/* * Copyright (c) 2003, 2011 Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @bug 4851638 4939441 * @summary Tests for {Math, StrictMath}.log1p * @author Joseph D. Darcy */ import sun.misc.DoubleConsts; import sun.misc.FpUtils; public class Log1pTests { private Log1pTests(){} static final double infinityD = Double.POSITIVE_INFINITY; static final double NaNd = Double.NaN; /** * Formulation taken from HP-15C Advanced Functions Handbook, part * number HP 0015-90011, p 181. This is accurate to a few ulps. */ static double hp15cLogp(double x) { double u = 1.0 + x; return (u==1.0? x : StrictMath.log(u)*x/(u-1) ); } /* * The Taylor expansion of ln(1 + x) for -1 < x <= 1 is: * * x - x^2/2 + x^3/3 - ... -(-x^j)/j * * Therefore, for small values of x, log1p(x) ~= x. For large * values of x, log1p(x) ~= log(x). * * Also x/(x+1) < ln(1+x) < x */ static int testLog1p() { int failures = 0; double [][] testCases = { {Double.NaN, NaNd}, {Double.longBitsToDouble(0x7FF0000000000001L), NaNd}, {Double.longBitsToDouble(0xFFF0000000000001L), NaNd}, {Double.longBitsToDouble(0x7FF8555555555555L), NaNd}, {Double.longBitsToDouble(0xFFF8555555555555L), NaNd}, {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd}, {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd}, {Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd}, {Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd}, {Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd}, {Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd}, {Double.NEGATIVE_INFINITY, NaNd}, {-8.0, NaNd}, {-1.0, -infinityD}, {-0.0, -0.0}, {+0.0, +0.0}, {infinityD, infinityD}, }; // Test special cases for(int i = 0; i < testCases.length; i++) { failures += testLog1pCaseWithUlpDiff(testCases[i][0], testCases[i][1], 0); } // For |x| < 2^-54 log1p(x) ~= x for(int i = DoubleConsts.MIN_SUB_EXPONENT; i <= -54; i++) { double d = Math.scalb(2, i); failures += testLog1pCase(d, d); failures += testLog1pCase(-d, -d); } // For x > 2^53 log1p(x) ~= log(x) for(int i = 53; i <= DoubleConsts.MAX_EXPONENT; i++) { double d = Math.scalb(2, i); failures += testLog1pCaseWithUlpDiff(d, StrictMath.log(d), 2.001); } // Construct random values with exponents ranging from -53 to // 52 and compare against HP-15C formula. java.util.Random rand = new java.util.Random(); for(int i = 0; i < 1000; i++) { double d = rand.nextDouble(); d = Math.scalb(d, -53 - FpUtils.ilogb(d)); for(int j = -53; j <= 52; j++) { failures += testLog1pCaseWithUlpDiff(d, hp15cLogp(d), 5); d *= 2.0; // increase exponent by 1 } } // Test for monotonicity failures near values y-1 where y ~= // e^x. Test two numbers before and two numbers after each // chosen value; i.e. // // pcNeighbors[] = // {nextDown(nextDown(pc)), // nextDown(pc), // pc, // nextUp(pc), // nextUp(nextUp(pc))} // // and we test that log1p(pcNeighbors[i]) <= log1p(pcNeighbors[i+1]) { double pcNeighbors[] = new double[5]; double pcNeighborsLog1p[] = new double[5]; double pcNeighborsStrictLog1p[] = new double[5]; for(int i = -36; i <= 36; i++) { double pc = StrictMath.pow(Math.E, i) - 1; pcNeighbors[2] = pc; pcNeighbors[1] = Math.nextDown(pc); pcNeighbors[0] = Math.nextDown(pcNeighbors[1]); pcNeighbors[3] = Math.nextUp(pc); pcNeighbors[4] = Math.nextUp(pcNeighbors[3]); for(int j = 0; j < pcNeighbors.length; j++) { pcNeighborsLog1p[j] = Math.log1p(pcNeighbors[j]); pcNeighborsStrictLog1p[j] = StrictMath.log1p(pcNeighbors[j]); } for(int j = 0; j < pcNeighborsLog1p.length-1; j++) { if(pcNeighborsLog1p[j] > pcNeighborsLog1p[j+1] ) { failures++; System.err.println("Monotonicity failure for Math.log1p on " + pcNeighbors[j] + " and " + pcNeighbors[j+1] + "\n\treturned " + pcNeighborsLog1p[j] + " and " + pcNeighborsLog1p[j+1] ); } if(pcNeighborsStrictLog1p[j] > pcNeighborsStrictLog1p[j+1] ) { failures++; System.err.println("Monotonicity failure for StrictMath.log1p on " + pcNeighbors[j] + " and " + pcNeighbors[j+1] + "\n\treturned " + pcNeighborsStrictLog1p[j] + " and " + pcNeighborsStrictLog1p[j+1] ); } } } } return failures; } public static int testLog1pCase(double input, double expected) { return testLog1pCaseWithUlpDiff(input, expected, 1); } public static int testLog1pCaseWithUlpDiff(double input, double expected, double ulps) { int failures = 0; failures += Tests.testUlpDiff("Math.lop1p(double", input, Math.log1p(input), expected, ulps); failures += Tests.testUlpDiff("StrictMath.log1p(double", input, StrictMath.log1p(input), expected, ulps); return failures; } public static void main(String argv[]) { int failures = 0; failures += testLog1p(); if (failures > 0) { System.err.println("Testing log1p incurred " + failures + " failures."); throw new RuntimeException(); } } }