/* * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @bug 8044860 * @summary Vectors and fixed length fields should be verified * for allowed sizes. * @modules java.base/sun.security.ssl * @run main/othervm LengthCheckTest * @key randomness */ /** * A SSLEngine usage example which simplifies the presentation * by removing the I/O and multi-threading concerns. * * The test creates two SSLEngines, simulating a client and server. * The "transport" layer consists two byte buffers: think of them * as directly connected pipes. * * Note, this is a *very* simple example: real code will be much more * involved. For example, different threading and I/O models could be * used, transport mechanisms could close unexpectedly, and so on. * * When this application runs, notice that several messages * (wrap/unwrap) pass before any application data is consumed or * produced. (For more information, please see the SSL/TLS * specifications.) There may several steps for a successful handshake, * so it's typical to see the following series of operations: * * client server message * ====== ====== ======= * wrap() ... ClientHello * ... unwrap() ClientHello * ... wrap() ServerHello/Certificate * unwrap() ... ServerHello/Certificate * wrap() ... ClientKeyExchange * wrap() ... ChangeCipherSpec * wrap() ... Finished * ... unwrap() ClientKeyExchange * ... unwrap() ChangeCipherSpec * ... unwrap() Finished * ... wrap() ChangeCipherSpec * ... wrap() Finished * unwrap() ... ChangeCipherSpec * unwrap() ... Finished */ import javax.net.ssl.*; import javax.net.ssl.SSLEngineResult.*; import java.io.*; import java.security.*; import java.nio.*; import java.util.List; import java.util.ArrayList; import java.util.Iterator; public class LengthCheckTest { /* * Enables logging of the SSLEngine operations. */ private static final boolean logging = true; /* * Enables the JSSE system debugging system property: * * -Djavax.net.debug=all * * This gives a lot of low-level information about operations underway, * including specific handshake messages, and might be best examined * after gaining some familiarity with this application. */ private static final boolean debug = false; private static final boolean dumpBufs = true; private final SSLContext sslc; private SSLEngine clientEngine; // client Engine private ByteBuffer clientOut; // write side of clientEngine private ByteBuffer clientIn; // read side of clientEngine private SSLEngine serverEngine; // server Engine private ByteBuffer serverOut; // write side of serverEngine private ByteBuffer serverIn; // read side of serverEngine private HandshakeTest handshakeTest; /* * For data transport, this example uses local ByteBuffers. This * isn't really useful, but the purpose of this example is to show * SSLEngine concepts, not how to do network transport. */ private ByteBuffer cTOs; // "reliable" transport client->server private ByteBuffer sTOc; // "reliable" transport server->client /* * The following is to set up the keystores. */ private static final String pathToStores = "../../../../javax/net/ssl/etc"; private static final String keyStoreFile = "keystore"; private static final String trustStoreFile = "truststore"; private static final String passwd = "passphrase"; private static final String keyFilename = System.getProperty("test.src", ".") + "/" + pathToStores + "/" + keyStoreFile; private static final String trustFilename = System.getProperty("test.src", ".") + "/" + pathToStores + "/" + trustStoreFile; // Define a few basic TLS record and message types we might need private static final int TLS_RECTYPE_CCS = 0x14; private static final int TLS_RECTYPE_ALERT = 0x15; private static final int TLS_RECTYPE_HANDSHAKE = 0x16; private static final int TLS_RECTYPE_APPDATA = 0x17; private static final int TLS_HS_HELLO_REQUEST = 0x00; private static final int TLS_HS_CLIENT_HELLO = 0x01; private static final int TLS_HS_SERVER_HELLO = 0x02; private static final int TLS_HS_CERTIFICATE = 0x0B; private static final int TLS_HS_SERVER_KEY_EXCHG = 0x0C; private static final int TLS_HS_CERT_REQUEST = 0x0D; private static final int TLS_HS_SERVER_HELLO_DONE = 0x0E; private static final int TLS_HS_CERT_VERIFY = 0x0F; private static final int TLS_HS_CLIENT_KEY_EXCHG = 0x10; private static final int TLS_HS_FINISHED = 0x14; // We're not going to define all the alert types in TLS, just // the ones we think we'll need to reference by name. private static final int TLS_ALERT_LVL_WARNING = 0x01; private static final int TLS_ALERT_LVL_FATAL = 0x02; private static final int TLS_ALERT_UNEXPECTED_MSG = 0x0A; private static final int TLS_ALERT_HANDSHAKE_FAILURE = 0x28; private static final int TLS_ALERT_INTERNAL_ERROR = 0x50; private static final int TLS_ALERT_ILLEGAL_PARAMETER = 0x2F; public interface HandshakeTest { void execTest() throws Exception; } public final HandshakeTest servSendLongID = new HandshakeTest() { @Override public void execTest() throws Exception { boolean gotException = false; SSLEngineResult clientResult; // results from client's last op SSLEngineResult serverResult; // results from server's last op log("\n==== Test: Client receives 64-byte session ID ===="); // Send Client Hello clientResult = clientEngine.wrap(clientOut, cTOs); log("client wrap: ", clientResult); runDelegatedTasks(clientResult, clientEngine); cTOs.flip(); dumpByteBuffer("CLIENT-TO-SERVER", cTOs); // Server consumes Client Hello serverResult = serverEngine.unwrap(cTOs, serverIn); log("server unwrap: ", serverResult); runDelegatedTasks(serverResult, serverEngine); cTOs.compact(); // Server generates ServerHello/Cert/Done record serverResult = serverEngine.wrap(serverOut, sTOc); log("server wrap: ", serverResult); runDelegatedTasks(serverResult, serverEngine); sTOc.flip(); // Intercept the ServerHello messages and instead send // one that has a 64-byte session ID. if (isTlsMessage(sTOc, TLS_RECTYPE_HANDSHAKE, TLS_HS_SERVER_HELLO)) { ArrayList recList = splitRecord(sTOc); // Use the original ServerHello as a template to craft one // with a longer-than-allowed session ID. ByteBuffer servHelloBuf = createEvilServerHello(recList.get(0), 64); recList.set(0, servHelloBuf); // Now send each ByteBuffer (each being a complete // TLS record) into the client-side unwrap. // for (ByteBuffer bBuf : recList) { Iterator iter = recList.iterator(); while (!gotException && (iter.hasNext())) { ByteBuffer bBuf = iter.next(); dumpByteBuffer("SERVER-TO-CLIENT", bBuf); try { clientResult = clientEngine.unwrap(bBuf, clientIn); } catch (SSLProtocolException e) { log("Received expected SSLProtocolException: " + e); gotException = true; } log("client unwrap: ", clientResult); runDelegatedTasks(clientResult, clientEngine); } } else { dumpByteBuffer("SERVER-TO-CLIENT", sTOc); log("client unwrap: ", clientResult); runDelegatedTasks(clientResult, clientEngine); } sTOc.compact(); // The Client should now send a TLS Alert clientResult = clientEngine.wrap(clientOut, cTOs); log("client wrap: ", clientResult); runDelegatedTasks(clientResult, clientEngine); cTOs.flip(); dumpByteBuffer("CLIENT-TO-SERVER", cTOs); // At this point we can verify that both an exception // was thrown and the proper action (a TLS alert) was // sent back to the server. if (gotException == false || !isTlsMessage(cTOs, TLS_RECTYPE_ALERT, TLS_ALERT_LVL_FATAL, TLS_ALERT_ILLEGAL_PARAMETER)) { throw new SSLException( "Client failed to throw Alert:fatal:internal_error"); } } }; public final HandshakeTest clientSendLongID = new HandshakeTest() { @Override public void execTest() throws Exception { boolean gotException = false; SSLEngineResult clientResult; // results from client's last op SSLEngineResult serverResult; // results from server's last op log("\n==== Test: Server receives 64-byte session ID ===="); // Send Client Hello ByteBuffer evilClientHello = createEvilClientHello(64); dumpByteBuffer("CLIENT-TO-SERVER", evilClientHello); // Server consumes Client Hello serverResult = serverEngine.unwrap(evilClientHello, serverIn); log("server unwrap: ", serverResult); runDelegatedTasks(serverResult, serverEngine); evilClientHello.compact(); // Under normal circumstances this should be a ServerHello // But should throw an exception instead due to the invalid // session ID. try { serverResult = serverEngine.wrap(serverOut, sTOc); log("server wrap: ", serverResult); runDelegatedTasks(serverResult, serverEngine); } catch (SSLProtocolException ssle) { log("Received expected SSLProtocolException: " + ssle); gotException = true; } // We expect to see the server generate an alert here serverResult = serverEngine.wrap(serverOut, sTOc); log("server wrap: ", serverResult); runDelegatedTasks(serverResult, serverEngine); sTOc.flip(); dumpByteBuffer("SERVER-TO-CLIENT", sTOc); // At this point we can verify that both an exception // was thrown and the proper action (a TLS alert) was // sent back to the client. if (gotException == false || !isTlsMessage(sTOc, TLS_RECTYPE_ALERT, TLS_ALERT_LVL_FATAL, TLS_ALERT_ILLEGAL_PARAMETER)) { throw new SSLException( "Server failed to throw Alert:fatal:internal_error"); } } }; /* * Main entry point for this test. */ public static void main(String args[]) throws Exception { List ccsTests = new ArrayList<>(); if (debug) { System.setProperty("javax.net.debug", "ssl"); } ccsTests.add(new LengthCheckTest("ServSendLongID")); ccsTests.add(new LengthCheckTest("ClientSendLongID")); for (LengthCheckTest test : ccsTests) { test.runTest(); } System.out.println("Test Passed."); } /* * Create an initialized SSLContext to use for these tests. */ public LengthCheckTest(String testName) throws Exception { KeyStore ks = KeyStore.getInstance("JKS"); KeyStore ts = KeyStore.getInstance("JKS"); char[] passphrase = "passphrase".toCharArray(); ks.load(new FileInputStream(keyFilename), passphrase); ts.load(new FileInputStream(trustFilename), passphrase); KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509"); kmf.init(ks, passphrase); TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509"); tmf.init(ts); SSLContext sslCtx = SSLContext.getInstance("TLS"); sslCtx.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null); sslc = sslCtx; switch (testName) { case "ServSendLongID": handshakeTest = servSendLongID; break; case "ClientSendLongID": handshakeTest = clientSendLongID; break; default: throw new IllegalArgumentException("Unknown test name: " + testName); } } /* * Run the test. * * Sit in a tight loop, both engines calling wrap/unwrap regardless * of whether data is available or not. We do this until both engines * report back they are closed. * * The main loop handles all of the I/O phases of the SSLEngine's * lifetime: * * initial handshaking * application data transfer * engine closing * * One could easily separate these phases into separate * sections of code. */ private void runTest() throws Exception { boolean dataDone = false; createSSLEngines(); createBuffers(); handshakeTest.execTest(); } /* * Using the SSLContext created during object creation, * create/configure the SSLEngines we'll use for this test. */ private void createSSLEngines() throws Exception { /* * Configure the serverEngine to act as a server in the SSL/TLS * handshake. Also, require SSL client authentication. */ serverEngine = sslc.createSSLEngine(); serverEngine.setUseClientMode(false); serverEngine.setNeedClientAuth(false); /* * Similar to above, but using client mode instead. */ clientEngine = sslc.createSSLEngine("client", 80); clientEngine.setUseClientMode(true); // In order to make a test that will be backwards compatible // going back to JDK 5, force the handshake to be TLS 1.0 and // use one of the older cipher suites. clientEngine.setEnabledProtocols(new String[]{"TLSv1"}); clientEngine.setEnabledCipherSuites( new String[]{"TLS_RSA_WITH_AES_128_CBC_SHA"}); } /* * Create and size the buffers appropriately. */ private void createBuffers() { /* * We'll assume the buffer sizes are the same * between client and server. */ SSLSession session = clientEngine.getSession(); int appBufferMax = session.getApplicationBufferSize(); int netBufferMax = session.getPacketBufferSize(); /* * We'll make the input buffers a bit bigger than the max needed * size, so that unwrap()s following a successful data transfer * won't generate BUFFER_OVERFLOWS. * * We'll use a mix of direct and indirect ByteBuffers for * tutorial purposes only. In reality, only use direct * ByteBuffers when they give a clear performance enhancement. */ clientIn = ByteBuffer.allocate(appBufferMax + 50); serverIn = ByteBuffer.allocate(appBufferMax + 50); cTOs = ByteBuffer.allocateDirect(netBufferMax); sTOc = ByteBuffer.allocateDirect(netBufferMax); clientOut = ByteBuffer.wrap("Hi Server, I'm Client".getBytes()); serverOut = ByteBuffer.wrap("Hello Client, I'm Server".getBytes()); } /* * If the result indicates that we have outstanding tasks to do, * go ahead and run them in this thread. */ private static void runDelegatedTasks(SSLEngineResult result, SSLEngine engine) throws Exception { if (result.getHandshakeStatus() == HandshakeStatus.NEED_TASK) { Runnable runnable; while ((runnable = engine.getDelegatedTask()) != null) { log("\trunning delegated task..."); runnable.run(); } HandshakeStatus hsStatus = engine.getHandshakeStatus(); if (hsStatus == HandshakeStatus.NEED_TASK) { throw new Exception( "handshake shouldn't need additional tasks"); } log("\tnew HandshakeStatus: " + hsStatus); } } private static boolean isEngineClosed(SSLEngine engine) { return (engine.isOutboundDone() && engine.isInboundDone()); } /* * Simple check to make sure everything came across as expected. */ private static void checkTransfer(ByteBuffer a, ByteBuffer b) throws Exception { a.flip(); b.flip(); if (!a.equals(b)) { throw new Exception("Data didn't transfer cleanly"); } else { log("\tData transferred cleanly"); } a.position(a.limit()); b.position(b.limit()); a.limit(a.capacity()); b.limit(b.capacity()); } /* * Logging code */ private static boolean resultOnce = true; private static void log(String str, SSLEngineResult result) { if (!logging) { return; } if (resultOnce) { resultOnce = false; System.out.println("The format of the SSLEngineResult is: \n" + "\t\"getStatus() / getHandshakeStatus()\" +\n" + "\t\"bytesConsumed() / bytesProduced()\"\n"); } HandshakeStatus hsStatus = result.getHandshakeStatus(); log(str + result.getStatus() + "/" + hsStatus + ", " + result.bytesConsumed() + "/" + result.bytesProduced() + " bytes"); if (hsStatus == HandshakeStatus.FINISHED) { log("\t...ready for application data"); } } private static void log(String str) { if (logging) { System.out.println(str); } } /** * Split a record consisting of multiple TLS handshake messages * into individual TLS records, each one in a ByteBuffer of its own. * * @param tlsRecord A ByteBuffer containing the tls record data. * The position of the buffer should be at the first byte * in the TLS record data. * * @return An ArrayList consisting of one or more ByteBuffers. Each * ByteBuffer will contain a single TLS record with one message. * That message will be taken from the input record. The order * of the messages in the ArrayList will be the same as they * were in the input record. */ private ArrayList splitRecord(ByteBuffer tlsRecord) { SSLSession session = clientEngine.getSession(); int netBufferMax = session.getPacketBufferSize(); ArrayList recordList = new ArrayList<>(); if (tlsRecord.hasRemaining()) { int type = Byte.toUnsignedInt(tlsRecord.get()); byte ver_major = tlsRecord.get(); byte ver_minor = tlsRecord.get(); int recLen = Short.toUnsignedInt(tlsRecord.getShort()); byte[] newMsgData = null; while (tlsRecord.hasRemaining()) { ByteBuffer newRecord = ByteBuffer.allocateDirect(netBufferMax); switch (type) { case TLS_RECTYPE_CCS: case TLS_RECTYPE_ALERT: case TLS_RECTYPE_APPDATA: // None of our tests have multiple non-handshake // messages coalesced into a single record. break; case TLS_RECTYPE_HANDSHAKE: newMsgData = getHandshakeMessage(tlsRecord); break; } // Put a new TLS record on the destination ByteBuffer newRecord.put((byte)type); newRecord.put(ver_major); newRecord.put(ver_minor); newRecord.putShort((short)newMsgData.length); // Now add the message content itself and attach to the // returned ArrayList newRecord.put(newMsgData); newRecord.flip(); recordList.add(newRecord); } } return recordList; } private static ByteBuffer createEvilClientHello(int sessIdLen) { ByteBuffer newRecord = ByteBuffer.allocateDirect(4096); // Lengths will initially be place holders until we determine the // finished length of the ByteBuffer. Then we'll go back and scribble // in the correct lengths. newRecord.put((byte)TLS_RECTYPE_HANDSHAKE); // Record type newRecord.putShort((short)0x0301); // Protocol (TLS 1.0) newRecord.putShort((short)0); // Length place holder newRecord.putInt(TLS_HS_CLIENT_HELLO << 24); // HS type and length newRecord.putShort((short)0x0301); newRecord.putInt((int)(System.currentTimeMillis() / 1000)); SecureRandom sr = new SecureRandom(); byte[] randBuf = new byte[28]; sr.nextBytes(randBuf); newRecord.put(randBuf); // Client Random newRecord.put((byte)sessIdLen); // Session ID length if (sessIdLen > 0) { byte[] sessId = new byte[sessIdLen]; sr.nextBytes(sessId); newRecord.put(sessId); // Session ID } newRecord.putShort((short)2); // 2 bytes of ciphers newRecord.putShort((short)0x002F); // TLS_RSA_AES_CBC_SHA newRecord.putShort((short)0x0100); // only null compression newRecord.putShort((short)5); // 5 bytes of extensions newRecord.putShort((short)0xFF01); // Renegotiation info newRecord.putShort((short)1); newRecord.put((byte)0); // No reneg info exts // Go back and fill in the correct length values for the record // and handshake message headers. int recordLength = newRecord.position(); newRecord.putShort(3, (short)(recordLength - 5)); int newTypeAndLen = (newRecord.getInt(5) & 0xFF000000) | ((recordLength - 9) & 0x00FFFFFF); newRecord.putInt(5, newTypeAndLen); newRecord.flip(); return newRecord; } private static ByteBuffer createEvilServerHello(ByteBuffer origHello, int newSessIdLen) { if (newSessIdLen < 0 || newSessIdLen > Byte.MAX_VALUE) { throw new RuntimeException("Length must be 0 <= X <= 127"); } ByteBuffer newRecord = ByteBuffer.allocateDirect(4096); // Copy the bytes from the old hello to the new up to the session ID // field. We will go back later and fill in a new length field in // the record header. This includes the record header (5 bytes), the // Handshake message header (4 bytes), protocol version (2 bytes), // and the random (32 bytes). ByteBuffer scratchBuffer = origHello.slice(); scratchBuffer.limit(43); newRecord.put(scratchBuffer); // Advance the position in the originial hello buffer past the // session ID. origHello.position(43); int origIDLen = Byte.toUnsignedInt(origHello.get()); if (origIDLen > 0) { // Skip over the session ID origHello.position(origHello.position() + origIDLen); } // Now add our own sessionID to the new record SecureRandom sr = new SecureRandom(); byte[] sessId = new byte[newSessIdLen]; sr.nextBytes(sessId); newRecord.put((byte)newSessIdLen); newRecord.put(sessId); // Create another slice in the original buffer, based on the position // past the session ID. Copy the remaining bytes into the new // hello buffer. Then go back and fix up the length newRecord.put(origHello.slice()); // Go back and fill in the correct length values for the record // and handshake message headers. int recordLength = newRecord.position(); newRecord.putShort(3, (short)(recordLength - 5)); int newTypeAndLen = (newRecord.getInt(5) & 0xFF000000) | ((recordLength - 9) & 0x00FFFFFF); newRecord.putInt(5, newTypeAndLen); newRecord.flip(); return newRecord; } /** * Look at an incoming TLS record and see if it is the desired * record type, and where appropriate the correct subtype. * * @param srcRecord The input TLS record to be evaluated. This * method will only look at the leading message if multiple * TLS handshake messages are coalesced into a single record. * @param reqRecType The requested TLS record type * @param recParams Zero or more integer sub type fields. For CCS * and ApplicationData, no params are used. For handshake records, * one value corresponding to the HandshakeType is required. * For Alerts, two values corresponding to AlertLevel and * AlertDescription are necessary. * * @return true if the proper handshake message is the first one * in the input record, false otherwise. */ private boolean isTlsMessage(ByteBuffer srcRecord, int reqRecType, int... recParams) { boolean foundMsg = false; if (srcRecord.hasRemaining()) { srcRecord.mark(); // Grab the fields from the TLS Record int recordType = Byte.toUnsignedInt(srcRecord.get()); byte ver_major = srcRecord.get(); byte ver_minor = srcRecord.get(); int recLen = Short.toUnsignedInt(srcRecord.getShort()); if (recordType == reqRecType) { // For any zero-length recParams, making sure the requested // type is sufficient. if (recParams.length == 0) { foundMsg = true; } else { switch (recordType) { case TLS_RECTYPE_CCS: case TLS_RECTYPE_APPDATA: // We really shouldn't find ourselves here, but // if someone asked for these types and had more // recParams we can ignore them. foundMsg = true; break; case TLS_RECTYPE_ALERT: // Needs two params, AlertLevel and AlertDescription if (recParams.length != 2) { throw new RuntimeException( "Test for Alert requires level and desc."); } else { int level = Byte.toUnsignedInt(srcRecord.get()); int desc = Byte.toUnsignedInt(srcRecord.get()); if (level == recParams[0] && desc == recParams[1]) { foundMsg = true; } } break; case TLS_RECTYPE_HANDSHAKE: // Needs one parameter, HandshakeType if (recParams.length != 1) { throw new RuntimeException( "Test for Handshake requires only HS type"); } else { // Go into the first handhshake message in the // record and grab the handshake message header. // All we need to do is parse out the leading // byte. int msgHdr = srcRecord.getInt(); int msgType = (msgHdr >> 24) & 0x000000FF; if (msgType == recParams[0]) { foundMsg = true; } } break; } } } srcRecord.reset(); } return foundMsg; } private byte[] getHandshakeMessage(ByteBuffer srcRecord) { // At the start of this routine, the position should be lined up // at the first byte of a handshake message. Mark this location // so we can return to it after reading the type and length. srcRecord.mark(); int msgHdr = srcRecord.getInt(); int type = (msgHdr >> 24) & 0x000000FF; int length = msgHdr & 0x00FFFFFF; // Create a byte array that has enough space for the handshake // message header and body. byte[] data = new byte[length + 4]; srcRecord.reset(); srcRecord.get(data, 0, length + 4); return (data); } /** * Hex-dumps a ByteBuffer to stdout. */ private static void dumpByteBuffer(String header, ByteBuffer bBuf) { if (dumpBufs == false) { return; } int bufLen = bBuf.remaining(); if (bufLen > 0) { bBuf.mark(); // We expect the position of the buffer to be at the // beginning of a TLS record. Get the type, version and length. int type = Byte.toUnsignedInt(bBuf.get()); int ver_major = Byte.toUnsignedInt(bBuf.get()); int ver_minor = Byte.toUnsignedInt(bBuf.get()); int recLen = Short.toUnsignedInt(bBuf.getShort()); log("===== " + header + " (" + tlsRecType(type) + " / " + ver_major + "." + ver_minor + " / " + bufLen + " bytes) ====="); bBuf.reset(); for (int i = 0; i < bufLen; i++) { if (i != 0 && i % 16 == 0) { System.out.print("\n"); } System.out.format("%02X ", bBuf.get(i)); } log("\n==============================================="); bBuf.reset(); } } private static String tlsRecType(int type) { switch (type) { case 20: return "Change Cipher Spec"; case 21: return "Alert"; case 22: return "Handshake"; case 23: return "Application Data"; default: return ("Unknown (" + type + ")"); } } }