/* * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "jvm.h" #include "classfile/javaClasses.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "interpreter/linkResolver.hpp" #include "logging/log.hpp" #include "logging/logStream.hpp" #include "memory/metaspaceShared.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "oops/instanceKlass.hpp" #include "oops/klassVtable.hpp" #include "oops/method.hpp" #include "oops/objArrayOop.hpp" #include "oops/oop.inline.hpp" #include "runtime/arguments.hpp" #include "runtime/flags/flagSetting.hpp" #include "runtime/handles.inline.hpp" #include "runtime/safepointVerifiers.hpp" #include "utilities/copy.hpp" inline InstanceKlass* klassVtable::ik() const { return InstanceKlass::cast(_klass); } bool klassVtable::is_preinitialized_vtable() { return _klass->is_shared() && !MetaspaceShared::remapped_readwrite(); } // this function computes the vtable size (including the size needed for miranda // methods) and the number of miranda methods in this class. // Note on Miranda methods: Let's say there is a class C that implements // interface I, and none of C's superclasses implements I. // Let's say there is an abstract method m in I that neither C // nor any of its super classes implement (i.e there is no method of any access, // with the same name and signature as m), then m is a Miranda method which is // entered as a public abstract method in C's vtable. From then on it should // treated as any other public method in C for method over-ride purposes. void klassVtable::compute_vtable_size_and_num_mirandas( int* vtable_length_ret, int* num_new_mirandas, GrowableArray* all_mirandas, const Klass* super, Array* methods, AccessFlags class_flags, u2 major_version, Handle classloader, Symbol* classname, Array* local_interfaces, TRAPS) { NoSafepointVerifier nsv; // set up default result values int vtable_length = 0; // start off with super's vtable length vtable_length = super == NULL ? 0 : super->vtable_length(); // go thru each method in the methods table to see if it needs a new entry int len = methods->length(); for (int i = 0; i < len; i++) { assert(methods->at(i)->is_method(), "must be a Method*"); methodHandle mh(THREAD, methods->at(i)); if (needs_new_vtable_entry(mh, super, classloader, classname, class_flags, major_version, THREAD)) { vtable_length += vtableEntry::size(); // we need a new entry } } GrowableArray new_mirandas(20); // compute the number of mirandas methods that must be added to the end get_mirandas(&new_mirandas, all_mirandas, super, methods, NULL, local_interfaces, class_flags.is_interface()); *num_new_mirandas = new_mirandas.length(); // Interfaces do not need interface methods in their vtables // This includes miranda methods and during later processing, default methods if (!class_flags.is_interface()) { vtable_length += *num_new_mirandas * vtableEntry::size(); } if (Universe::is_bootstrapping() && vtable_length == 0) { // array classes don't have their superclass set correctly during // bootstrapping vtable_length = Universe::base_vtable_size(); } if (super == NULL && vtable_length != Universe::base_vtable_size()) { if (Universe::is_bootstrapping()) { // Someone is attempting to override java.lang.Object incorrectly on the // bootclasspath. The JVM cannot recover from this error including throwing // an exception vm_exit_during_initialization("Incompatible definition of java.lang.Object"); } else { // Someone is attempting to redefine java.lang.Object incorrectly. The // only way this should happen is from // SystemDictionary::resolve_from_stream(), which will detect this later // and throw a security exception. So don't assert here to let // the exception occur. vtable_length = Universe::base_vtable_size(); } } assert(vtable_length % vtableEntry::size() == 0, "bad vtable length"); assert(vtable_length >= Universe::base_vtable_size(), "vtable too small"); *vtable_length_ret = vtable_length; } int klassVtable::index_of(Method* m, int len) const { assert(m->has_vtable_index(), "do not ask this of non-vtable methods"); return m->vtable_index(); } // Copy super class's vtable to the first part (prefix) of this class's vtable, // and return the number of entries copied. Expects that 'super' is the Java // super class (arrays can have "array" super classes that must be skipped). int klassVtable::initialize_from_super(Klass* super) { if (super == NULL) { return 0; } else if (is_preinitialized_vtable()) { // A shared class' vtable is preinitialized at dump time. No need to copy // methods from super class for shared class, as that was already done // during archiving time. However, if Jvmti has redefined a class, // copy super class's vtable in case the super class has changed. return super->vtable().length(); } else { // copy methods from superKlass klassVtable superVtable = super->vtable(); assert(superVtable.length() <= _length, "vtable too short"); #ifdef ASSERT superVtable.verify(tty, true); #endif superVtable.copy_vtable_to(table()); if (log_develop_is_enabled(Trace, vtables)) { ResourceMark rm; log_develop_trace(vtables)("copy vtable from %s to %s size %d", super->internal_name(), klass()->internal_name(), _length); } return superVtable.length(); } } // // Revised lookup semantics introduced 1.3 (Kestrel beta) void klassVtable::initialize_vtable(bool checkconstraints, TRAPS) { // Note: Arrays can have intermediate array supers. Use java_super to skip them. Klass* super = _klass->java_super(); int nofNewEntries = 0; bool is_shared = _klass->is_shared(); if (!_klass->is_array_klass()) { ResourceMark rm(THREAD); log_develop_debug(vtables)("Initializing: %s", _klass->name()->as_C_string()); } #ifdef ASSERT oop* end_of_obj = (oop*)_klass + _klass->size(); oop* end_of_vtable = (oop*)&table()[_length]; assert(end_of_vtable <= end_of_obj, "vtable extends beyond end"); #endif if (Universe::is_bootstrapping()) { assert(!is_shared, "sanity"); // just clear everything for (int i = 0; i < _length; i++) table()[i].clear(); return; } int super_vtable_len = initialize_from_super(super); if (_klass->is_array_klass()) { assert(super_vtable_len == _length, "arrays shouldn't introduce new methods"); } else { assert(_klass->is_instance_klass(), "must be InstanceKlass"); Array* methods = ik()->methods(); int len = methods->length(); int initialized = super_vtable_len; // Check each of this class's methods against super; // if override, replace in copy of super vtable, otherwise append to end for (int i = 0; i < len; i++) { // update_inherited_vtable can stop for gc - ensure using handles HandleMark hm(THREAD); assert(methods->at(i)->is_method(), "must be a Method*"); methodHandle mh(THREAD, methods->at(i)); bool needs_new_entry = update_inherited_vtable(ik(), mh, super_vtable_len, -1, checkconstraints, CHECK); if (needs_new_entry) { put_method_at(mh(), initialized); mh()->set_vtable_index(initialized); // set primary vtable index initialized++; } } // update vtable with default_methods Array* default_methods = ik()->default_methods(); if (default_methods != NULL) { len = default_methods->length(); if (len > 0) { Array* def_vtable_indices = NULL; if ((def_vtable_indices = ik()->default_vtable_indices()) == NULL) { assert(!is_shared, "shared class def_vtable_indices does not exist"); def_vtable_indices = ik()->create_new_default_vtable_indices(len, CHECK); } else { assert(def_vtable_indices->length() == len, "reinit vtable len?"); } for (int i = 0; i < len; i++) { HandleMark hm(THREAD); assert(default_methods->at(i)->is_method(), "must be a Method*"); methodHandle mh(THREAD, default_methods->at(i)); assert(!mh->is_private(), "private interface method in the default method list"); bool needs_new_entry = update_inherited_vtable(ik(), mh, super_vtable_len, i, checkconstraints, CHECK); // needs new entry if (needs_new_entry) { put_method_at(mh(), initialized); if (is_preinitialized_vtable()) { // At runtime initialize_vtable is rerun for a shared class // (loaded by the non-boot loader) as part of link_class_impl(). // The dumptime vtable index should be the same as the runtime index. assert(def_vtable_indices->at(i) == initialized, "dump time vtable index is different from runtime index"); } else { def_vtable_indices->at_put(i, initialized); //set vtable index } initialized++; } } } } // add miranda methods; it will also return the updated initialized // Interfaces do not need interface methods in their vtables // This includes miranda methods and during later processing, default methods if (!ik()->is_interface()) { initialized = fill_in_mirandas(initialized); } // In class hierarchies where the accessibility is not increasing (i.e., going from private -> // package_private -> public/protected), the vtable might actually be smaller than our initial // calculation, for classfile versions for which we do not do transitive override // calculations. if (ik()->major_version() >= VTABLE_TRANSITIVE_OVERRIDE_VERSION) { assert(initialized == _length, "vtable initialization failed"); } else { assert(initialized <= _length, "vtable initialization failed"); for(;initialized < _length; initialized++) { table()[initialized].clear(); } } NOT_PRODUCT(verify(tty, true)); } } // Called for cases where a method does not override its superclass' vtable entry // For bytecodes not produced by javac together it is possible that a method does not override // the superclass's method, but might indirectly override a super-super class's vtable entry // If none found, return a null superk, else return the superk of the method this does override // For public and protected methods: if they override a superclass, they will // also be overridden themselves appropriately. // Private methods do not override and are not overridden. // Package Private methods are trickier: // e.g. P1.A, pub m // P2.B extends A, package private m // P1.C extends B, public m // P1.C.m needs to override P1.A.m and can not override P2.B.m // Therefore: all package private methods need their own vtable entries for // them to be the root of an inheritance overriding decision // Package private methods may also override other vtable entries InstanceKlass* klassVtable::find_transitive_override(InstanceKlass* initialsuper, const methodHandle& target_method, int vtable_index, Handle target_loader, Symbol* target_classname, Thread * THREAD) { InstanceKlass* superk = initialsuper; while (superk != NULL && superk->super() != NULL) { InstanceKlass* supersuperklass = InstanceKlass::cast(superk->super()); klassVtable ssVtable = supersuperklass->vtable(); if (vtable_index < ssVtable.length()) { Method* super_method = ssVtable.method_at(vtable_index); #ifndef PRODUCT Symbol* name= target_method()->name(); Symbol* signature = target_method()->signature(); assert(super_method->name() == name && super_method->signature() == signature, "vtable entry name/sig mismatch"); #endif if (supersuperklass->is_override(super_method, target_loader, target_classname, THREAD)) { if (log_develop_is_enabled(Trace, vtables)) { ResourceMark rm(THREAD); LogTarget(Trace, vtables) lt; LogStream ls(lt); char* sig = target_method()->name_and_sig_as_C_string(); ls.print("transitive overriding superclass %s with %s index %d, original flags: ", supersuperklass->internal_name(), sig, vtable_index); super_method->print_linkage_flags(&ls); ls.print("overriders flags: "); target_method->print_linkage_flags(&ls); ls.cr(); } break; // return found superk } } else { // super class has no vtable entry here, stop transitive search superk = (InstanceKlass*)NULL; break; } // if no override found yet, continue to search up superk = superk->super() == NULL ? NULL : InstanceKlass::cast(superk->super()); } return superk; } static void log_vtables(int i, bool overrides, const methodHandle& target_method, Klass* target_klass, Method* super_method, Thread* thread) { #ifndef PRODUCT if (log_develop_is_enabled(Trace, vtables)) { ResourceMark rm(thread); LogTarget(Trace, vtables) lt; LogStream ls(lt); char* sig = target_method()->name_and_sig_as_C_string(); if (overrides) { ls.print("overriding with %s index %d, original flags: ", sig, i); } else { ls.print("NOT overriding with %s index %d, original flags: ", sig, i); } super_method->print_linkage_flags(&ls); ls.print("overriders flags: "); target_method->print_linkage_flags(&ls); ls.cr(); } #endif } // Update child's copy of super vtable for overrides // OR return true if a new vtable entry is required. // Only called for InstanceKlass's, i.e. not for arrays // If that changed, could not use _klass as handle for klass bool klassVtable::update_inherited_vtable(InstanceKlass* klass, const methodHandle& target_method, int super_vtable_len, int default_index, bool checkconstraints, TRAPS) { ResourceMark rm; bool allocate_new = true; assert(klass->is_instance_klass(), "must be InstanceKlass"); Array* def_vtable_indices = NULL; bool is_default = false; // default methods are non-private concrete methods in superinterfaces which are added // to the vtable with their real method_holder. // Since vtable and itable indices share the same storage, don't touch // the default method's real vtable/itable index. // default_vtable_indices stores the vtable value relative to this inheritor if (default_index >= 0 ) { is_default = true; def_vtable_indices = klass->default_vtable_indices(); assert(!target_method()->is_private(), "private interface method flagged as default"); assert(def_vtable_indices != NULL, "def vtable alloc?"); assert(default_index <= def_vtable_indices->length(), "def vtable len?"); } else { assert(klass == target_method()->method_holder(), "caller resp."); // Initialize the method's vtable index to "nonvirtual". // If we allocate a vtable entry, we will update it to a non-negative number. target_method()->set_vtable_index(Method::nonvirtual_vtable_index); } // Static and methods are never in if (target_method()->is_static() || target_method()->name() == vmSymbols::object_initializer_name()) { return false; } if (target_method->is_final_method(klass->access_flags())) { // a final method never needs a new entry; final methods can be statically // resolved and they have to be present in the vtable only if they override // a super's method, in which case they re-use its entry allocate_new = false; } else if (klass->is_interface()) { allocate_new = false; // see note below in needs_new_vtable_entry // An interface never allocates new vtable slots, only inherits old ones. // This method will either be assigned its own itable index later, // or be assigned an inherited vtable index in the loop below. // default methods inherited by classes store their vtable indices // in the inheritor's default_vtable_indices. // default methods inherited by interfaces may already have a // valid itable index, if so, don't change it. // Overpass methods in an interface will be assigned an itable index later // by an inheriting class. // Private interface methods have no itable index and are always invoked nonvirtually, // so they retain their nonvirtual_vtable_index value, and therefore can_be_statically_bound() // will return true. if ((!is_default || !target_method()->has_itable_index()) && !target_method()->is_private()) { target_method()->set_vtable_index(Method::pending_itable_index); } } // we need a new entry if there is no superclass Klass* super = klass->super(); if (super == NULL) { return allocate_new; } // private methods in classes always have a new entry in the vtable // specification interpretation since classic has // private methods not overriding // JDK8 adds private methods in interfaces which require invokespecial if (target_method()->is_private()) { return allocate_new; } // search through the vtable and update overridden entries // Since check_signature_loaders acquires SystemDictionary_lock // which can block for gc, once we are in this loop, use handles // For classfiles built with >= jdk7, we now look for transitive overrides Symbol* name = target_method()->name(); Symbol* signature = target_method()->signature(); Klass* target_klass = target_method()->method_holder(); if (target_klass == NULL) { target_klass = _klass; } Handle target_loader(THREAD, target_klass->class_loader()); Symbol* target_classname = target_klass->name(); for(int i = 0; i < super_vtable_len; i++) { Method* super_method; if (is_preinitialized_vtable()) { // If this is a shared class, the vtable is already in the final state (fully // initialized). Need to look at the super's vtable. klassVtable superVtable = super->vtable(); super_method = superVtable.method_at(i); } else { super_method = method_at(i); } // Check if method name matches. Ignore match if klass is an interface and the // matching method is a non-public java.lang.Object method. (See JVMS 5.4.3.4) // This is safe because the method at this slot should never get invoked. // (TBD: put in a method to throw NoSuchMethodError if this slot is ever used.) if (super_method->name() == name && super_method->signature() == signature && (!_klass->is_interface() || !SystemDictionary::is_nonpublic_Object_method(super_method))) { // get super_klass for method_holder for the found method InstanceKlass* super_klass = super_method->method_holder(); // Whether the method is being overridden bool overrides = false; // private methods are also never overridden if (!super_method->is_private() && (is_default || ((super_klass->is_override(super_method, target_loader, target_classname, THREAD)) || ((klass->major_version() >= VTABLE_TRANSITIVE_OVERRIDE_VERSION) && ((super_klass = find_transitive_override(super_klass, target_method, i, target_loader, target_classname, THREAD)) != (InstanceKlass*)NULL))))) { // Package private methods always need a new entry to root their own // overriding. They may also override other methods. if (!target_method()->is_package_private()) { allocate_new = false; } // Do not check loader constraints for overpass methods because overpass // methods are created by the jvm to throw exceptions. if (checkconstraints && !target_method()->is_overpass()) { // Override vtable entry if passes loader constraint check // if loader constraint checking requested // No need to visit his super, since he and his super // have already made any needed loader constraints. // Since loader constraints are transitive, it is enough // to link to the first super, and we get all the others. Handle super_loader(THREAD, super_klass->class_loader()); if (!oopDesc::equals(target_loader(), super_loader())) { ResourceMark rm(THREAD); Symbol* failed_type_symbol = SystemDictionary::check_signature_loaders(signature, target_loader, super_loader, true, CHECK_(false)); if (failed_type_symbol != NULL) { const char* msg = "loader constraint violation for class %s: when selecting " "overriding method %s the class loader %s of the " "selected method's type %s, and the class loader %s for its super " "type %s have different Class objects for the type %s used in the signature"; const char* curr_class = klass->external_name(); const char* method = target_method()->name_and_sig_as_C_string(); const char* loader1 = java_lang_ClassLoader::describe_external(target_loader()); const char* sel_class = target_klass->external_name(); const char* loader2 = java_lang_ClassLoader::describe_external(super_loader()); const char* super_class = super_klass->external_name(); const char* failed_type_name = failed_type_symbol->as_klass_external_name(); size_t buflen = strlen(msg) + strlen(curr_class) + strlen(method) + strlen(loader1) + strlen(sel_class) + strlen(loader2) + strlen(super_class) + strlen(failed_type_name); char* buf = NEW_RESOURCE_ARRAY_IN_THREAD(THREAD, char, buflen); jio_snprintf(buf, buflen, msg, curr_class, method, loader1, sel_class, loader2, super_class, failed_type_name); THROW_MSG_(vmSymbols::java_lang_LinkageError(), buf, false); } } } put_method_at(target_method(), i); overrides = true; if (!is_default) { target_method()->set_vtable_index(i); } else { if (def_vtable_indices != NULL) { if (is_preinitialized_vtable()) { // At runtime initialize_vtable is rerun as part of link_class_impl() // for a shared class loaded by the non-boot loader. // The dumptime vtable index should be the same as the runtime index. assert(def_vtable_indices->at(default_index) == i, "dump time vtable index is different from runtime index"); } else { def_vtable_indices->at_put(default_index, i); } } assert(super_method->is_default_method() || super_method->is_overpass() || super_method->is_abstract(), "default override error"); } } else { overrides = false; } log_vtables(i, overrides, target_method, target_klass, super_method, THREAD); } } return allocate_new; } void klassVtable::put_method_at(Method* m, int index) { if (is_preinitialized_vtable()) { // At runtime initialize_vtable is rerun as part of link_class_impl() // for shared class loaded by the non-boot loader to obtain the loader // constraints based on the runtime classloaders' context. The dumptime // method at the vtable index should be the same as the runtime method. assert(table()[index].method() == m, "archived method is different from the runtime method"); } else { if (log_develop_is_enabled(Trace, vtables)) { ResourceMark rm; LogTarget(Trace, vtables) lt; LogStream ls(lt); const char* sig = (m != NULL) ? m->name_and_sig_as_C_string() : ""; ls.print("adding %s at index %d, flags: ", sig, index); if (m != NULL) { m->print_linkage_flags(&ls); } ls.cr(); } table()[index].set(m); } } // Find out if a method "m" with superclass "super", loader "classloader" and // name "classname" needs a new vtable entry. Let P be a class package defined // by "classloader" and "classname". // NOTE: The logic used here is very similar to the one used for computing // the vtables indices for a method. We cannot directly use that function because, // we allocate the InstanceKlass at load time, and that requires that the // superclass has been loaded. // However, the vtable entries are filled in at link time, and therefore // the superclass' vtable may not yet have been filled in. bool klassVtable::needs_new_vtable_entry(const methodHandle& target_method, const Klass* super, Handle classloader, Symbol* classname, AccessFlags class_flags, u2 major_version, TRAPS) { if (class_flags.is_interface()) { // Interfaces do not use vtables, except for java.lang.Object methods, // so there is no point to assigning // a vtable index to any of their local methods. If we refrain from doing this, // we can use Method::_vtable_index to hold the itable index return false; } if (target_method->is_final_method(class_flags) || // a final method never needs a new entry; final methods can be statically // resolved and they have to be present in the vtable only if they override // a super's method, in which case they re-use its entry (target_method()->is_static()) || // static methods don't need to be in vtable (target_method()->name() == vmSymbols::object_initializer_name()) // is never called dynamically-bound ) { return false; } // Concrete interface methods do not need new entries, they override // abstract method entries using default inheritance rules if (target_method()->method_holder() != NULL && target_method()->method_holder()->is_interface() && !target_method()->is_abstract()) { assert(target_method()->is_default_method() || target_method()->is_private(), "unexpected interface method type"); return false; } // we need a new entry if there is no superclass if (super == NULL) { return true; } // private methods in classes always have a new entry in the vtable. // Specification interpretation since classic has private methods not overriding. if (target_method()->is_private()) { return true; } // Package private methods always need a new entry to root their own // overriding. This allows transitive overriding to work. if (target_method()->is_package_private()) { return true; } // search through the super class hierarchy to see if we need // a new entry ResourceMark rm; Symbol* name = target_method()->name(); Symbol* signature = target_method()->signature(); const Klass* k = super; Method* super_method = NULL; InstanceKlass *holder = NULL; Method* recheck_method = NULL; while (k != NULL) { // lookup through the hierarchy for a method with matching name and sign. super_method = InstanceKlass::cast(k)->lookup_method(name, signature); if (super_method == NULL) { break; // we still have to search for a matching miranda method } // get the class holding the matching method // make sure you use that class for is_override InstanceKlass* superk = super_method->method_holder(); // we want only instance method matches // pretend private methods are not in the super vtable // since we do override around them: e.g. a.m pub/b.m private/c.m pub, // ignore private, c.m pub does override a.m pub // For classes that were not javac'd together, we also do transitive overriding around // methods that have less accessibility if ((!super_method->is_static()) && (!super_method->is_private())) { if (superk->is_override(super_method, classloader, classname, THREAD)) { return false; // else keep looking for transitive overrides } } // Start with lookup result and continue to search up, for versions supporting transitive override if (major_version >= VTABLE_TRANSITIVE_OVERRIDE_VERSION) { k = superk->super(); // haven't found an override match yet; continue to look } else { break; } } // if the target method is public or protected it may have a matching // miranda method in the super, whose entry it should re-use. // Actually, to handle cases that javac would not generate, we need // this check for all access permissions. const InstanceKlass *sk = InstanceKlass::cast(super); if (sk->has_miranda_methods()) { if (sk->lookup_method_in_all_interfaces(name, signature, Klass::find_defaults) != NULL) { return false; // found a matching miranda; we do not need a new entry } } return true; // found no match; we need a new entry } // Support for miranda methods // get the vtable index of a miranda method with matching "name" and "signature" int klassVtable::index_of_miranda(Symbol* name, Symbol* signature) { // search from the bottom, might be faster for (int i = (length() - 1); i >= 0; i--) { Method* m = table()[i].method(); if (is_miranda_entry_at(i) && m->name() == name && m->signature() == signature) { return i; } } return Method::invalid_vtable_index; } // check if an entry at an index is miranda // requires that method m at entry be declared ("held") by an interface. bool klassVtable::is_miranda_entry_at(int i) { Method* m = method_at(i); Klass* method_holder = m->method_holder(); InstanceKlass *mhk = InstanceKlass::cast(method_holder); // miranda methods are public abstract instance interface methods in a class's vtable if (mhk->is_interface()) { assert(m->is_public(), "should be public"); assert(ik()->implements_interface(method_holder) , "this class should implement the interface"); if (is_miranda(m, ik()->methods(), ik()->default_methods(), ik()->super(), klass()->is_interface())) { return true; } } return false; } // Check if a method is a miranda method, given a class's methods array, // its default_method table and its super class. // "Miranda" means an abstract non-private method that would not be // overridden for the local class. // A "miranda" method should only include non-private interface // instance methods, i.e. not private methods, not static methods, // not default methods (concrete interface methods), not overpass methods. // If a given class already has a local (including overpass) method, a // default method, or any of its superclasses has the same which would have // overridden an abstract method, then this is not a miranda method. // // Miranda methods are checked multiple times. // Pass 1: during class load/class file parsing: before vtable size calculation: // include superinterface abstract and default methods (non-private instance). // We include potential default methods to give them space in the vtable. // During the first run, the current instanceKlass has not yet been // created, the superclasses and superinterfaces do have instanceKlasses // but may not have vtables, the default_methods list is empty, no overpasses. // Default method generation uses the all_mirandas array as the starter set for // maximally-specific default method calculation. So, for both classes and // interfaces, it is necessary that the first pass will find all non-private // interface instance methods, whether or not they are concrete. // // Pass 2: recalculated during vtable initialization: only include abstract methods. // The goal of pass 2 is to walk through the superinterfaces to see if any of // the superinterface methods (which were all abstract pre-default methods) // need to be added to the vtable. // With the addition of default methods, we have three new challenges: // overpasses, static interface methods and private interface methods. // Static and private interface methods do not get added to the vtable and // are not seen by the method resolution process, so we skip those. // Overpass methods are already in the vtable, so vtable lookup will // find them and we don't need to add a miranda method to the end of // the vtable. So we look for overpass methods and if they are found we // return false. Note that we inherit our superclasses vtable, so // the superclass' search also needs to use find_overpass so that if // one is found we return false. // False means - we don't need a miranda method added to the vtable. // // During the second run, default_methods is set up, so concrete methods from // superinterfaces with matching names/signatures to default_methods are already // in the default_methods list and do not need to be appended to the vtable // as mirandas. Abstract methods may already have been handled via // overpasses - either local or superclass overpasses, which may be // in the vtable already. // // Pass 3: They are also checked by link resolution and selection, // for invocation on a method (not interface method) reference that // resolves to a method with an interface as its method_holder. // Used as part of walking from the bottom of the vtable to find // the vtable index for the miranda method. // // Part of the Miranda Rights in the US mean that if you do not have // an attorney one will be appointed for you. bool klassVtable::is_miranda(Method* m, Array* class_methods, Array* default_methods, const Klass* super, bool is_interface) { if (m->is_static() || m->is_private() || m->is_overpass()) { return false; } Symbol* name = m->name(); Symbol* signature = m->signature(); // First look in local methods to see if already covered if (InstanceKlass::find_local_method(class_methods, name, signature, Klass::find_overpass, Klass::skip_static, Klass::skip_private) != NULL) { return false; } // Check local default methods if ((default_methods != NULL) && (InstanceKlass::find_method(default_methods, name, signature) != NULL)) { return false; } // Iterate on all superclasses, which should be InstanceKlasses. // Note that we explicitly look for overpasses at each level. // Overpasses may or may not exist for supers for pass 1, // they should have been created for pass 2 and later. for (const Klass* cursuper = super; cursuper != NULL; cursuper = cursuper->super()) { Method* found_mth = InstanceKlass::cast(cursuper)->find_local_method(name, signature, Klass::find_overpass, Klass::skip_static, Klass::skip_private); // Ignore non-public methods in java.lang.Object if klass is an interface. if (found_mth != NULL && (!is_interface || !SystemDictionary::is_nonpublic_Object_method(found_mth))) { return false; } } return true; } // Scans current_interface_methods for miranda methods that do not // already appear in new_mirandas, or default methods, and are also not defined-and-non-private // in super (superclass). These mirandas are added to all_mirandas if it is // not null; in addition, those that are not duplicates of miranda methods // inherited by super from its interfaces are added to new_mirandas. // Thus, new_mirandas will be the set of mirandas that this class introduces, // all_mirandas will be the set of all mirandas applicable to this class // including all defined in superclasses. void klassVtable::add_new_mirandas_to_lists( GrowableArray* new_mirandas, GrowableArray* all_mirandas, Array* current_interface_methods, Array* class_methods, Array* default_methods, const Klass* super, bool is_interface) { // iterate thru the current interface's method to see if it a miranda int num_methods = current_interface_methods->length(); for (int i = 0; i < num_methods; i++) { Method* im = current_interface_methods->at(i); bool is_duplicate = false; int num_of_current_mirandas = new_mirandas->length(); // check for duplicate mirandas in different interfaces we implement for (int j = 0; j < num_of_current_mirandas; j++) { Method* miranda = new_mirandas->at(j); if ((im->name() == miranda->name()) && (im->signature() == miranda->signature())) { is_duplicate = true; break; } } if (!is_duplicate) { // we don't want duplicate miranda entries in the vtable if (is_miranda(im, class_methods, default_methods, super, is_interface)) { // is it a miranda at all? const InstanceKlass *sk = InstanceKlass::cast(super); // check if it is a duplicate of a super's miranda if (sk->lookup_method_in_all_interfaces(im->name(), im->signature(), Klass::find_defaults) == NULL) { new_mirandas->append(im); } if (all_mirandas != NULL) { all_mirandas->append(im); } } } } } void klassVtable::get_mirandas(GrowableArray* new_mirandas, GrowableArray* all_mirandas, const Klass* super, Array* class_methods, Array* default_methods, Array* local_interfaces, bool is_interface) { assert((new_mirandas->length() == 0) , "current mirandas must be 0"); // iterate thru the local interfaces looking for a miranda int num_local_ifs = local_interfaces->length(); for (int i = 0; i < num_local_ifs; i++) { InstanceKlass *ik = InstanceKlass::cast(local_interfaces->at(i)); add_new_mirandas_to_lists(new_mirandas, all_mirandas, ik->methods(), class_methods, default_methods, super, is_interface); // iterate thru each local's super interfaces Array* super_ifs = ik->transitive_interfaces(); int num_super_ifs = super_ifs->length(); for (int j = 0; j < num_super_ifs; j++) { InstanceKlass *sik = InstanceKlass::cast(super_ifs->at(j)); add_new_mirandas_to_lists(new_mirandas, all_mirandas, sik->methods(), class_methods, default_methods, super, is_interface); } } } // Discover miranda methods ("miranda" = "interface abstract, no binding"), // and append them into the vtable starting at index initialized, // return the new value of initialized. // Miranda methods use vtable entries, but do not get assigned a vtable_index // The vtable_index is discovered by searching from the end of the vtable int klassVtable::fill_in_mirandas(int initialized) { GrowableArray mirandas(20); get_mirandas(&mirandas, NULL, ik()->super(), ik()->methods(), ik()->default_methods(), ik()->local_interfaces(), klass()->is_interface()); for (int i = 0; i < mirandas.length(); i++) { if (log_develop_is_enabled(Trace, vtables)) { Method* meth = mirandas.at(i); ResourceMark rm(Thread::current()); LogTarget(Trace, vtables) lt; LogStream ls(lt); if (meth != NULL) { char* sig = meth->name_and_sig_as_C_string(); ls.print("fill in mirandas with %s index %d, flags: ", sig, initialized); meth->print_linkage_flags(&ls); ls.cr(); } } put_method_at(mirandas.at(i), initialized); ++initialized; } return initialized; } // Copy this class's vtable to the vtable beginning at start. // Used to copy superclass vtable to prefix of subclass's vtable. void klassVtable::copy_vtable_to(vtableEntry* start) { Copy::disjoint_words((HeapWord*)table(), (HeapWord*)start, _length * vtableEntry::size()); } #if INCLUDE_JVMTI bool klassVtable::adjust_default_method(int vtable_index, Method* old_method, Method* new_method) { // If old_method is default, find this vtable index in default_vtable_indices // and replace that method in the _default_methods list bool updated = false; Array* default_methods = ik()->default_methods(); if (default_methods != NULL) { int len = default_methods->length(); for (int idx = 0; idx < len; idx++) { if (vtable_index == ik()->default_vtable_indices()->at(idx)) { if (default_methods->at(idx) == old_method) { default_methods->at_put(idx, new_method); updated = true; } break; } } } return updated; } // search the vtable for uses of either obsolete or EMCP methods void klassVtable::adjust_method_entries(InstanceKlass* holder, bool * trace_name_printed) { int prn_enabled = 0; for (int index = 0; index < length(); index++) { Method* old_method = unchecked_method_at(index); if (old_method == NULL || old_method->method_holder() != holder || !old_method->is_old()) { continue; // skip uninteresting entries } assert(!old_method->is_deleted(), "vtable methods may not be deleted"); Method* new_method = holder->method_with_idnum(old_method->orig_method_idnum()); assert(new_method != NULL, "method_with_idnum() should not be NULL"); assert(old_method != new_method, "sanity check"); put_method_at(new_method, index); // For default methods, need to update the _default_methods array // which can only have one method entry for a given signature bool updated_default = false; if (old_method->is_default_method()) { updated_default = adjust_default_method(index, old_method, new_method); } if (log_is_enabled(Info, redefine, class, update)) { ResourceMark rm; if (!(*trace_name_printed)) { log_info(redefine, class, update) ("adjust: klassname=%s for methods from name=%s", _klass->external_name(), old_method->method_holder()->external_name()); *trace_name_printed = true; } log_debug(redefine, class, update, vtables) ("vtable method update: %s(%s), updated default = %s", new_method->name()->as_C_string(), new_method->signature()->as_C_string(), updated_default ? "true" : "false"); } } } // a vtable should never contain old or obsolete methods bool klassVtable::check_no_old_or_obsolete_entries() { for (int i = 0; i < length(); i++) { Method* m = unchecked_method_at(i); if (m != NULL && (NOT_PRODUCT(!m->is_valid() ||) m->is_old() || m->is_obsolete())) { return false; } } return true; } void klassVtable::dump_vtable() { tty->print_cr("vtable dump --"); for (int i = 0; i < length(); i++) { Method* m = unchecked_method_at(i); if (m != NULL) { tty->print(" (%5d) ", i); m->access_flags().print_on(tty); if (m->is_default_method()) { tty->print("default "); } if (m->is_overpass()) { tty->print("overpass"); } tty->print(" -- "); m->print_name(tty); tty->cr(); } } } #endif // INCLUDE_JVMTI // CDS/RedefineClasses support - clear vtables so they can be reinitialized void klassVtable::clear_vtable() { for (int i = 0; i < _length; i++) table()[i].clear(); } bool klassVtable::is_initialized() { return _length == 0 || table()[0].method() != NULL; } //----------------------------------------------------------------------------------------- // Itable code // Initialize a itableMethodEntry void itableMethodEntry::initialize(Method* m) { if (m == NULL) return; #ifdef ASSERT if (MetaspaceShared::is_in_shared_metaspace((void*)&_method) && !MetaspaceShared::remapped_readwrite()) { // At runtime initialize_itable is rerun as part of link_class_impl() // for a shared class loaded by the non-boot loader. // The dumptime itable method entry should be the same as the runtime entry. assert(_method == m, "sanity"); } #endif _method = m; } klassItable::klassItable(InstanceKlass* klass) { _klass = klass; if (klass->itable_length() > 0) { itableOffsetEntry* offset_entry = (itableOffsetEntry*)klass->start_of_itable(); if (offset_entry != NULL && offset_entry->interface_klass() != NULL) { // Check that itable is initialized // First offset entry points to the first method_entry intptr_t* method_entry = (intptr_t *)(((address)klass) + offset_entry->offset()); intptr_t* end = klass->end_of_itable(); _table_offset = (intptr_t*)offset_entry - (intptr_t*)klass; _size_offset_table = (method_entry - ((intptr_t*)offset_entry)) / itableOffsetEntry::size(); _size_method_table = (end - method_entry) / itableMethodEntry::size(); assert(_table_offset >= 0 && _size_offset_table >= 0 && _size_method_table >= 0, "wrong computation"); return; } } // The length of the itable was either zero, or it has not yet been initialized. _table_offset = 0; _size_offset_table = 0; _size_method_table = 0; } static int initialize_count = 0; // Initialization void klassItable::initialize_itable(bool checkconstraints, TRAPS) { if (_klass->is_interface()) { // This needs to go after vtable indices are assigned but // before implementors need to know the number of itable indices. assign_itable_indices_for_interface(_klass); } // Cannot be setup doing bootstrapping, interfaces don't have // itables, and klass with only ones entry have empty itables if (Universe::is_bootstrapping() || _klass->is_interface() || _klass->itable_length() == itableOffsetEntry::size()) return; // There's alway an extra itable entry so we can null-terminate it. guarantee(size_offset_table() >= 1, "too small"); int num_interfaces = size_offset_table() - 1; if (num_interfaces > 0) { log_develop_debug(itables)("%3d: Initializing itables for %s", ++initialize_count, _klass->name()->as_C_string()); // Iterate through all interfaces int i; for(i = 0; i < num_interfaces; i++) { itableOffsetEntry* ioe = offset_entry(i); HandleMark hm(THREAD); Klass* interf = ioe->interface_klass(); assert(interf != NULL && ioe->offset() != 0, "bad offset entry in itable"); initialize_itable_for_interface(ioe->offset(), interf, checkconstraints, CHECK); } } // Check that the last entry is empty itableOffsetEntry* ioe = offset_entry(size_offset_table() - 1); guarantee(ioe->interface_klass() == NULL && ioe->offset() == 0, "terminator entry missing"); } inline bool interface_method_needs_itable_index(Method* m) { if (m->is_static()) return false; // e.g., Stream.empty if (m->is_initializer()) return false; // or if (m->is_private()) return false; // uses direct call // If an interface redeclares a method from java.lang.Object, // it should already have a vtable index, don't touch it. // e.g., CharSequence.toString (from initialize_vtable) // if (m->has_vtable_index()) return false; // NO! return true; } int klassItable::assign_itable_indices_for_interface(Klass* klass) { // an interface does not have an itable, but its methods need to be numbered log_develop_debug(itables)("%3d: Initializing itable indices for interface %s", ++initialize_count, klass->name()->as_C_string()); Array* methods = InstanceKlass::cast(klass)->methods(); int nof_methods = methods->length(); int ime_num = 0; for (int i = 0; i < nof_methods; i++) { Method* m = methods->at(i); if (interface_method_needs_itable_index(m)) { assert(!m->is_final_method(), "no final interface methods"); // If m is already assigned a vtable index, do not disturb it. if (log_develop_is_enabled(Trace, itables)) { ResourceMark rm; LogTarget(Trace, itables) lt; LogStream ls(lt); assert(m != NULL, "methods can never be null"); const char* sig = m->name_and_sig_as_C_string(); if (m->has_vtable_index()) { ls.print("vtable index %d for method: %s, flags: ", m->vtable_index(), sig); } else { ls.print("itable index %d for method: %s, flags: ", ime_num, sig); } m->print_linkage_flags(&ls); ls.cr(); } if (!m->has_vtable_index()) { // A shared method could have an initialized itable_index that // is < 0. assert(m->vtable_index() == Method::pending_itable_index || m->is_shared(), "set by initialize_vtable"); m->set_itable_index(ime_num); // Progress to next itable entry ime_num++; } } } assert(ime_num == method_count_for_interface(klass), "proper sizing"); return ime_num; } int klassItable::method_count_for_interface(Klass* interf) { assert(interf->is_instance_klass(), "must be"); assert(interf->is_interface(), "must be"); Array* methods = InstanceKlass::cast(interf)->methods(); int nof_methods = methods->length(); int length = 0; while (nof_methods > 0) { Method* m = methods->at(nof_methods-1); if (m->has_itable_index()) { length = m->itable_index() + 1; break; } nof_methods -= 1; } #ifdef ASSERT int nof_methods_copy = nof_methods; while (nof_methods_copy > 0) { Method* mm = methods->at(--nof_methods_copy); assert(!mm->has_itable_index() || mm->itable_index() < length, ""); } #endif //ASSERT // return the rightmost itable index, plus one; or 0 if no methods have // itable indices return length; } void klassItable::initialize_itable_for_interface(int method_table_offset, Klass* interf, bool checkconstraints, TRAPS) { Array* methods = InstanceKlass::cast(interf)->methods(); int nof_methods = methods->length(); HandleMark hm; Handle interface_loader (THREAD, InstanceKlass::cast(interf)->class_loader()); int ime_count = method_count_for_interface(interf); for (int i = 0; i < nof_methods; i++) { Method* m = methods->at(i); methodHandle target; if (m->has_itable_index()) { // This search must match the runtime resolution, i.e. selection search for invokeinterface // to correctly enforce loader constraints for interface method inheritance. // Private methods are skipped as a private class method can never be the implementation // of an interface method. // Invokespecial does not perform selection based on the receiver, so it does not use // the cached itable. target = LinkResolver::lookup_instance_method_in_klasses(_klass, m->name(), m->signature(), Klass::skip_private, CHECK); } if (target == NULL || !target->is_public() || target->is_abstract() || target->is_overpass()) { assert(target == NULL || !target->is_overpass() || target->is_public(), "Non-public overpass method!"); // Entry does not resolve. Leave it empty for AbstractMethodError or other error. if (!(target == NULL) && !target->is_public()) { // Stuff an IllegalAccessError throwing method in there instead. itableOffsetEntry::method_entry(_klass, method_table_offset)[m->itable_index()]. initialize(Universe::throw_illegal_access_error()); } } else { // Entry did resolve, check loader constraints before initializing // if checkconstraints requested if (checkconstraints) { Handle method_holder_loader (THREAD, target->method_holder()->class_loader()); if (!oopDesc::equals(method_holder_loader(), interface_loader())) { ResourceMark rm(THREAD); Symbol* failed_type_symbol = SystemDictionary::check_signature_loaders(m->signature(), method_holder_loader, interface_loader, true, CHECK); if (failed_type_symbol != NULL) { const char* msg = "loader constraint violation in interface itable" " initialization for class %s: when selecting method %s the" " class loader %s for super interface %s, and the class" " loader %s of the selected method's type, %s have" " different Class objects for the type %s used in the signature"; const char* current = _klass->external_name(); const char* sig = m->name_and_sig_as_C_string(); const char* loader1 = java_lang_ClassLoader::describe_external(interface_loader()); const char* iface = InstanceKlass::cast(interf)->external_name(); const char* loader2 = java_lang_ClassLoader::describe_external(method_holder_loader()); const char* mclass = target()->method_holder()->external_name(); const char* failed_type_name = failed_type_symbol->as_klass_external_name(); size_t buflen = strlen(msg) + strlen(current) + strlen(sig) + strlen(loader1) + strlen(iface) + strlen(loader2) + strlen(mclass) + strlen(failed_type_name); char* buf = NEW_RESOURCE_ARRAY_IN_THREAD(THREAD, char, buflen); jio_snprintf(buf, buflen, msg, current, sig, loader1, iface, loader2, mclass, failed_type_name); THROW_MSG(vmSymbols::java_lang_LinkageError(), buf); } } } // ime may have moved during GC so recalculate address int ime_num = m->itable_index(); assert(ime_num < ime_count, "oob"); itableOffsetEntry::method_entry(_klass, method_table_offset)[ime_num].initialize(target()); if (log_develop_is_enabled(Trace, itables)) { ResourceMark rm(THREAD); if (target() != NULL) { LogTarget(Trace, itables) lt; LogStream ls(lt); char* sig = target()->name_and_sig_as_C_string(); ls.print("interface: %s, ime_num: %d, target: %s, method_holder: %s ", interf->internal_name(), ime_num, sig, target()->method_holder()->internal_name()); ls.print("target_method flags: "); target()->print_linkage_flags(&ls); ls.cr(); } } } } } #if INCLUDE_JVMTI // search the itable for uses of either obsolete or EMCP methods void klassItable::adjust_method_entries(InstanceKlass* holder, bool * trace_name_printed) { itableMethodEntry* ime = method_entry(0); for (int i = 0; i < _size_method_table; i++, ime++) { Method* old_method = ime->method(); if (old_method == NULL || old_method->method_holder() != holder || !old_method->is_old()) { continue; // skip uninteresting entries } assert(!old_method->is_deleted(), "itable methods may not be deleted"); Method* new_method = holder->method_with_idnum(old_method->orig_method_idnum()); assert(new_method != NULL, "method_with_idnum() should not be NULL"); assert(old_method != new_method, "sanity check"); ime->initialize(new_method); if (log_is_enabled(Info, redefine, class, update)) { ResourceMark rm; if (!(*trace_name_printed)) { log_info(redefine, class, update)("adjust: name=%s", old_method->method_holder()->external_name()); *trace_name_printed = true; } log_trace(redefine, class, update, itables) ("itable method update: %s(%s)", new_method->name()->as_C_string(), new_method->signature()->as_C_string()); } } } // an itable should never contain old or obsolete methods bool klassItable::check_no_old_or_obsolete_entries() { itableMethodEntry* ime = method_entry(0); for (int i = 0; i < _size_method_table; i++) { Method* m = ime->method(); if (m != NULL && (NOT_PRODUCT(!m->is_valid() ||) m->is_old() || m->is_obsolete())) { return false; } ime++; } return true; } void klassItable::dump_itable() { itableMethodEntry* ime = method_entry(0); tty->print_cr("itable dump --"); for (int i = 0; i < _size_method_table; i++) { Method* m = ime->method(); if (m != NULL) { tty->print(" (%5d) ", i); m->access_flags().print_on(tty); if (m->is_default_method()) { tty->print("default "); } tty->print(" -- "); m->print_name(tty); tty->cr(); } ime++; } } #endif // INCLUDE_JVMTI // Setup class InterfaceVisiterClosure : public StackObj { public: virtual void doit(Klass* intf, int method_count) = 0; }; // Visit all interfaces with at least one itable method void visit_all_interfaces(Array* transitive_intf, InterfaceVisiterClosure *blk) { // Handle array argument for(int i = 0; i < transitive_intf->length(); i++) { Klass* intf = transitive_intf->at(i); assert(intf->is_interface(), "sanity check"); // Find no. of itable methods int method_count = 0; // method_count = klassItable::method_count_for_interface(intf); Array* methods = InstanceKlass::cast(intf)->methods(); if (methods->length() > 0) { for (int i = methods->length(); --i >= 0; ) { if (interface_method_needs_itable_index(methods->at(i))) { method_count++; } } } // Visit all interfaces which either have any methods or can participate in receiver type check. // We do not bother to count methods in transitive interfaces, although that would allow us to skip // this step in the rare case of a zero-method interface extending another zero-method interface. if (method_count > 0 || InstanceKlass::cast(intf)->transitive_interfaces()->length() > 0) { blk->doit(intf, method_count); } } } class CountInterfacesClosure : public InterfaceVisiterClosure { private: int _nof_methods; int _nof_interfaces; public: CountInterfacesClosure() { _nof_methods = 0; _nof_interfaces = 0; } int nof_methods() const { return _nof_methods; } int nof_interfaces() const { return _nof_interfaces; } void doit(Klass* intf, int method_count) { _nof_methods += method_count; _nof_interfaces++; } }; class SetupItableClosure : public InterfaceVisiterClosure { private: itableOffsetEntry* _offset_entry; itableMethodEntry* _method_entry; address _klass_begin; public: SetupItableClosure(address klass_begin, itableOffsetEntry* offset_entry, itableMethodEntry* method_entry) { _klass_begin = klass_begin; _offset_entry = offset_entry; _method_entry = method_entry; } itableMethodEntry* method_entry() const { return _method_entry; } void doit(Klass* intf, int method_count) { int offset = ((address)_method_entry) - _klass_begin; _offset_entry->initialize(intf, offset); _offset_entry++; _method_entry += method_count; } }; int klassItable::compute_itable_size(Array* transitive_interfaces) { // Count no of interfaces and total number of interface methods CountInterfacesClosure cic; visit_all_interfaces(transitive_interfaces, &cic); // There's alway an extra itable entry so we can null-terminate it. int itable_size = calc_itable_size(cic.nof_interfaces() + 1, cic.nof_methods()); // Statistics update_stats(itable_size * wordSize); return itable_size; } // Fill out offset table and interface klasses into the itable space void klassItable::setup_itable_offset_table(InstanceKlass* klass) { if (klass->itable_length() == 0) return; assert(!klass->is_interface(), "Should have zero length itable"); // Count no of interfaces and total number of interface methods CountInterfacesClosure cic; visit_all_interfaces(klass->transitive_interfaces(), &cic); int nof_methods = cic.nof_methods(); int nof_interfaces = cic.nof_interfaces(); // Add one extra entry so we can null-terminate the table nof_interfaces++; assert(compute_itable_size(klass->transitive_interfaces()) == calc_itable_size(nof_interfaces, nof_methods), "mismatch calculation of itable size"); // Fill-out offset table itableOffsetEntry* ioe = (itableOffsetEntry*)klass->start_of_itable(); itableMethodEntry* ime = (itableMethodEntry*)(ioe + nof_interfaces); intptr_t* end = klass->end_of_itable(); assert((oop*)(ime + nof_methods) <= (oop*)klass->start_of_nonstatic_oop_maps(), "wrong offset calculation (1)"); assert((oop*)(end) == (oop*)(ime + nof_methods), "wrong offset calculation (2)"); // Visit all interfaces and initialize itable offset table SetupItableClosure sic((address)klass, ioe, ime); visit_all_interfaces(klass->transitive_interfaces(), &sic); #ifdef ASSERT ime = sic.method_entry(); oop* v = (oop*) klass->end_of_itable(); assert( (oop*)(ime) == v, "wrong offset calculation (2)"); #endif } // inverse to itable_index Method* klassItable::method_for_itable_index(Klass* intf, int itable_index) { assert(InstanceKlass::cast(intf)->is_interface(), "sanity check"); assert(intf->verify_itable_index(itable_index), ""); Array* methods = InstanceKlass::cast(intf)->methods(); if (itable_index < 0 || itable_index >= method_count_for_interface(intf)) return NULL; // help caller defend against bad indices int index = itable_index; Method* m = methods->at(index); int index2 = -1; while (!m->has_itable_index() || (index2 = m->itable_index()) != itable_index) { assert(index2 < itable_index, "monotonic"); if (++index == methods->length()) return NULL; m = methods->at(index); } assert(m->itable_index() == itable_index, "correct inverse"); return m; } void klassVtable::verify(outputStream* st, bool forced) { // make sure table is initialized if (!Universe::is_fully_initialized()) return; #ifndef PRODUCT // avoid redundant verifies if (!forced && _verify_count == Universe::verify_count()) return; _verify_count = Universe::verify_count(); #endif oop* end_of_obj = (oop*)_klass + _klass->size(); oop* end_of_vtable = (oop *)&table()[_length]; if (end_of_vtable > end_of_obj) { fatal("klass %s: klass object too short (vtable extends beyond end)", _klass->internal_name()); } for (int i = 0; i < _length; i++) table()[i].verify(this, st); // verify consistency with superKlass vtable Klass* super = _klass->super(); if (super != NULL) { InstanceKlass* sk = InstanceKlass::cast(super); klassVtable vt = sk->vtable(); for (int i = 0; i < vt.length(); i++) { verify_against(st, &vt, i); } } } void klassVtable::verify_against(outputStream* st, klassVtable* vt, int index) { vtableEntry* vte = &vt->table()[index]; if (vte->method()->name() != table()[index].method()->name() || vte->method()->signature() != table()[index].method()->signature()) { fatal("mismatched name/signature of vtable entries"); } } #ifndef PRODUCT void klassVtable::print() { ResourceMark rm; tty->print("klassVtable for klass %s (length %d):\n", _klass->internal_name(), length()); for (int i = 0; i < length(); i++) { table()[i].print(); tty->cr(); } } #endif void vtableEntry::verify(klassVtable* vt, outputStream* st) { NOT_PRODUCT(FlagSetting fs(IgnoreLockingAssertions, true)); Klass* vtklass = vt->klass(); if (vtklass->is_instance_klass() && (InstanceKlass::cast(vtklass)->major_version() >= klassVtable::VTABLE_TRANSITIVE_OVERRIDE_VERSION)) { assert(method() != NULL, "must have set method"); } if (method() != NULL) { method()->verify(); // we sub_type, because it could be a miranda method if (!vtklass->is_subtype_of(method()->method_holder())) { #ifndef PRODUCT print(); #endif fatal("vtableEntry " PTR_FORMAT ": method is from subclass", p2i(this)); } } } #ifndef PRODUCT void vtableEntry::print() { ResourceMark rm; tty->print("vtableEntry %s: ", method()->name()->as_C_string()); if (Verbose) { tty->print("m " PTR_FORMAT " ", p2i(method())); } } class VtableStats : AllStatic { public: static int no_klasses; // # classes with vtables static int no_array_klasses; // # array classes static int no_instance_klasses; // # instanceKlasses static int sum_of_vtable_len; // total # of vtable entries static int sum_of_array_vtable_len; // total # of vtable entries in array klasses only static int fixed; // total fixed overhead in bytes static int filler; // overhead caused by filler bytes static int entries; // total bytes consumed by vtable entries static int array_entries; // total bytes consumed by array vtable entries static void do_class(Klass* k) { Klass* kl = k; klassVtable vt = kl->vtable(); no_klasses++; if (kl->is_instance_klass()) { no_instance_klasses++; kl->array_klasses_do(do_class); } if (kl->is_array_klass()) { no_array_klasses++; sum_of_array_vtable_len += vt.length(); } sum_of_vtable_len += vt.length(); } static void compute() { ClassLoaderDataGraph::classes_do(do_class); fixed = no_klasses * oopSize; // vtable length // filler size is a conservative approximation filler = oopSize * (no_klasses - no_instance_klasses) * (sizeof(InstanceKlass) - sizeof(ArrayKlass) - 1); entries = sizeof(vtableEntry) * sum_of_vtable_len; array_entries = sizeof(vtableEntry) * sum_of_array_vtable_len; } }; int VtableStats::no_klasses = 0; int VtableStats::no_array_klasses = 0; int VtableStats::no_instance_klasses = 0; int VtableStats::sum_of_vtable_len = 0; int VtableStats::sum_of_array_vtable_len = 0; int VtableStats::fixed = 0; int VtableStats::filler = 0; int VtableStats::entries = 0; int VtableStats::array_entries = 0; void klassVtable::print_statistics() { ResourceMark rm; HandleMark hm; VtableStats::compute(); tty->print_cr("vtable statistics:"); tty->print_cr("%6d classes (%d instance, %d array)", VtableStats::no_klasses, VtableStats::no_instance_klasses, VtableStats::no_array_klasses); int total = VtableStats::fixed + VtableStats::filler + VtableStats::entries; tty->print_cr("%6d bytes fixed overhead (refs + vtable object header)", VtableStats::fixed); tty->print_cr("%6d bytes filler overhead", VtableStats::filler); tty->print_cr("%6d bytes for vtable entries (%d for arrays)", VtableStats::entries, VtableStats::array_entries); tty->print_cr("%6d bytes total", total); } int klassItable::_total_classes; // Total no. of classes with itables long klassItable::_total_size; // Total no. of bytes used for itables void klassItable::print_statistics() { tty->print_cr("itable statistics:"); tty->print_cr("%6d classes with itables", _total_classes); tty->print_cr("%6lu K uses for itables (average by class: %ld bytes)", _total_size / K, _total_size / _total_classes); } #endif // PRODUCT