/* * Copyright (c) 1996, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ //package sun.misc; /* * A really, really simple bigint package * tailored to the needs of floating base conversion. */ class OldFDBigIntForTest { int nWords; // number of words used int data[]; // value: data[0] is least significant public OldFDBigIntForTest( int v ){ nWords = 1; data = new int[1]; data[0] = v; } public OldFDBigIntForTest( long v ){ data = new int[2]; data[0] = (int)v; data[1] = (int)(v>>>32); nWords = (data[1]==0) ? 1 : 2; } public OldFDBigIntForTest( OldFDBigIntForTest other ){ data = new int[nWords = other.nWords]; System.arraycopy( other.data, 0, data, 0, nWords ); } private OldFDBigIntForTest( int [] d, int n ){ data = d; nWords = n; } public OldFDBigIntForTest( long seed, char digit[], int nd0, int nd ){ int n= (nd+8)/9; // estimate size needed. if ( n < 2 ) n = 2; data = new int[n]; // allocate enough space data[0] = (int)seed; // starting value data[1] = (int)(seed>>>32); nWords = (data[1]==0) ? 1 : 2; int i = nd0; int limit = nd-5; // slurp digits 5 at a time. int v; while ( i < limit ){ int ilim = i+5; v = (int)digit[i++]-(int)'0'; while( i >5; int bitcount = c & 0x1f; int anticount = 32-bitcount; int t[] = data; int s[] = data; if ( nWords+wordcount+1 > t.length ){ // reallocate. t = new int[ nWords+wordcount+1 ]; } int target = nWords+wordcount; int src = nWords-1; if ( bitcount == 0 ){ // special hack, since an anticount of 32 won't go! System.arraycopy( s, 0, t, wordcount, nWords ); target = wordcount-1; } else { t[target--] = s[src]>>>anticount; while ( src >= 1 ){ t[target--] = (s[src]<>>anticount); } t[target--] = s[src]<= 0 ){ t[target--] = 0; } data = t; nWords += wordcount + 1; // may have constructed high-order word of 0. // if so, trim it while ( nWords > 1 && data[nWords-1] == 0 ) nWords--; } /* * normalize this number by shifting until * the MSB of the number is at 0x08000000. * This is in preparation for quoRemIteration, below. * The idea is that, to make division easier, we want the * divisor to be "normalized" -- usually this means shifting * the MSB into the high words sign bit. But because we know that * the quotient will be 0 < q < 10, we would like to arrange that * the dividend not span up into another word of precision. * (This needs to be explained more clearly!) */ public int normalizeMe() throws IllegalArgumentException { int src; int wordcount = 0; int bitcount = 0; int v = 0; for ( src= nWords-1 ; src >= 0 && (v=data[src]) == 0 ; src--){ wordcount += 1; } if ( src < 0 ){ // oops. Value is zero. Cannot normalize it! throw new IllegalArgumentException("zero value"); } /* * In most cases, we assume that wordcount is zero. This only * makes sense, as we try not to maintain any high-order * words full of zeros. In fact, if there are zeros, we will * simply SHORTEN our number at this point. Watch closely... */ nWords -= wordcount; /* * Compute how far left we have to shift v s.t. its highest- * order bit is in the right place. Then call lshiftMe to * do the work. */ if ( (v & 0xf0000000) != 0 ){ // will have to shift up into the next word. // too bad. for( bitcount = 32 ; (v & 0xf0000000) != 0 ; bitcount-- ) v >>>= 1; } else { while ( v <= 0x000fffff ){ // hack: byte-at-a-time shifting v <<= 8; bitcount += 8; } while ( v <= 0x07ffffff ){ v <<= 1; bitcount += 1; } } if ( bitcount != 0 ) lshiftMe( bitcount ); return bitcount; } /* * Multiply a OldFDBigIntForTest by an int. * Result is a new OldFDBigIntForTest. */ public OldFDBigIntForTest mult( int iv ) { long v = iv; int r[]; long p; // guess adequate size of r. r = new int[ ( v * ((long)data[nWords-1]&0xffffffffL) > 0xfffffffL ) ? nWords+1 : nWords ]; p = 0L; for( int i=0; i < nWords; i++ ) { p += v * ((long)data[i]&0xffffffffL); r[i] = (int)p; p >>>= 32; } if ( p == 0L){ return new OldFDBigIntForTest( r, nWords ); } else { r[nWords] = (int)p; return new OldFDBigIntForTest( r, nWords+1 ); } } /* * Multiply a OldFDBigIntForTest by an int and add another int. * Result is computed in place. * Hope it fits! */ public void multaddMe( int iv, int addend ) { long v = iv; long p; // unroll 0th iteration, doing addition. p = v * ((long)data[0]&0xffffffffL) + ((long)addend&0xffffffffL); data[0] = (int)p; p >>>= 32; for( int i=1; i < nWords; i++ ) { p += v * ((long)data[i]&0xffffffffL); data[i] = (int)p; p >>>= 32; } if ( p != 0L){ data[nWords] = (int)p; // will fail noisily if illegal! nWords++; } } /* * Multiply a OldFDBigIntForTest by another OldFDBigIntForTest. * Result is a new OldFDBigIntForTest. */ public OldFDBigIntForTest mult( OldFDBigIntForTest other ){ // crudely guess adequate size for r int r[] = new int[ nWords + other.nWords ]; int i; // I think I am promised zeros... for( i = 0; i < this.nWords; i++ ){ long v = (long)this.data[i] & 0xffffffffL; // UNSIGNED CONVERSION long p = 0L; int j; for( j = 0; j < other.nWords; j++ ){ p += ((long)r[i+j]&0xffffffffL) + v*((long)other.data[j]&0xffffffffL); // UNSIGNED CONVERSIONS ALL 'ROUND. r[i+j] = (int)p; p >>>= 32; } r[i+j] = (int)p; } // compute how much of r we actually needed for all that. for ( i = r.length-1; i> 0; i--) if ( r[i] != 0 ) break; return new OldFDBigIntForTest( r, i+1 ); } /* * Add one OldFDBigIntForTest to another. Return a OldFDBigIntForTest */ public OldFDBigIntForTest add( OldFDBigIntForTest other ){ int i; int a[], b[]; int n, m; long c = 0L; // arrange such that a.nWords >= b.nWords; // n = a.nWords, m = b.nWords if ( this.nWords >= other.nWords ){ a = this.data; n = this.nWords; b = other.data; m = other.nWords; } else { a = other.data; n = other.nWords; b = this.data; m = this.nWords; } int r[] = new int[ n ]; for ( i = 0; i < n; i++ ){ c += (long)a[i] & 0xffffffffL; if ( i < m ){ c += (long)b[i] & 0xffffffffL; } r[i] = (int) c; c >>= 32; // signed shift. } if ( c != 0L ){ // oops -- carry out -- need longer result. int s[] = new int[ r.length+1 ]; System.arraycopy( r, 0, s, 0, r.length ); s[i++] = (int)c; return new OldFDBigIntForTest( s, i ); } return new OldFDBigIntForTest( r, i ); } /* * Subtract one OldFDBigIntForTest from another. Return a OldFDBigIntForTest * Assert that the result is positive. */ public OldFDBigIntForTest sub( OldFDBigIntForTest other ){ int r[] = new int[ this.nWords ]; int i; int n = this.nWords; int m = other.nWords; int nzeros = 0; long c = 0L; for ( i = 0; i < n; i++ ){ c += (long)this.data[i] & 0xffffffffL; if ( i < m ){ c -= (long)other.data[i] & 0xffffffffL; } if ( ( r[i] = (int) c ) == 0 ) nzeros++; else nzeros = 0; c >>= 32; // signed shift } assert c == 0L : c; // borrow out of subtract assert dataInRangeIsZero(i, m, other); // negative result of subtract return new OldFDBigIntForTest( r, n-nzeros ); } private static boolean dataInRangeIsZero(int i, int m, OldFDBigIntForTest other) { while ( i < m ) if (other.data[i++] != 0) return false; return true; } /* * Compare OldFDBigIntForTest with another OldFDBigIntForTest. Return an integer * >0: this > other * 0: this == other * <0: this < other */ public int cmp( OldFDBigIntForTest other ){ int i; if ( this.nWords > other.nWords ){ // if any of my high-order words is non-zero, // then the answer is evident int j = other.nWords-1; for ( i = this.nWords-1; i > j ; i-- ) if ( this.data[i] != 0 ) return 1; }else if ( this.nWords < other.nWords ){ // if any of other's high-order words is non-zero, // then the answer is evident int j = this.nWords-1; for ( i = other.nWords-1; i > j ; i-- ) if ( other.data[i] != 0 ) return -1; } else{ i = this.nWords-1; } for ( ; i > 0 ; i-- ) if ( this.data[i] != other.data[i] ) break; // careful! want unsigned compare! // use brute force here. int a = this.data[i]; int b = other.data[i]; if ( a < 0 ){ // a is really big, unsigned if ( b < 0 ){ return a-b; // both big, negative } else { return 1; // b not big, answer is obvious; } } else { // a is not really big if ( b < 0 ) { // but b is really big return -1; } else { return a - b; } } } /* * Compute * q = (int)( this / S ) * this = 10 * ( this mod S ) * Return q. * This is the iteration step of digit development for output. * We assume that S has been normalized, as above, and that * "this" has been lshift'ed accordingly. * Also assume, of course, that the result, q, can be expressed * as an integer, 0 <= q < 10. */ public int quoRemIteration( OldFDBigIntForTest S )throws IllegalArgumentException { // ensure that this and S have the same number of // digits. If S is properly normalized and q < 10 then // this must be so. if ( nWords != S.nWords ){ throw new IllegalArgumentException("disparate values"); } // estimate q the obvious way. We will usually be // right. If not, then we're only off by a little and // will re-add. int n = nWords-1; long q = ((long)data[n]&0xffffffffL) / (long)S.data[n]; long diff = 0L; for ( int i = 0; i <= n ; i++ ){ diff += ((long)data[i]&0xffffffffL) - q*((long)S.data[i]&0xffffffffL); data[i] = (int)diff; diff >>= 32; // N.B. SIGNED shift. } if ( diff != 0L ) { // damn, damn, damn. q is too big. // add S back in until this turns +. This should // not be very many times! long sum = 0L; while ( sum == 0L ){ sum = 0L; for ( int i = 0; i <= n; i++ ){ sum += ((long)data[i]&0xffffffffL) + ((long)S.data[i]&0xffffffffL); data[i] = (int) sum; sum >>= 32; // Signed or unsigned, answer is 0 or 1 } /* * Originally the following line read * "if ( sum !=0 && sum != -1 )" * but that would be wrong, because of the * treatment of the two values as entirely unsigned, * it would be impossible for a carry-out to be interpreted * as -1 -- it would have to be a single-bit carry-out, or * +1. */ assert sum == 0 || sum == 1 : sum; // carry out of division correction q -= 1; } } // finally, we can multiply this by 10. // it cannot overflow, right, as the high-order word has // at least 4 high-order zeros! long p = 0L; for ( int i = 0; i <= n; i++ ){ p += 10*((long)data[i]&0xffffffffL); data[i] = (int)p; p >>= 32; // SIGNED shift. } assert p == 0L : p; // Carry out of *10 return (int)q; } public long longValue(){ // if this can be represented as a long, return the value assert this.nWords > 0 : this.nWords; // longValue confused if (this.nWords == 1) return ((long)data[0]&0xffffffffL); assert dataInRangeIsZero(2, this.nWords, this); // value too big assert data[1] >= 0; // value too big return ((long)(data[1]) << 32) | ((long)data[0]&0xffffffffL); } public String toString() { StringBuffer r = new StringBuffer(30); r.append('['); int i = Math.min( nWords-1, data.length-1) ; if ( nWords > data.length ){ r.append( "("+data.length+"<"+nWords+"!)" ); } for( ; i> 0 ; i-- ){ r.append( Integer.toHexString( data[i] ) ); r.append(' '); } r.append( Integer.toHexString( data[0] ) ); r.append(']'); return new String( r ); } }