/* * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ # include "incls/_precompiled.incl" # include "incls/_objArrayKlass.cpp.incl" int objArrayKlass::oop_size(oop obj) const { assert(obj->is_objArray(), "must be object array"); return objArrayOop(obj)->object_size(); } objArrayOop objArrayKlass::allocate(int length, TRAPS) { if (length >= 0) { if (length <= arrayOopDesc::max_array_length(T_OBJECT)) { int size = objArrayOopDesc::object_size(length); KlassHandle h_k(THREAD, as_klassOop()); objArrayOop a = (objArrayOop)CollectedHeap::array_allocate(h_k, size, length, CHECK_NULL); assert(a->is_parsable(), "Can't publish unless parsable"); return a; } else { THROW_OOP_0(Universe::out_of_memory_error_array_size()); } } else { THROW_0(vmSymbols::java_lang_NegativeArraySizeException()); } } static int multi_alloc_counter = 0; oop objArrayKlass::multi_allocate(int rank, jint* sizes, TRAPS) { int length = *sizes; // Call to lower_dimension uses this pointer, so most be called before a // possible GC KlassHandle h_lower_dimension(THREAD, lower_dimension()); // If length < 0 allocate will throw an exception. objArrayOop array = allocate(length, CHECK_NULL); assert(array->is_parsable(), "Don't handlize unless parsable"); objArrayHandle h_array (THREAD, array); if (rank > 1) { if (length != 0) { for (int index = 0; index < length; index++) { arrayKlass* ak = arrayKlass::cast(h_lower_dimension()); oop sub_array = ak->multi_allocate(rank-1, &sizes[1], CHECK_NULL); assert(sub_array->is_parsable(), "Don't publish until parsable"); h_array->obj_at_put(index, sub_array); } } else { // Since this array dimension has zero length, nothing will be // allocated, however the lower dimension values must be checked // for illegal values. for (int i = 0; i < rank - 1; ++i) { sizes += 1; if (*sizes < 0) { THROW_0(vmSymbols::java_lang_NegativeArraySizeException()); } } } } return h_array(); } // Either oop or narrowOop depending on UseCompressedOops. template void objArrayKlass::do_copy(arrayOop s, T* src, arrayOop d, T* dst, int length, TRAPS) { const size_t word_len = objArrayOopDesc::array_size(length); // For performance reasons, we assume we are using a card marking write // barrier. The assert will fail if this is not the case. BarrierSet* bs = Universe::heap()->barrier_set(); assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt"); if (s == d) { // since source and destination are equal we do not need conversion checks. assert(length > 0, "sanity check"); Copy::conjoint_oops_atomic(src, dst, length); } else { // We have to make sure all elements conform to the destination array klassOop bound = objArrayKlass::cast(d->klass())->element_klass(); klassOop stype = objArrayKlass::cast(s->klass())->element_klass(); if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) { // elements are guaranteed to be subtypes, so no check necessary Copy::conjoint_oops_atomic(src, dst, length); } else { // slow case: need individual subtype checks // note: don't use obj_at_put below because it includes a redundant store check T* from = src; T* end = from + length; for (T* p = dst; from < end; from++, p++) { // XXX this is going to be slow. T element = *from; if (oopDesc::is_null(element) || Klass::cast(oopDesc::decode_heap_oop_not_null(element)->klass())->is_subtype_of(bound)) { *p = *from; } else { // We must do a barrier to cover the partial copy. const size_t pd = pointer_delta(p, dst, (size_t)heapOopSize); // pointer delta is scaled to number of elements (length field in // objArrayOop) which we assume is 32 bit. assert(pd == (size_t)(int)pd, "length field overflow"); const size_t done_word_len = objArrayOopDesc::array_size((int)pd); bs->write_ref_array(MemRegion((HeapWord*)dst, done_word_len)); THROW(vmSymbols::java_lang_ArrayStoreException()); return; } } } } bs->write_ref_array(MemRegion((HeapWord*)dst, word_len)); } void objArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) { assert(s->is_objArray(), "must be obj array"); if (!d->is_objArray()) { THROW(vmSymbols::java_lang_ArrayStoreException()); } // Check is all offsets and lengths are non negative if (src_pos < 0 || dst_pos < 0 || length < 0) { THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException()); } // Check if the ranges are valid if ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length()) || (((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length()) ) { THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException()); } // Special case. Boundary cases must be checked first // This allows the following call: copy_array(s, s.length(), d.length(), 0). // This is correct, since the position is supposed to be an 'in between point', i.e., s.length(), // points to the right of the last element. if (length==0) { return; } if (UseCompressedOops) { narrowOop* const src = objArrayOop(s)->obj_at_addr(src_pos); narrowOop* const dst = objArrayOop(d)->obj_at_addr(dst_pos); do_copy(s, src, d, dst, length, CHECK); } else { oop* const src = objArrayOop(s)->obj_at_addr(src_pos); oop* const dst = objArrayOop(d)->obj_at_addr(dst_pos); do_copy (s, src, d, dst, length, CHECK); } } klassOop objArrayKlass::array_klass_impl(bool or_null, int n, TRAPS) { objArrayKlassHandle h_this(THREAD, as_klassOop()); return array_klass_impl(h_this, or_null, n, CHECK_NULL); } klassOop objArrayKlass::array_klass_impl(objArrayKlassHandle this_oop, bool or_null, int n, TRAPS) { assert(this_oop->dimension() <= n, "check order of chain"); int dimension = this_oop->dimension(); if (dimension == n) return this_oop(); objArrayKlassHandle ak (THREAD, this_oop->higher_dimension()); if (ak.is_null()) { if (or_null) return NULL; ResourceMark rm; JavaThread *jt = (JavaThread *)THREAD; { MutexLocker mc(Compile_lock, THREAD); // for vtables // Ensure atomic creation of higher dimensions MutexLocker mu(MultiArray_lock, THREAD); // Check if another thread beat us ak = objArrayKlassHandle(THREAD, this_oop->higher_dimension()); if( ak.is_null() ) { // Create multi-dim klass object and link them together klassOop new_klass = objArrayKlassKlass::cast(Universe::objArrayKlassKlassObj())-> allocate_objArray_klass(dimension + 1, this_oop, CHECK_NULL); ak = objArrayKlassHandle(THREAD, new_klass); this_oop->set_higher_dimension(ak()); ak->set_lower_dimension(this_oop()); assert(ak->oop_is_objArray(), "incorrect initialization of objArrayKlass"); } } } else { CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops()); } if (or_null) { return ak->array_klass_or_null(n); } return ak->array_klass(n, CHECK_NULL); } klassOop objArrayKlass::array_klass_impl(bool or_null, TRAPS) { return array_klass_impl(or_null, dimension() + 1, CHECK_NULL); } bool objArrayKlass::can_be_primary_super_slow() const { if (!bottom_klass()->klass_part()->can_be_primary_super()) // array of interfaces return false; else return Klass::can_be_primary_super_slow(); } objArrayOop objArrayKlass::compute_secondary_supers(int num_extra_slots, TRAPS) { // interfaces = { cloneable_klass, serializable_klass, elemSuper[], ... }; objArrayOop es = Klass::cast(element_klass())->secondary_supers(); objArrayHandle elem_supers (THREAD, es); int num_elem_supers = elem_supers.is_null() ? 0 : elem_supers->length(); int num_secondaries = num_extra_slots + 2 + num_elem_supers; if (num_secondaries == 2) { // Must share this for correct bootstrapping! return Universe::the_array_interfaces_array(); } else { objArrayOop sec_oop = oopFactory::new_system_objArray(num_secondaries, CHECK_NULL); objArrayHandle secondaries(THREAD, sec_oop); secondaries->obj_at_put(num_extra_slots+0, SystemDictionary::cloneable_klass()); secondaries->obj_at_put(num_extra_slots+1, SystemDictionary::serializable_klass()); for (int i = 0; i < num_elem_supers; i++) { klassOop elem_super = (klassOop) elem_supers->obj_at(i); klassOop array_super = elem_super->klass_part()->array_klass_or_null(); assert(array_super != NULL, "must already have been created"); secondaries->obj_at_put(num_extra_slots+2+i, array_super); } return secondaries(); } } bool objArrayKlass::compute_is_subtype_of(klassOop k) { if (!k->klass_part()->oop_is_objArray()) return arrayKlass::compute_is_subtype_of(k); objArrayKlass* oak = objArrayKlass::cast(k); return element_klass()->klass_part()->is_subtype_of(oak->element_klass()); } void objArrayKlass::initialize(TRAPS) { Klass::cast(bottom_klass())->initialize(THREAD); // dispatches to either instanceKlass or typeArrayKlass } #define ObjArrayKlass_SPECIALIZED_OOP_ITERATE(T, a, p, do_oop) \ { \ T* p = (T*)(a)->base(); \ T* const end = p + (a)->length(); \ while (p < end) { \ do_oop; \ p++; \ } \ } #define ObjArrayKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(T, a, p, low, high, do_oop) \ { \ T* const l = (T*)(low); \ T* const h = (T*)(high); \ T* p = (T*)(a)->base(); \ T* end = p + (a)->length(); \ if (p < l) p = l; \ if (end > h) end = h; \ while (p < end) { \ do_oop; \ ++p; \ } \ } #define ObjArrayKlass_OOP_ITERATE(a, p, do_oop) \ if (UseCompressedOops) { \ ObjArrayKlass_SPECIALIZED_OOP_ITERATE(narrowOop, \ a, p, do_oop) \ } else { \ ObjArrayKlass_SPECIALIZED_OOP_ITERATE(oop, \ a, p, do_oop) \ } #define ObjArrayKlass_BOUNDED_OOP_ITERATE(a, p, low, high, do_oop) \ if (UseCompressedOops) { \ ObjArrayKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(narrowOop, \ a, p, low, high, do_oop) \ } else { \ ObjArrayKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(oop, \ a, p, low, high, do_oop) \ } void objArrayKlass::oop_follow_contents(oop obj) { assert (obj->is_array(), "obj must be array"); objArrayOop a = objArrayOop(obj); a->follow_header(); ObjArrayKlass_OOP_ITERATE( \ a, p, \ /* we call mark_and_follow here to avoid excessive marking stack usage */ \ MarkSweep::mark_and_follow(p)) } #ifndef SERIALGC void objArrayKlass::oop_follow_contents(ParCompactionManager* cm, oop obj) { assert (obj->is_array(), "obj must be array"); objArrayOop a = objArrayOop(obj); a->follow_header(cm); ObjArrayKlass_OOP_ITERATE( \ a, p, \ /* we call mark_and_follow here to avoid excessive marking stack usage */ \ PSParallelCompact::mark_and_follow(cm, p)) } #endif // SERIALGC #define ObjArrayKlass_OOP_OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \ \ int objArrayKlass::oop_oop_iterate##nv_suffix(oop obj, \ OopClosureType* closure) { \ SpecializationStats::record_iterate_call##nv_suffix(SpecializationStats::oa); \ assert (obj->is_array(), "obj must be array"); \ objArrayOop a = objArrayOop(obj); \ /* Get size before changing pointers. */ \ /* Don't call size() or oop_size() since that is a virtual call. */ \ int size = a->object_size(); \ if (closure->do_header()) { \ a->oop_iterate_header(closure); \ } \ ObjArrayKlass_OOP_ITERATE(a, p, (closure)->do_oop##nv_suffix(p)) \ return size; \ } #define ObjArrayKlass_OOP_OOP_ITERATE_DEFN_m(OopClosureType, nv_suffix) \ \ int objArrayKlass::oop_oop_iterate##nv_suffix##_m(oop obj, \ OopClosureType* closure, \ MemRegion mr) { \ SpecializationStats::record_iterate_call##nv_suffix(SpecializationStats::oa); \ assert(obj->is_array(), "obj must be array"); \ objArrayOop a = objArrayOop(obj); \ /* Get size before changing pointers. */ \ /* Don't call size() or oop_size() since that is a virtual call */ \ int size = a->object_size(); \ if (closure->do_header()) { \ a->oop_iterate_header(closure, mr); \ } \ ObjArrayKlass_BOUNDED_OOP_ITERATE( \ a, p, mr.start(), mr.end(), (closure)->do_oop##nv_suffix(p)) \ return size; \ } // Like oop_oop_iterate but only iterates over a specified range and only used // for objArrayOops. #define ObjArrayKlass_OOP_OOP_ITERATE_DEFN_r(OopClosureType, nv_suffix) \ \ int objArrayKlass::oop_oop_iterate_range##nv_suffix(oop obj, \ OopClosureType* closure, \ int start, int end) { \ SpecializationStats::record_iterate_call##nv_suffix(SpecializationStats::oa); \ assert(obj->is_array(), "obj must be array"); \ objArrayOop a = objArrayOop(obj); \ /* Get size before changing pointers. */ \ /* Don't call size() or oop_size() since that is a virtual call */ \ int size = a->object_size(); \ if (UseCompressedOops) { \ HeapWord* low = start == 0 ? (HeapWord*)a : (HeapWord*)a->obj_at_addr(start);\ /* this might be wierd if end needs to be aligned on HeapWord boundary */ \ HeapWord* high = (HeapWord*)((narrowOop*)a->base() + end); \ MemRegion mr(low, high); \ if (closure->do_header()) { \ a->oop_iterate_header(closure, mr); \ } \ ObjArrayKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(narrowOop, \ a, p, low, high, (closure)->do_oop##nv_suffix(p)) \ } else { \ HeapWord* low = start == 0 ? (HeapWord*)a : (HeapWord*)a->obj_at_addr(start); \ HeapWord* high = (HeapWord*)((oop*)a->base() + end); \ MemRegion mr(low, high); \ if (closure->do_header()) { \ a->oop_iterate_header(closure, mr); \ } \ ObjArrayKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(oop, \ a, p, low, high, (closure)->do_oop##nv_suffix(p)) \ } \ return size; \ } ALL_OOP_OOP_ITERATE_CLOSURES_1(ObjArrayKlass_OOP_OOP_ITERATE_DEFN) ALL_OOP_OOP_ITERATE_CLOSURES_3(ObjArrayKlass_OOP_OOP_ITERATE_DEFN) ALL_OOP_OOP_ITERATE_CLOSURES_1(ObjArrayKlass_OOP_OOP_ITERATE_DEFN_m) ALL_OOP_OOP_ITERATE_CLOSURES_3(ObjArrayKlass_OOP_OOP_ITERATE_DEFN_m) ALL_OOP_OOP_ITERATE_CLOSURES_1(ObjArrayKlass_OOP_OOP_ITERATE_DEFN_r) ALL_OOP_OOP_ITERATE_CLOSURES_3(ObjArrayKlass_OOP_OOP_ITERATE_DEFN_r) int objArrayKlass::oop_adjust_pointers(oop obj) { assert(obj->is_objArray(), "obj must be obj array"); objArrayOop a = objArrayOop(obj); // Get size before changing pointers. // Don't call size() or oop_size() since that is a virtual call. int size = a->object_size(); a->adjust_header(); ObjArrayKlass_OOP_ITERATE(a, p, MarkSweep::adjust_pointer(p)) return size; } #ifndef SERIALGC void objArrayKlass::oop_copy_contents(PSPromotionManager* pm, oop obj) { assert(!pm->depth_first(), "invariant"); assert(obj->is_objArray(), "obj must be obj array"); ObjArrayKlass_OOP_ITERATE( \ objArrayOop(obj), p, \ if (PSScavenge::should_scavenge(p)) { \ pm->claim_or_forward_breadth(p); \ }) } void objArrayKlass::oop_push_contents(PSPromotionManager* pm, oop obj) { assert(pm->depth_first(), "invariant"); assert(obj->is_objArray(), "obj must be obj array"); ObjArrayKlass_OOP_ITERATE( \ objArrayOop(obj), p, \ if (PSScavenge::should_scavenge(p)) { \ pm->claim_or_forward_depth(p); \ }) } int objArrayKlass::oop_update_pointers(ParCompactionManager* cm, oop obj) { assert (obj->is_objArray(), "obj must be obj array"); objArrayOop a = objArrayOop(obj); ObjArrayKlass_OOP_ITERATE(a, p, PSParallelCompact::adjust_pointer(p)) return a->object_size(); } int objArrayKlass::oop_update_pointers(ParCompactionManager* cm, oop obj, HeapWord* beg_addr, HeapWord* end_addr) { assert (obj->is_objArray(), "obj must be obj array"); objArrayOop a = objArrayOop(obj); ObjArrayKlass_BOUNDED_OOP_ITERATE( \ a, p, beg_addr, end_addr, \ PSParallelCompact::adjust_pointer(p)) return a->object_size(); } #endif // SERIALGC // JVM support jint objArrayKlass::compute_modifier_flags(TRAPS) const { // The modifier for an objectArray is the same as its element if (element_klass() == NULL) { assert(Universe::is_bootstrapping(), "partial objArray only at startup"); return JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC; } // Recurse down the element list jint element_flags = Klass::cast(element_klass())->compute_modifier_flags(CHECK_0); return (element_flags & (JVM_ACC_PUBLIC | JVM_ACC_PRIVATE | JVM_ACC_PROTECTED)) | (JVM_ACC_ABSTRACT | JVM_ACC_FINAL); } #ifndef PRODUCT // Printing void objArrayKlass::oop_print_on(oop obj, outputStream* st) { arrayKlass::oop_print_on(obj, st); assert(obj->is_objArray(), "must be objArray"); objArrayOop oa = objArrayOop(obj); int print_len = MIN2((intx) oa->length(), MaxElementPrintSize); for(int index = 0; index < print_len; index++) { st->print(" - %3d : ", index); oa->obj_at(index)->print_value_on(st); st->cr(); } int remaining = oa->length() - print_len; if (remaining > 0) { tty->print_cr(" - <%d more elements, increase MaxElementPrintSize to print>", remaining); } } void objArrayKlass::oop_print_value_on(oop obj, outputStream* st) { assert(obj->is_objArray(), "must be objArray"); element_klass()->print_value_on(st); st->print("a [%d] ", objArrayOop(obj)->length()); as_klassOop()->klass()->print_value_on(st); } #endif // PRODUCT const char* objArrayKlass::internal_name() const { return external_name(); } // Verification void objArrayKlass::oop_verify_on(oop obj, outputStream* st) { arrayKlass::oop_verify_on(obj, st); guarantee(obj->is_objArray(), "must be objArray"); objArrayOop oa = objArrayOop(obj); for(int index = 0; index < oa->length(); index++) { guarantee(oa->obj_at(index)->is_oop_or_null(), "should be oop"); } } void objArrayKlass::oop_verify_old_oop(oop obj, oop* p, bool allow_dirty) { /* $$$ move into remembered set verification? RememberedSet::verify_old_oop(obj, p, allow_dirty, true); */ } void objArrayKlass::oop_verify_old_oop(oop obj, narrowOop* p, bool allow_dirty) {}