/* * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_ASM_CODEBUFFER_HPP #define SHARE_VM_ASM_CODEBUFFER_HPP #include "asm/assembler.hpp" #include "code/oopRecorder.hpp" #include "code/relocInfo.hpp" class CodeComments; class AbstractAssembler; class MacroAssembler; class PhaseCFG; class Compile; class BufferBlob; class CodeBuffer; class CodeOffsets: public StackObj { public: enum Entries { Entry, Verified_Entry, Frame_Complete, // Offset in the code where the frame setup is (for forte stackwalks) is complete OSR_Entry, Dtrace_trap = OSR_Entry, // dtrace probes can never have an OSR entry so reuse it Exceptions, // Offset where exception handler lives Deopt, // Offset where deopt handler lives DeoptMH, // Offset where MethodHandle deopt handler lives UnwindHandler, // Offset to default unwind handler max_Entries }; // special value to note codeBlobs where profile (forte) stack walking is // always dangerous and suspect. enum { frame_never_safe = -1 }; private: int _values[max_Entries]; public: CodeOffsets() { _values[Entry ] = 0; _values[Verified_Entry] = 0; _values[Frame_Complete] = frame_never_safe; _values[OSR_Entry ] = 0; _values[Exceptions ] = -1; _values[Deopt ] = -1; _values[DeoptMH ] = -1; _values[UnwindHandler ] = -1; } int value(Entries e) { return _values[e]; } void set_value(Entries e, int val) { _values[e] = val; } }; // This class represents a stream of code and associated relocations. // There are a few in each CodeBuffer. // They are filled concurrently, and concatenated at the end. class CodeSection VALUE_OBJ_CLASS_SPEC { friend class CodeBuffer; public: typedef int csize_t; // code size type; would be size_t except for history private: address _start; // first byte of contents (instructions) address _mark; // user mark, usually an instruction beginning address _end; // current end address address _limit; // last possible (allocated) end address relocInfo* _locs_start; // first byte of relocation information relocInfo* _locs_end; // first byte after relocation information relocInfo* _locs_limit; // first byte after relocation information buf address _locs_point; // last relocated position (grows upward) bool _locs_own; // did I allocate the locs myself? bool _frozen; // no more expansion of this section char _index; // my section number (SECT_INST, etc.) CodeBuffer* _outer; // enclosing CodeBuffer // (Note: _locs_point used to be called _last_reloc_offset.) CodeSection() { _start = NULL; _mark = NULL; _end = NULL; _limit = NULL; _locs_start = NULL; _locs_end = NULL; _locs_limit = NULL; _locs_point = NULL; _locs_own = false; _frozen = false; debug_only(_index = (char)-1); debug_only(_outer = (CodeBuffer*)badAddress); } void initialize_outer(CodeBuffer* outer, int index) { _outer = outer; _index = index; } void initialize(address start, csize_t size = 0) { assert(_start == NULL, "only one init step, please"); _start = start; _mark = NULL; _end = start; _limit = start + size; _locs_point = start; } void initialize_locs(int locs_capacity); void expand_locs(int new_capacity); void initialize_locs_from(const CodeSection* source_cs); // helper for CodeBuffer::expand() void take_over_code_from(CodeSection* cs) { _start = cs->_start; _mark = cs->_mark; _end = cs->_end; _limit = cs->_limit; _locs_point = cs->_locs_point; } public: address start() const { return _start; } address mark() const { return _mark; } address end() const { return _end; } address limit() const { return _limit; } csize_t size() const { return (csize_t)(_end - _start); } csize_t mark_off() const { assert(_mark != NULL, "not an offset"); return (csize_t)(_mark - _start); } csize_t capacity() const { return (csize_t)(_limit - _start); } csize_t remaining() const { return (csize_t)(_limit - _end); } relocInfo* locs_start() const { return _locs_start; } relocInfo* locs_end() const { return _locs_end; } int locs_count() const { return (int)(_locs_end - _locs_start); } relocInfo* locs_limit() const { return _locs_limit; } address locs_point() const { return _locs_point; } csize_t locs_point_off() const{ return (csize_t)(_locs_point - _start); } csize_t locs_capacity() const { return (csize_t)(_locs_limit - _locs_start); } csize_t locs_remaining()const { return (csize_t)(_locs_limit - _locs_end); } int index() const { return _index; } bool is_allocated() const { return _start != NULL; } bool is_empty() const { return _start == _end; } bool is_frozen() const { return _frozen; } bool has_locs() const { return _locs_end != NULL; } CodeBuffer* outer() const { return _outer; } // is a given address in this section? (2nd version is end-inclusive) bool contains(address pc) const { return pc >= _start && pc < _end; } bool contains2(address pc) const { return pc >= _start && pc <= _end; } bool allocates(address pc) const { return pc >= _start && pc < _limit; } bool allocates2(address pc) const { return pc >= _start && pc <= _limit; } void set_end(address pc) { assert(allocates2(pc), err_msg("not in CodeBuffer memory: " PTR_FORMAT " <= " PTR_FORMAT " <= " PTR_FORMAT, _start, pc, _limit)); _end = pc; } void set_mark(address pc) { assert(contains2(pc), "not in codeBuffer"); _mark = pc; } void set_mark_off(int offset) { assert(contains2(offset+_start),"not in codeBuffer"); _mark = offset + _start; } void set_mark() { _mark = _end; } void clear_mark() { _mark = NULL; } void set_locs_end(relocInfo* p) { assert(p <= locs_limit(), "locs data fits in allocated buffer"); _locs_end = p; } void set_locs_point(address pc) { assert(pc >= locs_point(), "relocation addr may not decrease"); assert(allocates2(pc), "relocation addr must be in this section"); _locs_point = pc; } // Code emission void emit_int8 (int8_t x) { *((int8_t*) end()) = x; set_end(end() + 1); } void emit_int16(int16_t x) { *((int16_t*) end()) = x; set_end(end() + 2); } void emit_int32(int32_t x) { *((int32_t*) end()) = x; set_end(end() + 4); } void emit_int64(int64_t x) { *((int64_t*) end()) = x; set_end(end() + 8); } // Share a scratch buffer for relocinfo. (Hacky; saves a resource allocation.) void initialize_shared_locs(relocInfo* buf, int length); // Manage labels and their addresses. address target(Label& L, address branch_pc); // Emit a relocation. void relocate(address at, RelocationHolder const& rspec, int format = 0); void relocate(address at, relocInfo::relocType rtype, int format = 0) { if (rtype != relocInfo::none) relocate(at, Relocation::spec_simple(rtype), format); } // alignment requirement for starting offset // Requirements are that the instruction area and the // stubs area must start on CodeEntryAlignment, and // the ctable on sizeof(jdouble) int alignment() const { return MAX2((int)sizeof(jdouble), (int)CodeEntryAlignment); } // Slop between sections, used only when allocating temporary BufferBlob buffers. static csize_t end_slop() { return MAX2((int)sizeof(jdouble), (int)CodeEntryAlignment); } csize_t align_at_start(csize_t off) const { return (csize_t) align_size_up(off, alignment()); } // Mark a section frozen. Assign its remaining space to // the following section. It will never expand after this point. inline void freeze(); // { _outer->freeze_section(this); } // Ensure there's enough space left in the current section. // Return true if there was an expansion. bool maybe_expand_to_ensure_remaining(csize_t amount); #ifndef PRODUCT void decode(); void dump(); void print(const char* name); #endif //PRODUCT }; class CodeComment; class CodeComments VALUE_OBJ_CLASS_SPEC { private: #ifndef PRODUCT CodeComment* _comments; #endif public: CodeComments() { #ifndef PRODUCT _comments = NULL; #endif } void add_comment(intptr_t offset, const char * comment) PRODUCT_RETURN; void print_block_comment(outputStream* stream, intptr_t offset) PRODUCT_RETURN; void assign(CodeComments& other) PRODUCT_RETURN; void free() PRODUCT_RETURN; }; // A CodeBuffer describes a memory space into which assembly // code is generated. This memory space usually occupies the // interior of a single BufferBlob, but in some cases it may be // an arbitrary span of memory, even outside the code cache. // // A code buffer comes in two variants: // // (1) A CodeBuffer referring to an already allocated piece of memory: // This is used to direct 'static' code generation (e.g. for interpreter // or stubroutine generation, etc.). This code comes with NO relocation // information. // // (2) A CodeBuffer referring to a piece of memory allocated when the // CodeBuffer is allocated. This is used for nmethod generation. // // The memory can be divided up into several parts called sections. // Each section independently accumulates code (or data) an relocations. // Sections can grow (at the expense of a reallocation of the BufferBlob // and recopying of all active sections). When the buffered code is finally // written to an nmethod (or other CodeBlob), the contents (code, data, // and relocations) of the sections are padded to an alignment and concatenated. // Instructions and data in one section can contain relocatable references to // addresses in a sibling section. class CodeBuffer: public StackObj { friend class CodeSection; private: // CodeBuffers must be allocated on the stack except for a single // special case during expansion which is handled internally. This // is done to guarantee proper cleanup of resources. void* operator new(size_t size) { return ResourceObj::operator new(size); } void operator delete(void* p) { ShouldNotCallThis(); } public: typedef int csize_t; // code size type; would be size_t except for history enum { // Here is the list of all possible sections. The order reflects // the final layout. SECT_FIRST = 0, SECT_CONSTS = SECT_FIRST, // Non-instruction data: Floats, jump tables, etc. SECT_INSTS, // Executable instructions. SECT_STUBS, // Outbound trampolines for supporting call sites. SECT_LIMIT, SECT_NONE = -1 }; private: enum { sect_bits = 2, // assert (SECT_LIMIT <= (1<index() == n || !cs->is_allocated(), "sanity"); return cs; } const CodeSection* code_section(int n) const { // yucky const stuff return ((CodeBuffer*)this)->code_section(n); } static const char* code_section_name(int n); int section_index_of(address addr) const; bool contains(address addr) const { // handy for debugging return section_index_of(addr) > SECT_NONE; } // A stable mapping between 'locators' (small ints) and addresses. static int locator_pos(int locator) { return locator >> sect_bits; } static int locator_sect(int locator) { return locator & sect_mask; } static int locator(int pos, int sect) { return (pos << sect_bits) | sect; } int locator(address addr) const; address locator_address(int locator) const; // Properties const char* name() const { return _name; } CodeBuffer* before_expand() const { return _before_expand; } BufferBlob* blob() const { return _blob; } void set_blob(BufferBlob* blob); void free_blob(); // Free the blob, if we own one. // Properties relative to the insts section: address insts_begin() const { return _insts.start(); } address insts_end() const { return _insts.end(); } void set_insts_end(address end) { _insts.set_end(end); } address insts_limit() const { return _insts.limit(); } address insts_mark() const { return _insts.mark(); } void set_insts_mark() { _insts.set_mark(); } void clear_insts_mark() { _insts.clear_mark(); } // is there anything in the buffer other than the current section? bool is_pure() const { return insts_size() == total_content_size(); } // size in bytes of output so far in the insts sections csize_t insts_size() const { return _insts.size(); } // same as insts_size(), except that it asserts there is no non-code here csize_t pure_insts_size() const { assert(is_pure(), "no non-code"); return insts_size(); } // capacity in bytes of the insts sections csize_t insts_capacity() const { return _insts.capacity(); } // number of bytes remaining in the insts section csize_t insts_remaining() const { return _insts.remaining(); } // is a given address in the insts section? (2nd version is end-inclusive) bool insts_contains(address pc) const { return _insts.contains(pc); } bool insts_contains2(address pc) const { return _insts.contains2(pc); } // Allocated size in all sections, when aligned and concatenated // (this is the eventual state of the content in its final // CodeBlob). csize_t total_content_size() const; // Combined offset (relative to start of first section) of given // section, as eventually found in the final CodeBlob. csize_t total_offset_of(CodeSection* cs) const; // allocated size of all relocation data, including index, rounded up csize_t total_relocation_size() const; // allocated size of any and all recorded oops csize_t total_oop_size() const { OopRecorder* recorder = oop_recorder(); return (recorder == NULL)? 0: recorder->oop_size(); } // Configuration functions, called immediately after the CB is constructed. // The section sizes are subtracted from the original insts section. // Note: Call them in reverse section order, because each steals from insts. void initialize_consts_size(csize_t size) { initialize_section_size(&_consts, size); } void initialize_stubs_size(csize_t size) { initialize_section_size(&_stubs, size); } // Override default oop recorder. void initialize_oop_recorder(OopRecorder* r); OopRecorder* oop_recorder() const { return _oop_recorder; } CodeComments& comments() { return _comments; } // Code generation void relocate(address at, RelocationHolder const& rspec, int format = 0) { _insts.relocate(at, rspec, format); } void relocate(address at, relocInfo::relocType rtype, int format = 0) { _insts.relocate(at, rtype, format); } // Management of overflow storage for binding of Labels. GrowableArray* create_patch_overflow(); // NMethod generation void copy_code_and_locs_to(CodeBlob* blob) { assert(blob != NULL, "sane"); copy_relocations_to(blob); copy_code_to(blob); } void copy_oops_to(nmethod* nm) { if (!oop_recorder()->is_unused()) { oop_recorder()->copy_to(nm); } } // Transform an address from the code in this code buffer to a specified code buffer address transform_address(const CodeBuffer &cb, address addr) const; void block_comment(intptr_t offset, const char * comment) PRODUCT_RETURN; // Log a little info about section usage in the CodeBuffer void log_section_sizes(const char* name); #ifndef PRODUCT public: // Printing / Decoding // decodes from decode_begin() to code_end() and sets decode_begin to end void decode(); void decode_all(); // decodes all the code void skip_decode(); // sets decode_begin to code_end(); void print(); #endif // The following header contains architecture-specific implementations #ifdef TARGET_ARCH_x86 # include "codeBuffer_x86.hpp" #endif #ifdef TARGET_ARCH_sparc # include "codeBuffer_sparc.hpp" #endif #ifdef TARGET_ARCH_zero # include "codeBuffer_zero.hpp" #endif #ifdef TARGET_ARCH_arm # include "codeBuffer_arm.hpp" #endif #ifdef TARGET_ARCH_ppc # include "codeBuffer_ppc.hpp" #endif }; inline void CodeSection::freeze() { _outer->freeze_section(this); } inline bool CodeSection::maybe_expand_to_ensure_remaining(csize_t amount) { if (remaining() < amount) { _outer->expand(this, amount); return true; } return false; } #endif // SHARE_VM_ASM_CODEBUFFER_HPP