error bound in the specification; the implementation // does better on the tested values. private static int testWorstCosh() { int failures = 0; double [][] testCases = { {+0x1.17D8A9F206217p-6, +0x1.00098F5F09BE3p+0}, {+0x1.BF0305E2C6C37p-3, +0x1.061F4C39E16F2p+0}, {+0x1.03923F2B47C07p-1, +0x1.219C1989E3372p+0}, {+0x1.A6031CD5F93BAp-1, +0x1.5BFF041B260FDp+0}, {+0x1.104B648F113A1p+0, +0x1.9EFDCA62B7009p+0}, {+0x1.EA5F2F2E4B0C5p+1, +0x17.10DB0CD0FED5p+0}, }; for(double[] testCase: testCases) { failures += testCoshCase(testCase[0], testCase[1]); } return failures; } private static int testCoshCase(double input, double expected) { int failures = 0; double out = Tests.nextOut(expected); failures += Tests.testBounds("Math.cosh", input, Math::cosh, expected, out); failures += Tests.testBounds("StrictMath.cosh", input, StrictMath::cosh, expected, out); return failures; } }