/* * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterRuntime.hpp" #include "interpreter/interp_masm.hpp" #include "interpreter/templateTable.hpp" #include "memory/universe.inline.hpp" #include "oops/methodData.hpp" #include "oops/objArrayKlass.hpp" #include "oops/oop.inline.hpp" #include "prims/methodHandles.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/synchronizer.hpp" #include "utilities/macros.hpp" #ifndef CC_INTERP #define __ _masm-> // Misc helpers // Do an oop store like *(base + index + offset) = val // index can be noreg, static void do_oop_store(InterpreterMacroAssembler* _masm, Register base, Register index, int offset, Register val, Register tmp, BarrierSet::Name barrier, bool precise) { assert(tmp != val && tmp != base && tmp != index, "register collision"); assert(index == noreg || offset == 0, "only one offset"); switch (barrier) { #if INCLUDE_ALL_GCS case BarrierSet::G1SATBCT: case BarrierSet::G1SATBCTLogging: { // Load and record the previous value. __ g1_write_barrier_pre(base, index, offset, noreg /* pre_val */, tmp, true /*preserve_o_regs*/); // G1 barrier needs uncompressed oop for region cross check. Register new_val = val; if (UseCompressedOops && val != G0) { new_val = tmp; __ mov(val, new_val); } if (index == noreg ) { assert(Assembler::is_simm13(offset), "fix this code"); __ store_heap_oop(val, base, offset); } else { __ store_heap_oop(val, base, index); } // No need for post barrier if storing NULL if (val != G0) { if (precise) { if (index == noreg) { __ add(base, offset, base); } else { __ add(base, index, base); } } __ g1_write_barrier_post(base, new_val, tmp); } } break; #endif // INCLUDE_ALL_GCS case BarrierSet::CardTableModRef: case BarrierSet::CardTableExtension: { if (index == noreg ) { assert(Assembler::is_simm13(offset), "fix this code"); __ store_heap_oop(val, base, offset); } else { __ store_heap_oop(val, base, index); } // No need for post barrier if storing NULL if (val != G0) { if (precise) { if (index == noreg) { __ add(base, offset, base); } else { __ add(base, index, base); } } __ card_write_barrier_post(base, val, tmp); } } break; case BarrierSet::ModRef: case BarrierSet::Other: ShouldNotReachHere(); break; default : ShouldNotReachHere(); } } //---------------------------------------------------------------------------------------------------- // Platform-dependent initialization void TemplateTable::pd_initialize() { // (none) } //---------------------------------------------------------------------------------------------------- // Condition conversion Assembler::Condition ccNot(TemplateTable::Condition cc) { switch (cc) { case TemplateTable::equal : return Assembler::notEqual; case TemplateTable::not_equal : return Assembler::equal; case TemplateTable::less : return Assembler::greaterEqual; case TemplateTable::less_equal : return Assembler::greater; case TemplateTable::greater : return Assembler::lessEqual; case TemplateTable::greater_equal: return Assembler::less; } ShouldNotReachHere(); return Assembler::zero; } //---------------------------------------------------------------------------------------------------- // Miscelaneous helper routines Address TemplateTable::at_bcp(int offset) { assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); return Address(Lbcp, offset); } void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, Register temp_reg, bool load_bc_into_bc_reg/*=true*/, int byte_no) { // With sharing on, may need to test Method* flag. if (!RewriteBytecodes) return; Label L_patch_done; switch (bc) { case Bytecodes::_fast_aputfield: case Bytecodes::_fast_bputfield: case Bytecodes::_fast_cputfield: case Bytecodes::_fast_dputfield: case Bytecodes::_fast_fputfield: case Bytecodes::_fast_iputfield: case Bytecodes::_fast_lputfield: case Bytecodes::_fast_sputfield: { // We skip bytecode quickening for putfield instructions when // the put_code written to the constant pool cache is zero. // This is required so that every execution of this instruction // calls out to InterpreterRuntime::resolve_get_put to do // additional, required work. assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); assert(load_bc_into_bc_reg, "we use bc_reg as temp"); __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1); __ set(bc, bc_reg); __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done); // don't patch } break; default: assert(byte_no == -1, "sanity"); if (load_bc_into_bc_reg) { __ set(bc, bc_reg); } } if (JvmtiExport::can_post_breakpoint()) { Label L_fast_patch; __ ldub(at_bcp(0), temp_reg); __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch); // perform the quickening, slowly, in the bowels of the breakpoint table __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg); __ ba_short(L_patch_done); __ bind(L_fast_patch); } #ifdef ASSERT Bytecodes::Code orig_bytecode = Bytecodes::java_code(bc); Label L_okay; __ ldub(at_bcp(0), temp_reg); __ cmp(temp_reg, orig_bytecode); __ br(Assembler::equal, false, Assembler::pt, L_okay); __ delayed()->cmp(temp_reg, bc_reg); __ br(Assembler::equal, false, Assembler::pt, L_okay); __ delayed()->nop(); __ stop("patching the wrong bytecode"); __ bind(L_okay); #endif // patch bytecode __ stb(bc_reg, at_bcp(0)); __ bind(L_patch_done); } //---------------------------------------------------------------------------------------------------- // Individual instructions void TemplateTable::nop() { transition(vtos, vtos); // nothing to do } void TemplateTable::shouldnotreachhere() { transition(vtos, vtos); __ stop("shouldnotreachhere bytecode"); } void TemplateTable::aconst_null() { transition(vtos, atos); __ clr(Otos_i); } void TemplateTable::iconst(int value) { transition(vtos, itos); __ set(value, Otos_i); } void TemplateTable::lconst(int value) { transition(vtos, ltos); assert(value >= 0, "check this code"); #ifdef _LP64 __ set(value, Otos_l); #else __ set(value, Otos_l2); __ clr( Otos_l1); #endif } void TemplateTable::fconst(int value) { transition(vtos, ftos); static float zero = 0.0, one = 1.0, two = 2.0; float* p; switch( value ) { default: ShouldNotReachHere(); case 0: p = &zero; break; case 1: p = &one; break; case 2: p = &two; break; } AddressLiteral a(p); __ sethi(a, G3_scratch); __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f); } void TemplateTable::dconst(int value) { transition(vtos, dtos); static double zero = 0.0, one = 1.0; double* p; switch( value ) { default: ShouldNotReachHere(); case 0: p = &zero; break; case 1: p = &one; break; } AddressLiteral a(p); __ sethi(a, G3_scratch); __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d); } // %%%%% Should factore most snippet templates across platforms void TemplateTable::bipush() { transition(vtos, itos); __ ldsb( at_bcp(1), Otos_i ); } void TemplateTable::sipush() { transition(vtos, itos); __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed); } void TemplateTable::ldc(bool wide) { transition(vtos, vtos); Label call_ldc, notInt, isString, notString, notClass, exit; if (wide) { __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned); } else { __ ldub(Lbcp, 1, O1); } __ get_cpool_and_tags(O0, O2); const int base_offset = ConstantPool::header_size() * wordSize; const int tags_offset = Array::base_offset_in_bytes(); // get type from tags __ add(O2, tags_offset, O2); __ ldub(O2, O1, O2); // unresolved class? If so, must resolve __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc); // unresolved class in error state __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc); __ cmp(O2, JVM_CONSTANT_Class); // need to call vm to get java mirror of the class __ brx(Assembler::notEqual, true, Assembler::pt, notClass); __ delayed()->add(O0, base_offset, O0); __ bind(call_ldc); __ set(wide, O1); call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1); __ push(atos); __ ba_short(exit); __ bind(notClass); // __ add(O0, base_offset, O0); __ sll(O1, LogBytesPerWord, O1); __ cmp(O2, JVM_CONSTANT_Integer); __ brx(Assembler::notEqual, true, Assembler::pt, notInt); __ delayed()->cmp(O2, JVM_CONSTANT_String); __ ld(O0, O1, Otos_i); __ push(itos); __ ba_short(exit); __ bind(notInt); // __ cmp(O2, JVM_CONSTANT_String); __ brx(Assembler::notEqual, true, Assembler::pt, notString); __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f); __ bind(isString); __ stop("string should be rewritten to fast_aldc"); __ ba_short(exit); __ bind(notString); // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f); __ push(ftos); __ bind(exit); } // Fast path for caching oop constants. // %%% We should use this to handle Class and String constants also. // %%% It will simplify the ldc/primitive path considerably. void TemplateTable::fast_aldc(bool wide) { transition(vtos, atos); int index_size = wide ? sizeof(u2) : sizeof(u1); Label resolved; // We are resolved if the resolved reference cache entry contains a // non-null object (CallSite, etc.) assert_different_registers(Otos_i, G3_scratch); __ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size); // load index => G3_scratch __ load_resolved_reference_at_index(Otos_i, G3_scratch); __ tst(Otos_i); __ br(Assembler::notEqual, false, Assembler::pt, resolved); __ delayed()->set((int)bytecode(), O1); address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); // first time invocation - must resolve first __ call_VM(Otos_i, entry, O1); __ bind(resolved); __ verify_oop(Otos_i); } void TemplateTable::ldc2_w() { transition(vtos, vtos); Label Long, exit; __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned); __ get_cpool_and_tags(O0, O2); const int base_offset = ConstantPool::header_size() * wordSize; const int tags_offset = Array::base_offset_in_bytes(); // get type from tags __ add(O2, tags_offset, O2); __ ldub(O2, O1, O2); __ sll(O1, LogBytesPerWord, O1); __ add(O0, O1, G3_scratch); __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long); // A double can be placed at word-aligned locations in the constant pool. // Check out Conversions.java for an example. // Also ConstantPool::header_size() is 20, which makes it very difficult // to double-align double on the constant pool. SG, 11/7/97 #ifdef _LP64 __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d); #else FloatRegister f = Ftos_d; __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f); __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2, f->successor()); #endif __ push(dtos); __ ba_short(exit); __ bind(Long); #ifdef _LP64 __ ldx(G3_scratch, base_offset, Otos_l); #else __ ld(G3_scratch, base_offset, Otos_l); __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor()); #endif __ push(ltos); __ bind(exit); } void TemplateTable::locals_index(Register reg, int offset) { __ ldub( at_bcp(offset), reg ); } void TemplateTable::locals_index_wide(Register reg) { // offset is 2, not 1, because Lbcp points to wide prefix code __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned); } void TemplateTable::iload() { transition(vtos, itos); // Rewrite iload,iload pair into fast_iload2 // iload,caload pair into fast_icaload if (RewriteFrequentPairs) { Label rewrite, done; // get next byte __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch); // if _iload, wait to rewrite to iload2. We only want to rewrite the // last two iloads in a pair. Comparing against fast_iload means that // the next bytecode is neither an iload or a caload, and therefore // an iload pair. __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done); __ cmp(G3_scratch, (int)Bytecodes::_fast_iload); __ br(Assembler::equal, false, Assembler::pn, rewrite); __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch); __ cmp(G3_scratch, (int)Bytecodes::_caload); __ br(Assembler::equal, false, Assembler::pn, rewrite); __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch); __ set(Bytecodes::_fast_iload, G4_scratch); // don't check again // rewrite // G4_scratch: fast bytecode __ bind(rewrite); patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false); __ bind(done); } // Get the local value into tos locals_index(G3_scratch); __ access_local_int( G3_scratch, Otos_i ); } void TemplateTable::fast_iload2() { transition(vtos, itos); locals_index(G3_scratch); __ access_local_int( G3_scratch, Otos_i ); __ push_i(); locals_index(G3_scratch, 3); // get next bytecode's local index. __ access_local_int( G3_scratch, Otos_i ); } void TemplateTable::fast_iload() { transition(vtos, itos); locals_index(G3_scratch); __ access_local_int( G3_scratch, Otos_i ); } void TemplateTable::lload() { transition(vtos, ltos); locals_index(G3_scratch); __ access_local_long( G3_scratch, Otos_l ); } void TemplateTable::fload() { transition(vtos, ftos); locals_index(G3_scratch); __ access_local_float( G3_scratch, Ftos_f ); } void TemplateTable::dload() { transition(vtos, dtos); locals_index(G3_scratch); __ access_local_double( G3_scratch, Ftos_d ); } void TemplateTable::aload() { transition(vtos, atos); locals_index(G3_scratch); __ access_local_ptr( G3_scratch, Otos_i); } void TemplateTable::wide_iload() { transition(vtos, itos); locals_index_wide(G3_scratch); __ access_local_int( G3_scratch, Otos_i ); } void TemplateTable::wide_lload() { transition(vtos, ltos); locals_index_wide(G3_scratch); __ access_local_long( G3_scratch, Otos_l ); } void TemplateTable::wide_fload() { transition(vtos, ftos); locals_index_wide(G3_scratch); __ access_local_float( G3_scratch, Ftos_f ); } void TemplateTable::wide_dload() { transition(vtos, dtos); locals_index_wide(G3_scratch); __ access_local_double( G3_scratch, Ftos_d ); } void TemplateTable::wide_aload() { transition(vtos, atos); locals_index_wide(G3_scratch); __ access_local_ptr( G3_scratch, Otos_i ); __ verify_oop(Otos_i); } void TemplateTable::iaload() { transition(itos, itos); // Otos_i: index // tos: array __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3); __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i); } void TemplateTable::laload() { transition(itos, ltos); // Otos_i: index // O2: array __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3); __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l); } void TemplateTable::faload() { transition(itos, ftos); // Otos_i: index // O2: array __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3); __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f); } void TemplateTable::daload() { transition(itos, dtos); // Otos_i: index // O2: array __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3); __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d); } void TemplateTable::aaload() { transition(itos, atos); // Otos_i: index // tos: array __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3); __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i); __ verify_oop(Otos_i); } void TemplateTable::baload() { transition(itos, itos); // Otos_i: index // tos: array __ index_check(O2, Otos_i, 0, G3_scratch, O3); __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i); } void TemplateTable::caload() { transition(itos, itos); // Otos_i: index // tos: array __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3); __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i); } void TemplateTable::fast_icaload() { transition(vtos, itos); // Otos_i: index // tos: array locals_index(G3_scratch); __ access_local_int( G3_scratch, Otos_i ); __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3); __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i); } void TemplateTable::saload() { transition(itos, itos); // Otos_i: index // tos: array __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3); __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i); } void TemplateTable::iload(int n) { transition(vtos, itos); __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i ); } void TemplateTable::lload(int n) { transition(vtos, ltos); assert(n+1 < Argument::n_register_parameters, "would need more code"); __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l); } void TemplateTable::fload(int n) { transition(vtos, ftos); assert(n < Argument::n_register_parameters, "would need more code"); __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n), Ftos_f ); } void TemplateTable::dload(int n) { transition(vtos, dtos); FloatRegister dst = Ftos_d; __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst); } void TemplateTable::aload(int n) { transition(vtos, atos); __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i ); } void TemplateTable::aload_0() { transition(vtos, atos); // According to bytecode histograms, the pairs: // // _aload_0, _fast_igetfield (itos) // _aload_0, _fast_agetfield (atos) // _aload_0, _fast_fgetfield (ftos) // // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0 // bytecode checks the next bytecode and then rewrites the current // bytecode into a pair bytecode; otherwise it rewrites the current // bytecode into _fast_aload_0 that doesn't do the pair check anymore. // if (RewriteFrequentPairs) { Label rewrite, done; // get next byte __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch); // do actual aload_0 aload(0); // if _getfield then wait with rewrite __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done); // if _igetfield then rewrite to _fast_iaccess_0 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def"); __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield); __ br(Assembler::equal, false, Assembler::pn, rewrite); __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch); // if _agetfield then rewrite to _fast_aaccess_0 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def"); __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield); __ br(Assembler::equal, false, Assembler::pn, rewrite); __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch); // if _fgetfield then rewrite to _fast_faccess_0 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def"); __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield); __ br(Assembler::equal, false, Assembler::pn, rewrite); __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch); // else rewrite to _fast_aload0 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def"); __ set(Bytecodes::_fast_aload_0, G4_scratch); // rewrite // G4_scratch: fast bytecode __ bind(rewrite); patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false); __ bind(done); } else { aload(0); } } void TemplateTable::istore() { transition(itos, vtos); locals_index(G3_scratch); __ store_local_int( G3_scratch, Otos_i ); } void TemplateTable::lstore() { transition(ltos, vtos); locals_index(G3_scratch); __ store_local_long( G3_scratch, Otos_l ); } void TemplateTable::fstore() { transition(ftos, vtos); locals_index(G3_scratch); __ store_local_float( G3_scratch, Ftos_f ); } void TemplateTable::dstore() { transition(dtos, vtos); locals_index(G3_scratch); __ store_local_double( G3_scratch, Ftos_d ); } void TemplateTable::astore() { transition(vtos, vtos); __ load_ptr(0, Otos_i); __ inc(Lesp, Interpreter::stackElementSize); __ verify_oop_or_return_address(Otos_i, G3_scratch); locals_index(G3_scratch); __ store_local_ptr(G3_scratch, Otos_i); } void TemplateTable::wide_istore() { transition(vtos, vtos); __ pop_i(); locals_index_wide(G3_scratch); __ store_local_int( G3_scratch, Otos_i ); } void TemplateTable::wide_lstore() { transition(vtos, vtos); __ pop_l(); locals_index_wide(G3_scratch); __ store_local_long( G3_scratch, Otos_l ); } void TemplateTable::wide_fstore() { transition(vtos, vtos); __ pop_f(); locals_index_wide(G3_scratch); __ store_local_float( G3_scratch, Ftos_f ); } void TemplateTable::wide_dstore() { transition(vtos, vtos); __ pop_d(); locals_index_wide(G3_scratch); __ store_local_double( G3_scratch, Ftos_d ); } void TemplateTable::wide_astore() { transition(vtos, vtos); __ load_ptr(0, Otos_i); __ inc(Lesp, Interpreter::stackElementSize); __ verify_oop_or_return_address(Otos_i, G3_scratch); locals_index_wide(G3_scratch); __ store_local_ptr(G3_scratch, Otos_i); } void TemplateTable::iastore() { transition(itos, vtos); __ pop_i(O2); // index // Otos_i: val // O3: array __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2); __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT)); } void TemplateTable::lastore() { transition(ltos, vtos); __ pop_i(O2); // index // Otos_l: val // O3: array __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2); __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG)); } void TemplateTable::fastore() { transition(ftos, vtos); __ pop_i(O2); // index // Ftos_f: val // O3: array __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2); __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT)); } void TemplateTable::dastore() { transition(dtos, vtos); __ pop_i(O2); // index // Fos_d: val // O3: array __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2); __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)); } void TemplateTable::aastore() { Label store_ok, is_null, done; transition(vtos, vtos); __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i); __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2); // get index __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3); // get array // Otos_i: val // O2: index // O3: array __ verify_oop(Otos_i); __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1); // do array store check - check for NULL value first __ br_null_short( Otos_i, Assembler::pn, is_null ); __ load_klass(O3, O4); // get array klass __ load_klass(Otos_i, O5); // get value klass // do fast instanceof cache test __ ld_ptr(O4, in_bytes(ObjArrayKlass::element_klass_offset()), O4); assert(Otos_i == O0, "just checking"); // Otos_i: value // O1: addr - offset // O2: index // O3: array // O4: array element klass // O5: value klass // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); // Generate a fast subtype check. Branch to store_ok if no // failure. Throw if failure. __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok ); // Not a subtype; so must throw exception __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch ); // Store is OK. __ bind(store_ok); do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true); __ ba(done); __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value) __ bind(is_null); do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true); __ profile_null_seen(G3_scratch); __ inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value) __ bind(done); } void TemplateTable::bastore() { transition(itos, vtos); __ pop_i(O2); // index // Otos_i: val // O3: array __ index_check(O3, O2, 0, G3_scratch, O2); __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE)); } void TemplateTable::castore() { transition(itos, vtos); __ pop_i(O2); // index // Otos_i: val // O3: array __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2); __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR)); } void TemplateTable::sastore() { // %%%%% Factor across platform castore(); } void TemplateTable::istore(int n) { transition(itos, vtos); __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n)); } void TemplateTable::lstore(int n) { transition(ltos, vtos); assert(n+1 < Argument::n_register_parameters, "only handle register cases"); __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1)); } void TemplateTable::fstore(int n) { transition(ftos, vtos); assert(n < Argument::n_register_parameters, "only handle register cases"); __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n)); } void TemplateTable::dstore(int n) { transition(dtos, vtos); FloatRegister src = Ftos_d; __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1)); } void TemplateTable::astore(int n) { transition(vtos, vtos); __ load_ptr(0, Otos_i); __ inc(Lesp, Interpreter::stackElementSize); __ verify_oop_or_return_address(Otos_i, G3_scratch); __ store_local_ptr(n, Otos_i); } void TemplateTable::pop() { transition(vtos, vtos); __ inc(Lesp, Interpreter::stackElementSize); } void TemplateTable::pop2() { transition(vtos, vtos); __ inc(Lesp, 2 * Interpreter::stackElementSize); } void TemplateTable::dup() { transition(vtos, vtos); // stack: ..., a // load a and tag __ load_ptr(0, Otos_i); __ push_ptr(Otos_i); // stack: ..., a, a } void TemplateTable::dup_x1() { transition(vtos, vtos); // stack: ..., a, b __ load_ptr( 1, G3_scratch); // get a __ load_ptr( 0, Otos_l1); // get b __ store_ptr(1, Otos_l1); // put b __ store_ptr(0, G3_scratch); // put a - like swap __ push_ptr(Otos_l1); // push b // stack: ..., b, a, b } void TemplateTable::dup_x2() { transition(vtos, vtos); // stack: ..., a, b, c // get c and push on stack, reuse registers __ load_ptr( 0, G3_scratch); // get c __ push_ptr(G3_scratch); // push c with tag // stack: ..., a, b, c, c (c in reg) (Lesp - 4) // (stack offsets n+1 now) __ load_ptr( 3, Otos_l1); // get a __ store_ptr(3, G3_scratch); // put c at 3 // stack: ..., c, b, c, c (a in reg) __ load_ptr( 2, G3_scratch); // get b __ store_ptr(2, Otos_l1); // put a at 2 // stack: ..., c, a, c, c (b in reg) __ store_ptr(1, G3_scratch); // put b at 1 // stack: ..., c, a, b, c } void TemplateTable::dup2() { transition(vtos, vtos); __ load_ptr(1, G3_scratch); // get a __ load_ptr(0, Otos_l1); // get b __ push_ptr(G3_scratch); // push a __ push_ptr(Otos_l1); // push b // stack: ..., a, b, a, b } void TemplateTable::dup2_x1() { transition(vtos, vtos); // stack: ..., a, b, c __ load_ptr( 1, Lscratch); // get b __ load_ptr( 2, Otos_l1); // get a __ store_ptr(2, Lscratch); // put b at a // stack: ..., b, b, c __ load_ptr( 0, G3_scratch); // get c __ store_ptr(1, G3_scratch); // put c at b // stack: ..., b, c, c __ store_ptr(0, Otos_l1); // put a at c // stack: ..., b, c, a __ push_ptr(Lscratch); // push b __ push_ptr(G3_scratch); // push c // stack: ..., b, c, a, b, c } // The spec says that these types can be a mixture of category 1 (1 word) // types and/or category 2 types (long and doubles) void TemplateTable::dup2_x2() { transition(vtos, vtos); // stack: ..., a, b, c, d __ load_ptr( 1, Lscratch); // get c __ load_ptr( 3, Otos_l1); // get a __ store_ptr(3, Lscratch); // put c at 3 __ store_ptr(1, Otos_l1); // put a at 1 // stack: ..., c, b, a, d __ load_ptr( 2, G3_scratch); // get b __ load_ptr( 0, Otos_l1); // get d __ store_ptr(0, G3_scratch); // put b at 0 __ store_ptr(2, Otos_l1); // put d at 2 // stack: ..., c, d, a, b __ push_ptr(Lscratch); // push c __ push_ptr(Otos_l1); // push d // stack: ..., c, d, a, b, c, d } void TemplateTable::swap() { transition(vtos, vtos); // stack: ..., a, b __ load_ptr( 1, G3_scratch); // get a __ load_ptr( 0, Otos_l1); // get b __ store_ptr(0, G3_scratch); // put b __ store_ptr(1, Otos_l1); // put a // stack: ..., b, a } void TemplateTable::iop2(Operation op) { transition(itos, itos); __ pop_i(O1); switch (op) { case add: __ add(O1, Otos_i, Otos_i); break; case sub: __ sub(O1, Otos_i, Otos_i); break; // %%%%% Mul may not exist: better to call .mul? case mul: __ smul(O1, Otos_i, Otos_i); break; case _and: __ and3(O1, Otos_i, Otos_i); break; case _or: __ or3(O1, Otos_i, Otos_i); break; case _xor: __ xor3(O1, Otos_i, Otos_i); break; case shl: __ sll(O1, Otos_i, Otos_i); break; case shr: __ sra(O1, Otos_i, Otos_i); break; case ushr: __ srl(O1, Otos_i, Otos_i); break; default: ShouldNotReachHere(); } } void TemplateTable::lop2(Operation op) { transition(ltos, ltos); __ pop_l(O2); switch (op) { #ifdef _LP64 case add: __ add(O2, Otos_l, Otos_l); break; case sub: __ sub(O2, Otos_l, Otos_l); break; case _and: __ and3(O2, Otos_l, Otos_l); break; case _or: __ or3(O2, Otos_l, Otos_l); break; case _xor: __ xor3(O2, Otos_l, Otos_l); break; #else case add: __ addcc(O3, Otos_l2, Otos_l2); __ addc(O2, Otos_l1, Otos_l1); break; case sub: __ subcc(O3, Otos_l2, Otos_l2); __ subc(O2, Otos_l1, Otos_l1); break; case _and: __ and3(O3, Otos_l2, Otos_l2); __ and3(O2, Otos_l1, Otos_l1); break; case _or: __ or3(O3, Otos_l2, Otos_l2); __ or3(O2, Otos_l1, Otos_l1); break; case _xor: __ xor3(O3, Otos_l2, Otos_l2); __ xor3(O2, Otos_l1, Otos_l1); break; #endif default: ShouldNotReachHere(); } } void TemplateTable::idiv() { // %%%%% Later: ForSPARC/V7 call .sdiv library routine, // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe. transition(itos, itos); __ pop_i(O1); // get 1st op // Y contains upper 32 bits of result, set it to 0 or all ones __ wry(G0); __ mov(~0, G3_scratch); __ tst(O1); Label neg; __ br(Assembler::negative, true, Assembler::pn, neg); __ delayed()->wry(G3_scratch); __ bind(neg); Label ok; __ tst(Otos_i); __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch ); const int min_int = 0x80000000; Label regular; __ cmp(Otos_i, -1); __ br(Assembler::notEqual, false, Assembler::pt, regular); #ifdef _LP64 // Don't put set in delay slot // Set will turn into multiple instructions in 64 bit mode __ delayed()->nop(); __ set(min_int, G4_scratch); #else __ delayed()->set(min_int, G4_scratch); #endif Label done; __ cmp(O1, G4_scratch); __ br(Assembler::equal, true, Assembler::pt, done); __ delayed()->mov(O1, Otos_i); // (mov only executed if branch taken) __ bind(regular); __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction! __ bind(done); } void TemplateTable::irem() { transition(itos, itos); __ mov(Otos_i, O2); // save divisor idiv(); // %%%% Hack: exploits fact that idiv leaves dividend in O1 __ smul(Otos_i, O2, Otos_i); __ sub(O1, Otos_i, Otos_i); } void TemplateTable::lmul() { transition(ltos, ltos); __ pop_l(O2); #ifdef _LP64 __ mulx(Otos_l, O2, Otos_l); #else __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul)); #endif } void TemplateTable::ldiv() { transition(ltos, ltos); // check for zero __ pop_l(O2); #ifdef _LP64 __ tst(Otos_l); __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch); __ sdivx(O2, Otos_l, Otos_l); #else __ orcc(Otos_l1, Otos_l2, G0); __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch); __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); #endif } void TemplateTable::lrem() { transition(ltos, ltos); // check for zero __ pop_l(O2); #ifdef _LP64 __ tst(Otos_l); __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch); __ sdivx(O2, Otos_l, Otos_l2); __ mulx (Otos_l2, Otos_l, Otos_l2); __ sub (O2, Otos_l2, Otos_l); #else __ orcc(Otos_l1, Otos_l2, G0); __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch); __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); #endif } void TemplateTable::lshl() { transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra __ pop_l(O2); // shift value in O2, O3 #ifdef _LP64 __ sllx(O2, Otos_i, Otos_l); #else __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4); #endif } void TemplateTable::lshr() { transition(itos, ltos); // %%%% see lshl comment __ pop_l(O2); // shift value in O2, O3 #ifdef _LP64 __ srax(O2, Otos_i, Otos_l); #else __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4); #endif } void TemplateTable::lushr() { transition(itos, ltos); // %%%% see lshl comment __ pop_l(O2); // shift value in O2, O3 #ifdef _LP64 __ srlx(O2, Otos_i, Otos_l); #else __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4); #endif } void TemplateTable::fop2(Operation op) { transition(ftos, ftos); switch (op) { case add: __ pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f); break; case sub: __ pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f); break; case mul: __ pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f); break; case div: __ pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f); break; case rem: assert(Ftos_f == F0, "just checking"); #ifdef _LP64 // LP64 calling conventions use F1, F3 for passing 2 floats __ pop_f(F1); __ fmov(FloatRegisterImpl::S, Ftos_f, F3); #else __ pop_i(O0); __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp); __ ld( __ d_tmp, O1 ); #endif __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem)); assert( Ftos_f == F0, "fix this code" ); break; default: ShouldNotReachHere(); } } void TemplateTable::dop2(Operation op) { transition(dtos, dtos); switch (op) { case add: __ pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d); break; case sub: __ pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d); break; case mul: __ pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d); break; case div: __ pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d); break; case rem: #ifdef _LP64 // Pass arguments in D0, D2 __ fmov(FloatRegisterImpl::D, Ftos_f, F2 ); __ pop_d( F0 ); #else // Pass arguments in O0O1, O2O3 __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp); __ ldd( __ d_tmp, O2 ); __ pop_d(Ftos_f); __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp); __ ldd( __ d_tmp, O0 ); #endif __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem)); assert( Ftos_d == F0, "fix this code" ); break; default: ShouldNotReachHere(); } } void TemplateTable::ineg() { transition(itos, itos); __ neg(Otos_i); } void TemplateTable::lneg() { transition(ltos, ltos); #ifdef _LP64 __ sub(G0, Otos_l, Otos_l); #else __ lneg(Otos_l1, Otos_l2); #endif } void TemplateTable::fneg() { transition(ftos, ftos); __ fneg(FloatRegisterImpl::S, Ftos_f, Ftos_f); } void TemplateTable::dneg() { transition(dtos, dtos); __ fneg(FloatRegisterImpl::D, Ftos_f, Ftos_f); } void TemplateTable::iinc() { transition(vtos, vtos); locals_index(G3_scratch); __ ldsb(Lbcp, 2, O2); // load constant __ access_local_int(G3_scratch, Otos_i); __ add(Otos_i, O2, Otos_i); __ st(Otos_i, G3_scratch, 0); // access_local_int puts E.A. in G3_scratch } void TemplateTable::wide_iinc() { transition(vtos, vtos); locals_index_wide(G3_scratch); __ get_2_byte_integer_at_bcp( 4, O2, O3, InterpreterMacroAssembler::Signed); __ access_local_int(G3_scratch, Otos_i); __ add(Otos_i, O3, Otos_i); __ st(Otos_i, G3_scratch, 0); // access_local_int puts E.A. in G3_scratch } void TemplateTable::convert() { // %%%%% Factor this first part accross platforms #ifdef ASSERT TosState tos_in = ilgl; TosState tos_out = ilgl; switch (bytecode()) { case Bytecodes::_i2l: // fall through case Bytecodes::_i2f: // fall through case Bytecodes::_i2d: // fall through case Bytecodes::_i2b: // fall through case Bytecodes::_i2c: // fall through case Bytecodes::_i2s: tos_in = itos; break; case Bytecodes::_l2i: // fall through case Bytecodes::_l2f: // fall through case Bytecodes::_l2d: tos_in = ltos; break; case Bytecodes::_f2i: // fall through case Bytecodes::_f2l: // fall through case Bytecodes::_f2d: tos_in = ftos; break; case Bytecodes::_d2i: // fall through case Bytecodes::_d2l: // fall through case Bytecodes::_d2f: tos_in = dtos; break; default : ShouldNotReachHere(); } switch (bytecode()) { case Bytecodes::_l2i: // fall through case Bytecodes::_f2i: // fall through case Bytecodes::_d2i: // fall through case Bytecodes::_i2b: // fall through case Bytecodes::_i2c: // fall through case Bytecodes::_i2s: tos_out = itos; break; case Bytecodes::_i2l: // fall through case Bytecodes::_f2l: // fall through case Bytecodes::_d2l: tos_out = ltos; break; case Bytecodes::_i2f: // fall through case Bytecodes::_l2f: // fall through case Bytecodes::_d2f: tos_out = ftos; break; case Bytecodes::_i2d: // fall through case Bytecodes::_l2d: // fall through case Bytecodes::_f2d: tos_out = dtos; break; default : ShouldNotReachHere(); } transition(tos_in, tos_out); #endif // Conversion Label done; switch (bytecode()) { case Bytecodes::_i2l: #ifdef _LP64 // Sign extend the 32 bits __ sra ( Otos_i, 0, Otos_l ); #else __ addcc(Otos_i, 0, Otos_l2); __ br(Assembler::greaterEqual, true, Assembler::pt, done); __ delayed()->clr(Otos_l1); __ set(~0, Otos_l1); #endif break; case Bytecodes::_i2f: __ st(Otos_i, __ d_tmp ); __ ldf(FloatRegisterImpl::S, __ d_tmp, F0); __ fitof(FloatRegisterImpl::S, F0, Ftos_f); break; case Bytecodes::_i2d: __ st(Otos_i, __ d_tmp); __ ldf(FloatRegisterImpl::S, __ d_tmp, F0); __ fitof(FloatRegisterImpl::D, F0, Ftos_f); break; case Bytecodes::_i2b: __ sll(Otos_i, 24, Otos_i); __ sra(Otos_i, 24, Otos_i); break; case Bytecodes::_i2c: __ sll(Otos_i, 16, Otos_i); __ srl(Otos_i, 16, Otos_i); break; case Bytecodes::_i2s: __ sll(Otos_i, 16, Otos_i); __ sra(Otos_i, 16, Otos_i); break; case Bytecodes::_l2i: #ifndef _LP64 __ mov(Otos_l2, Otos_i); #else // Sign-extend into the high 32 bits __ sra(Otos_l, 0, Otos_i); #endif break; case Bytecodes::_l2f: case Bytecodes::_l2d: __ st_long(Otos_l, __ d_tmp); __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d); if (bytecode() == Bytecodes::_l2f) { __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f); } else { __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d); } break; case Bytecodes::_f2i: { Label isNaN; // result must be 0 if value is NaN; test by comparing value to itself __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f); __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN); __ delayed()->clr(Otos_i); // NaN __ ftoi(FloatRegisterImpl::S, Ftos_f, F30); __ stf(FloatRegisterImpl::S, F30, __ d_tmp); __ ld(__ d_tmp, Otos_i); __ bind(isNaN); } break; case Bytecodes::_f2l: // must uncache tos __ push_f(); #ifdef _LP64 __ pop_f(F1); #else __ pop_i(O0); #endif __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l)); break; case Bytecodes::_f2d: __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f); break; case Bytecodes::_d2i: case Bytecodes::_d2l: // must uncache tos __ push_d(); #ifdef _LP64 // LP64 calling conventions pass first double arg in D0 __ pop_d( Ftos_d ); #else __ pop_i( O0 ); __ pop_i( O1 ); #endif __ call_VM_leaf(Lscratch, bytecode() == Bytecodes::_d2i ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i) : CAST_FROM_FN_PTR(address, SharedRuntime::d2l)); break; case Bytecodes::_d2f: __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f); break; default: ShouldNotReachHere(); } __ bind(done); } void TemplateTable::lcmp() { transition(ltos, itos); #ifdef _LP64 __ pop_l(O1); // pop off value 1, value 2 is in O0 __ lcmp( O1, Otos_l, Otos_i ); #else __ pop_l(O2); // cmp O2,3 to O0,1 __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i ); #endif } void TemplateTable::float_cmp(bool is_float, int unordered_result) { if (is_float) __ pop_f(F2); else __ pop_d(F2); assert(Ftos_f == F0 && Ftos_d == F0, "alias checking:"); __ float_cmp( is_float, unordered_result, F2, F0, Otos_i ); } void TemplateTable::branch(bool is_jsr, bool is_wide) { // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also. __ verify_thread(); const Register O2_bumped_count = O2; __ profile_taken_branch(G3_scratch, O2_bumped_count); // get (wide) offset to O1_disp const Register O1_disp = O1; if (is_wide) __ get_4_byte_integer_at_bcp( 1, G4_scratch, O1_disp, InterpreterMacroAssembler::set_CC); else __ get_2_byte_integer_at_bcp( 1, G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC); // Handle all the JSR stuff here, then exit. // It's much shorter and cleaner than intermingling with the // non-JSR normal-branch stuff occurring below. if( is_jsr ) { // compute return address as bci in Otos_i __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch); __ sub(Lbcp, G3_scratch, G3_scratch); __ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i); // Bump Lbcp to target of JSR __ add(Lbcp, O1_disp, Lbcp); // Push returnAddress for "ret" on stack __ push_ptr(Otos_i); // And away we go! __ dispatch_next(vtos); return; } // Normal (non-jsr) branch handling // Save the current Lbcp const Register l_cur_bcp = Lscratch; __ mov( Lbcp, l_cur_bcp ); bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter; if ( increment_invocation_counter_for_backward_branches ) { Label Lforward; // check branch direction __ br( Assembler::positive, false, Assembler::pn, Lforward ); // Bump bytecode pointer by displacement (take the branch) __ delayed()->add( O1_disp, Lbcp, Lbcp ); // add to bc addr const Register Rcounters = G3_scratch; __ get_method_counters(Lmethod, Rcounters, Lforward); if (TieredCompilation) { Label Lno_mdo, Loverflow; int increment = InvocationCounter::count_increment; int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift; if (ProfileInterpreter) { // If no method data exists, go to profile_continue. __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch); __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo); // Increment backedge counter in the MDO Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset())); __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, O0, Assembler::notZero, &Lforward); __ ba_short(Loverflow); } // If there's no MDO, increment counter in MethodCounters* __ bind(Lno_mdo); Address backedge_counter(Rcounters, in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset())); __ increment_mask_and_jump(backedge_counter, increment, mask, G4_scratch, O0, Assembler::notZero, &Lforward); __ bind(Loverflow); // notify point for loop, pass branch bytecode __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), l_cur_bcp); // Was an OSR adapter generated? // O0 = osr nmethod __ br_null_short(O0, Assembler::pn, Lforward); // Has the nmethod been invalidated already? __ ldub(O0, nmethod::state_offset(), O2); __ cmp_and_br_short(O2, nmethod::in_use, Assembler::notEqual, Assembler::pn, Lforward); // migrate the interpreter frame off of the stack __ mov(G2_thread, L7); // save nmethod __ mov(O0, L6); __ set_last_Java_frame(SP, noreg); __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7); __ reset_last_Java_frame(); __ mov(L7, G2_thread); // move OSR nmethod to I1 __ mov(L6, I1); // OSR buffer to I0 __ mov(O0, I0); // remove the interpreter frame __ restore(I5_savedSP, 0, SP); // Jump to the osr code. __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2); __ jmp(O2, G0); __ delayed()->nop(); } else { // Update Backedge branch separately from invocations const Register G4_invoke_ctr = G4; __ increment_backedge_counter(Rcounters, G4_invoke_ctr, G1_scratch); if (ProfileInterpreter) { __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_scratch, Lforward); if (UseOnStackReplacement) { __ test_backedge_count_for_osr(O2_bumped_count, l_cur_bcp, G3_scratch); } } else { if (UseOnStackReplacement) { __ test_backedge_count_for_osr(G4_invoke_ctr, l_cur_bcp, G3_scratch); } } } __ bind(Lforward); } else // Bump bytecode pointer by displacement (take the branch) __ add( O1_disp, Lbcp, Lbcp );// add to bc addr // continue with bytecode @ target // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above, // %%%%% and changing dispatch_next to dispatch_only __ dispatch_next(vtos); } // Note Condition in argument is TemplateTable::Condition // arg scope is within class scope void TemplateTable::if_0cmp(Condition cc) { // no pointers, integer only! transition(itos, vtos); // assume branch is more often taken than not (loops use backward branches) __ cmp( Otos_i, 0); __ if_cmp(ccNot(cc), false); } void TemplateTable::if_icmp(Condition cc) { transition(itos, vtos); __ pop_i(O1); __ cmp(O1, Otos_i); __ if_cmp(ccNot(cc), false); } void TemplateTable::if_nullcmp(Condition cc) { transition(atos, vtos); __ tst(Otos_i); __ if_cmp(ccNot(cc), true); } void TemplateTable::if_acmp(Condition cc) { transition(atos, vtos); __ pop_ptr(O1); __ verify_oop(O1); __ verify_oop(Otos_i); __ cmp(O1, Otos_i); __ if_cmp(ccNot(cc), true); } void TemplateTable::ret() { transition(vtos, vtos); locals_index(G3_scratch); __ access_local_returnAddress(G3_scratch, Otos_i); // Otos_i contains the bci, compute the bcp from that #ifdef _LP64 #ifdef ASSERT // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC // the result. The return address (really a BCI) was stored with an // 'astore' because JVM specs claim it's a pointer-sized thing. Hence in // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit // loaded value. { Label zzz ; __ set (65536, G3_scratch) ; __ cmp (Otos_i, G3_scratch) ; __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz); __ delayed()->nop(); __ stop("BCI is in the wrong register half?"); __ bind (zzz) ; } #endif #endif __ profile_ret(vtos, Otos_i, G4_scratch); __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch); __ add(G3_scratch, Otos_i, G3_scratch); __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp); __ dispatch_next(vtos); } void TemplateTable::wide_ret() { transition(vtos, vtos); locals_index_wide(G3_scratch); __ access_local_returnAddress(G3_scratch, Otos_i); // Otos_i contains the bci, compute the bcp from that __ profile_ret(vtos, Otos_i, G4_scratch); __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch); __ add(G3_scratch, Otos_i, G3_scratch); __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp); __ dispatch_next(vtos); } void TemplateTable::tableswitch() { transition(itos, vtos); Label default_case, continue_execution; // align bcp __ add(Lbcp, BytesPerInt, O1); __ and3(O1, -BytesPerInt, O1); // load lo, hi __ ld(O1, 1 * BytesPerInt, O2); // Low Byte __ ld(O1, 2 * BytesPerInt, O3); // High Byte #ifdef _LP64 // Sign extend the 32 bits __ sra ( Otos_i, 0, Otos_i ); #endif /* _LP64 */ // check against lo & hi __ cmp( Otos_i, O2); __ br( Assembler::less, false, Assembler::pn, default_case); __ delayed()->cmp( Otos_i, O3 ); __ br( Assembler::greater, false, Assembler::pn, default_case); // lookup dispatch offset __ delayed()->sub(Otos_i, O2, O2); __ profile_switch_case(O2, O3, G3_scratch, G4_scratch); __ sll(O2, LogBytesPerInt, O2); __ add(O2, 3 * BytesPerInt, O2); __ ba(continue_execution); __ delayed()->ld(O1, O2, O2); // handle default __ bind(default_case); __ profile_switch_default(O3); __ ld(O1, 0, O2); // get default offset // continue execution __ bind(continue_execution); __ add(Lbcp, O2, Lbcp); __ dispatch_next(vtos); } void TemplateTable::lookupswitch() { transition(itos, itos); __ stop("lookupswitch bytecode should have been rewritten"); } void TemplateTable::fast_linearswitch() { transition(itos, vtos); Label loop_entry, loop, found, continue_execution; // align bcp __ add(Lbcp, BytesPerInt, O1); __ and3(O1, -BytesPerInt, O1); // set counter __ ld(O1, BytesPerInt, O2); __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs __ add(O1, 2 * BytesPerInt, O3); // set first pair addr __ ba(loop_entry); __ delayed()->add(O3, O2, O2); // counter now points past last pair // table search __ bind(loop); __ cmp(O4, Otos_i); __ br(Assembler::equal, true, Assembler::pn, found); __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4 __ inc(O3, 2 * BytesPerInt); __ bind(loop_entry); __ cmp(O2, O3); __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop); __ delayed()->ld(O3, 0, O4); // default case __ ld(O1, 0, O4); // get default offset if (ProfileInterpreter) { __ profile_switch_default(O3); __ ba_short(continue_execution); } // entry found -> get offset __ bind(found); if (ProfileInterpreter) { __ sub(O3, O1, O3); __ sub(O3, 2*BytesPerInt, O3); __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs __ profile_switch_case(O3, O1, O2, G3_scratch); __ bind(continue_execution); } __ add(Lbcp, O4, Lbcp); __ dispatch_next(vtos); } void TemplateTable::fast_binaryswitch() { transition(itos, vtos); // Implementation using the following core algorithm: (copied from Intel) // // int binary_search(int key, LookupswitchPair* array, int n) { // // Binary search according to "Methodik des Programmierens" by // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. // int i = 0; // int j = n; // while (i+1 < j) { // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) // // with Q: for all i: 0 <= i < n: key < a[i] // // where a stands for the array and assuming that the (inexisting) // // element a[n] is infinitely big. // int h = (i + j) >> 1; // // i < h < j // if (key < array[h].fast_match()) { // j = h; // } else { // i = h; // } // } // // R: a[i] <= key < a[i+1] or Q // // (i.e., if key is within array, i is the correct index) // return i; // } // register allocation assert(Otos_i == O0, "alias checking"); const Register Rkey = Otos_i; // already set (tosca) const Register Rarray = O1; const Register Ri = O2; const Register Rj = O3; const Register Rh = O4; const Register Rscratch = O5; const int log_entry_size = 3; const int entry_size = 1 << log_entry_size; Label found; // Find Array start __ add(Lbcp, 3 * BytesPerInt, Rarray); __ and3(Rarray, -BytesPerInt, Rarray); // initialize i & j (in delay slot) __ clr( Ri ); // and start Label entry; __ ba(entry); __ delayed()->ld( Rarray, -BytesPerInt, Rj); // (Rj is already in the native byte-ordering.) // binary search loop { Label loop; __ bind( loop ); // int h = (i + j) >> 1; __ sra( Rh, 1, Rh ); // if (key < array[h].fast_match()) { // j = h; // } else { // i = h; // } __ sll( Rh, log_entry_size, Rscratch ); __ ld( Rarray, Rscratch, Rscratch ); // (Rscratch is already in the native byte-ordering.) __ cmp( Rkey, Rscratch ); __ movcc( Assembler::less, false, Assembler::icc, Rh, Rj ); // j = h if (key < array[h].fast_match()) __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri ); // i = h if (key >= array[h].fast_match()) // while (i+1 < j) __ bind( entry ); __ add( Ri, 1, Rscratch ); __ cmp(Rscratch, Rj); __ br( Assembler::less, true, Assembler::pt, loop ); __ delayed()->add( Ri, Rj, Rh ); // start h = i + j >> 1; } // end of binary search, result index is i (must check again!) Label default_case; Label continue_execution; if (ProfileInterpreter) { __ mov( Ri, Rh ); // Save index in i for profiling } __ sll( Ri, log_entry_size, Ri ); __ ld( Rarray, Ri, Rscratch ); // (Rscratch is already in the native byte-ordering.) __ cmp( Rkey, Rscratch ); __ br( Assembler::notEqual, true, Assembler::pn, default_case ); __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j // entry found -> j = offset __ inc( Ri, BytesPerInt ); __ profile_switch_case(Rh, Rj, Rscratch, Rkey); __ ld( Rarray, Ri, Rj ); // (Rj is already in the native byte-ordering.) if (ProfileInterpreter) { __ ba_short(continue_execution); } __ bind(default_case); // fall through (if not profiling) __ profile_switch_default(Ri); __ bind(continue_execution); __ add( Lbcp, Rj, Lbcp ); __ dispatch_next( vtos ); } void TemplateTable::_return(TosState state) { transition(state, state); assert(_desc->calls_vm(), "inconsistent calls_vm information"); if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { assert(state == vtos, "only valid state"); __ mov(G0, G3_scratch); __ access_local_ptr(G3_scratch, Otos_i); __ load_klass(Otos_i, O2); __ set(JVM_ACC_HAS_FINALIZER, G3); __ ld(O2, in_bytes(Klass::access_flags_offset()), O2); __ andcc(G3, O2, G0); Label skip_register_finalizer; __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer); __ delayed()->nop(); // Call out to do finalizer registration __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i); __ bind(skip_register_finalizer); } __ remove_activation(state, /* throw_monitor_exception */ true); // The caller's SP was adjusted upon method entry to accomodate // the callee's non-argument locals. Undo that adjustment. __ ret(); // return to caller __ delayed()->restore(I5_savedSP, G0, SP); } // ---------------------------------------------------------------------------- // Volatile variables demand their effects be made known to all CPU's in // order. Store buffers on most chips allow reads & writes to reorder; the // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of // memory barrier (i.e., it's not sufficient that the interpreter does not // reorder volatile references, the hardware also must not reorder them). // // According to the new Java Memory Model (JMM): // (1) All volatiles are serialized wrt to each other. // ALSO reads & writes act as aquire & release, so: // (2) A read cannot let unrelated NON-volatile memory refs that happen after // the read float up to before the read. It's OK for non-volatile memory refs // that happen before the volatile read to float down below it. // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs // that happen BEFORE the write float down to after the write. It's OK for // non-volatile memory refs that happen after the volatile write to float up // before it. // // We only put in barriers around volatile refs (they are expensive), not // _between_ memory refs (that would require us to track the flavor of the // previous memory refs). Requirements (2) and (3) require some barriers // before volatile stores and after volatile loads. These nearly cover // requirement (1) but miss the volatile-store-volatile-load case. This final // case is placed after volatile-stores although it could just as well go // before volatile-loads. void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) { // Helper function to insert a is-volatile test and memory barrier // All current sparc implementations run in TSO, needing only StoreLoad if ((order_constraint & Assembler::StoreLoad) == 0) return; __ membar( order_constraint ); } // ---------------------------------------------------------------------------- void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register index, size_t index_size) { // Depends on cpCacheOop layout! Label resolved; assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size); __ cmp(Lbyte_code, (int) bytecode()); // have we resolved this bytecode? __ br(Assembler::equal, false, Assembler::pt, resolved); __ delayed()->set((int)bytecode(), O1); address entry; switch (bytecode()) { case Bytecodes::_getstatic : // fall through case Bytecodes::_putstatic : // fall through case Bytecodes::_getfield : // fall through case Bytecodes::_putfield : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break; case Bytecodes::_invokevirtual : // fall through case Bytecodes::_invokespecial : // fall through case Bytecodes::_invokestatic : // fall through case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break; case Bytecodes::_invokehandle : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break; case Bytecodes::_invokedynamic : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break; default: fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode()))); break; } // first time invocation - must resolve first __ call_VM(noreg, entry, O1); // Update registers with resolved info __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); __ bind(resolved); } void TemplateTable::load_invoke_cp_cache_entry(int byte_no, Register method, Register itable_index, Register flags, bool is_invokevirtual, bool is_invokevfinal, bool is_invokedynamic) { // Uses both G3_scratch and G4_scratch Register cache = G3_scratch; Register index = G4_scratch; assert_different_registers(cache, method, itable_index); // determine constant pool cache field offsets assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); const int method_offset = in_bytes( ConstantPoolCache::base_offset() + ((byte_no == f2_byte) ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset() ) ); const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()); // access constant pool cache fields const int index_offset = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()); if (is_invokevfinal) { __ get_cache_and_index_at_bcp(cache, index, 1); __ ld_ptr(Address(cache, method_offset), method); } else { size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); resolve_cache_and_index(byte_no, cache, index, index_size); __ ld_ptr(Address(cache, method_offset), method); } if (itable_index != noreg) { // pick up itable or appendix index from f2 also: __ ld_ptr(Address(cache, index_offset), itable_index); } __ ld_ptr(Address(cache, flags_offset), flags); } // The Rcache register must be set before call void TemplateTable::load_field_cp_cache_entry(Register Robj, Register Rcache, Register index, Register Roffset, Register Rflags, bool is_static) { assert_different_registers(Rcache, Rflags, Roffset); ByteSize cp_base_offset = ConstantPoolCache::base_offset(); __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags); __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset); if (is_static) { __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj); const int mirror_offset = in_bytes(Klass::java_mirror_offset()); __ ld_ptr( Robj, mirror_offset, Robj); } } // The registers Rcache and index expected to be set before call. // Correct values of the Rcache and index registers are preserved. void TemplateTable::jvmti_post_field_access(Register Rcache, Register index, bool is_static, bool has_tos) { ByteSize cp_base_offset = ConstantPoolCache::base_offset(); if (JvmtiExport::can_post_field_access()) { // Check to see if a field access watch has been set before we take // the time to call into the VM. Label Label1; assert_different_registers(Rcache, index, G1_scratch); AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr()); __ load_contents(get_field_access_count_addr, G1_scratch); __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1); __ add(Rcache, in_bytes(cp_base_offset), Rcache); if (is_static) { __ clr(Otos_i); } else { if (has_tos) { // save object pointer before call_VM() clobbers it __ push_ptr(Otos_i); // put object on tos where GC wants it. } else { // Load top of stack (do not pop the value off the stack); __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i); } __ verify_oop(Otos_i); } // Otos_i: object pointer or NULL if static // Rcache: cache entry pointer __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), Otos_i, Rcache); if (!is_static && has_tos) { __ pop_ptr(Otos_i); // restore object pointer __ verify_oop(Otos_i); } __ get_cache_and_index_at_bcp(Rcache, index, 1); __ bind(Label1); } } void TemplateTable::getfield_or_static(int byte_no, bool is_static) { transition(vtos, vtos); Register Rcache = G3_scratch; Register index = G4_scratch; Register Rclass = Rcache; Register Roffset= G4_scratch; Register Rflags = G1_scratch; ByteSize cp_base_offset = ConstantPoolCache::base_offset(); resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2)); jvmti_post_field_access(Rcache, index, is_static, false); load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static); if (!is_static) { pop_and_check_object(Rclass); } else { __ verify_oop(Rclass); } Label exit; Assembler::Membar_mask_bits membar_bits = Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore); if (__ membar_has_effect(membar_bits)) { // Get volatile flag __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch); __ and3(Rflags, Lscratch, Lscratch); } Label checkVolatile; // compute field type Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj; __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags); // Make sure we don't need to mask Rflags after the above shift ConstantPoolCacheEntry::verify_tos_state_shift(); // Check atos before itos for getstatic, more likely (in Queens at least) __ cmp(Rflags, atos); __ br(Assembler::notEqual, false, Assembler::pt, notObj); __ delayed() ->cmp(Rflags, itos); // atos __ load_heap_oop(Rclass, Roffset, Otos_i); __ verify_oop(Otos_i); __ push(atos); if (!is_static) { patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch); } __ ba(checkVolatile); __ delayed()->tst(Lscratch); __ bind(notObj); // cmp(Rflags, itos); __ br(Assembler::notEqual, false, Assembler::pt, notInt); __ delayed() ->cmp(Rflags, ltos); // itos __ ld(Rclass, Roffset, Otos_i); __ push(itos); if (!is_static) { patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch); } __ ba(checkVolatile); __ delayed()->tst(Lscratch); __ bind(notInt); // cmp(Rflags, ltos); __ br(Assembler::notEqual, false, Assembler::pt, notLong); __ delayed() ->cmp(Rflags, btos); // ltos // load must be atomic __ ld_long(Rclass, Roffset, Otos_l); __ push(ltos); if (!is_static) { patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch); } __ ba(checkVolatile); __ delayed()->tst(Lscratch); __ bind(notLong); // cmp(Rflags, btos); __ br(Assembler::notEqual, false, Assembler::pt, notByte); __ delayed() ->cmp(Rflags, ctos); // btos __ ldsb(Rclass, Roffset, Otos_i); __ push(itos); if (!is_static) { patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch); } __ ba(checkVolatile); __ delayed()->tst(Lscratch); __ bind(notByte); // cmp(Rflags, ctos); __ br(Assembler::notEqual, false, Assembler::pt, notChar); __ delayed() ->cmp(Rflags, stos); // ctos __ lduh(Rclass, Roffset, Otos_i); __ push(itos); if (!is_static) { patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch); } __ ba(checkVolatile); __ delayed()->tst(Lscratch); __ bind(notChar); // cmp(Rflags, stos); __ br(Assembler::notEqual, false, Assembler::pt, notShort); __ delayed() ->cmp(Rflags, ftos); // stos __ ldsh(Rclass, Roffset, Otos_i); __ push(itos); if (!is_static) { patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch); } __ ba(checkVolatile); __ delayed()->tst(Lscratch); __ bind(notShort); // cmp(Rflags, ftos); __ br(Assembler::notEqual, false, Assembler::pt, notFloat); __ delayed() ->tst(Lscratch); // ftos __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f); __ push(ftos); if (!is_static) { patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch); } __ ba(checkVolatile); __ delayed()->tst(Lscratch); __ bind(notFloat); // dtos __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d); __ push(dtos); if (!is_static) { patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch); } __ bind(checkVolatile); if (__ membar_has_effect(membar_bits)) { // __ tst(Lscratch); executed in delay slot __ br(Assembler::zero, false, Assembler::pt, exit); __ delayed()->nop(); volatile_barrier(membar_bits); } __ bind(exit); } void TemplateTable::getfield(int byte_no) { getfield_or_static(byte_no, false); } void TemplateTable::getstatic(int byte_no) { getfield_or_static(byte_no, true); } void TemplateTable::fast_accessfield(TosState state) { transition(atos, state); Register Rcache = G3_scratch; Register index = G4_scratch; Register Roffset = G4_scratch; Register Rflags = Rcache; ByteSize cp_base_offset = ConstantPoolCache::base_offset(); __ get_cache_and_index_at_bcp(Rcache, index, 1); jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true); __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset); __ null_check(Otos_i); __ verify_oop(Otos_i); Label exit; Assembler::Membar_mask_bits membar_bits = Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore); if (__ membar_has_effect(membar_bits)) { // Get volatile flag __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags); __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch); } switch (bytecode()) { case Bytecodes::_fast_bgetfield: __ ldsb(Otos_i, Roffset, Otos_i); break; case Bytecodes::_fast_cgetfield: __ lduh(Otos_i, Roffset, Otos_i); break; case Bytecodes::_fast_sgetfield: __ ldsh(Otos_i, Roffset, Otos_i); break; case Bytecodes::_fast_igetfield: __ ld(Otos_i, Roffset, Otos_i); break; case Bytecodes::_fast_lgetfield: __ ld_long(Otos_i, Roffset, Otos_l); break; case Bytecodes::_fast_fgetfield: __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f); break; case Bytecodes::_fast_dgetfield: __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d); break; case Bytecodes::_fast_agetfield: __ load_heap_oop(Otos_i, Roffset, Otos_i); break; default: ShouldNotReachHere(); } if (__ membar_has_effect(membar_bits)) { __ btst(Lscratch, Rflags); __ br(Assembler::zero, false, Assembler::pt, exit); __ delayed()->nop(); volatile_barrier(membar_bits); __ bind(exit); } if (state == atos) { __ verify_oop(Otos_i); // does not blow flags! } } void TemplateTable::jvmti_post_fast_field_mod() { if (JvmtiExport::can_post_field_modification()) { // Check to see if a field modification watch has been set before we take // the time to call into the VM. Label done; AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr()); __ load_contents(get_field_modification_count_addr, G4_scratch); __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done); __ pop_ptr(G4_scratch); // copy the object pointer from tos __ verify_oop(G4_scratch); __ push_ptr(G4_scratch); // put the object pointer back on tos __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1); // Save tos values before call_VM() clobbers them. Since we have // to do it for every data type, we use the saved values as the // jvalue object. switch (bytecode()) { // save tos values before call_VM() clobbers them case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break; case Bytecodes::_fast_bputfield: // fall through case Bytecodes::_fast_sputfield: // fall through case Bytecodes::_fast_cputfield: // fall through case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break; case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break; case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break; // get words in right order for use as jvalue object case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break; } // setup pointer to jvalue object __ mov(Lesp, G3_scratch); __ inc(G3_scratch, wordSize); // G4_scratch: object pointer // G1_scratch: cache entry pointer // G3_scratch: jvalue object on the stack __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch); switch (bytecode()) { // restore tos values case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break; case Bytecodes::_fast_bputfield: // fall through case Bytecodes::_fast_sputfield: // fall through case Bytecodes::_fast_cputfield: // fall through case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break; case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break; case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break; case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break; } __ bind(done); } } // The registers Rcache and index expected to be set before call. // The function may destroy various registers, just not the Rcache and index registers. void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) { ByteSize cp_base_offset = ConstantPoolCache::base_offset(); if (JvmtiExport::can_post_field_modification()) { // Check to see if a field modification watch has been set before we take // the time to call into the VM. Label Label1; assert_different_registers(Rcache, index, G1_scratch); AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr()); __ load_contents(get_field_modification_count_addr, G1_scratch); __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1); // The Rcache and index registers have been already set. // This allows to eliminate this call but the Rcache and index // registers must be correspondingly used after this line. __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1); __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch); if (is_static) { // Life is simple. Null out the object pointer. __ clr(G4_scratch); } else { Register Rflags = G1_scratch; // Life is harder. The stack holds the value on top, followed by the // object. We don't know the size of the value, though; it could be // one or two words depending on its type. As a result, we must find // the type to determine where the object is. Label two_word, valsizeknown; __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags); __ mov(Lesp, G4_scratch); __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags); // Make sure we don't need to mask Rflags after the above shift ConstantPoolCacheEntry::verify_tos_state_shift(); __ cmp(Rflags, ltos); __ br(Assembler::equal, false, Assembler::pt, two_word); __ delayed()->cmp(Rflags, dtos); __ br(Assembler::equal, false, Assembler::pt, two_word); __ delayed()->nop(); __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1)); __ ba_short(valsizeknown); __ bind(two_word); __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2)); __ bind(valsizeknown); // setup object pointer __ ld_ptr(G4_scratch, 0, G4_scratch); __ verify_oop(G4_scratch); } // setup pointer to jvalue object __ mov(Lesp, G1_scratch); __ inc(G1_scratch, wordSize); // G4_scratch: object pointer or NULL if static // G3_scratch: cache entry pointer // G1_scratch: jvalue object on the stack __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G3_scratch, G1_scratch); __ get_cache_and_index_at_bcp(Rcache, index, 1); __ bind(Label1); } } void TemplateTable::pop_and_check_object(Register r) { __ pop_ptr(r); __ null_check(r); // for field access must check obj. __ verify_oop(r); } void TemplateTable::putfield_or_static(int byte_no, bool is_static) { transition(vtos, vtos); Register Rcache = G3_scratch; Register index = G4_scratch; Register Rclass = Rcache; Register Roffset= G4_scratch; Register Rflags = G1_scratch; ByteSize cp_base_offset = ConstantPoolCache::base_offset(); resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2)); jvmti_post_field_mod(Rcache, index, is_static); load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static); Assembler::Membar_mask_bits read_bits = Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore); Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad; Label notVolatile, checkVolatile, exit; if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) { __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch); __ and3(Rflags, Lscratch, Lscratch); if (__ membar_has_effect(read_bits)) { __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile); volatile_barrier(read_bits); __ bind(notVolatile); } } __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags); // Make sure we don't need to mask Rflags after the above shift ConstantPoolCacheEntry::verify_tos_state_shift(); // compute field type Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat; if (is_static) { // putstatic with object type most likely, check that first __ cmp(Rflags, atos); __ br(Assembler::notEqual, false, Assembler::pt, notObj); __ delayed()->cmp(Rflags, itos); // atos { __ pop_ptr(); __ verify_oop(Otos_i); do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false); __ ba(checkVolatile); __ delayed()->tst(Lscratch); } __ bind(notObj); // cmp(Rflags, itos); __ br(Assembler::notEqual, false, Assembler::pt, notInt); __ delayed()->cmp(Rflags, btos); // itos { __ pop_i(); __ st(Otos_i, Rclass, Roffset); __ ba(checkVolatile); __ delayed()->tst(Lscratch); } __ bind(notInt); } else { // putfield with int type most likely, check that first __ cmp(Rflags, itos); __ br(Assembler::notEqual, false, Assembler::pt, notInt); __ delayed()->cmp(Rflags, atos); // itos { __ pop_i(); pop_and_check_object(Rclass); __ st(Otos_i, Rclass, Roffset); patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no); __ ba(checkVolatile); __ delayed()->tst(Lscratch); } __ bind(notInt); // cmp(Rflags, atos); __ br(Assembler::notEqual, false, Assembler::pt, notObj); __ delayed()->cmp(Rflags, btos); // atos { __ pop_ptr(); pop_and_check_object(Rclass); __ verify_oop(Otos_i); do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false); patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no); __ ba(checkVolatile); __ delayed()->tst(Lscratch); } __ bind(notObj); } // cmp(Rflags, btos); __ br(Assembler::notEqual, false, Assembler::pt, notByte); __ delayed()->cmp(Rflags, ltos); // btos { __ pop_i(); if (!is_static) pop_and_check_object(Rclass); __ stb(Otos_i, Rclass, Roffset); if (!is_static) { patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no); } __ ba(checkVolatile); __ delayed()->tst(Lscratch); } __ bind(notByte); // cmp(Rflags, ltos); __ br(Assembler::notEqual, false, Assembler::pt, notLong); __ delayed()->cmp(Rflags, ctos); // ltos { __ pop_l(); if (!is_static) pop_and_check_object(Rclass); __ st_long(Otos_l, Rclass, Roffset); if (!is_static) { patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no); } __ ba(checkVolatile); __ delayed()->tst(Lscratch); } __ bind(notLong); // cmp(Rflags, ctos); __ br(Assembler::notEqual, false, Assembler::pt, notChar); __ delayed()->cmp(Rflags, stos); // ctos (char) { __ pop_i(); if (!is_static) pop_and_check_object(Rclass); __ sth(Otos_i, Rclass, Roffset); if (!is_static) { patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no); } __ ba(checkVolatile); __ delayed()->tst(Lscratch); } __ bind(notChar); // cmp(Rflags, stos); __ br(Assembler::notEqual, false, Assembler::pt, notShort); __ delayed()->cmp(Rflags, ftos); // stos (short) { __ pop_i(); if (!is_static) pop_and_check_object(Rclass); __ sth(Otos_i, Rclass, Roffset); if (!is_static) { patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no); } __ ba(checkVolatile); __ delayed()->tst(Lscratch); } __ bind(notShort); // cmp(Rflags, ftos); __ br(Assembler::notZero, false, Assembler::pt, notFloat); __ delayed()->nop(); // ftos { __ pop_f(); if (!is_static) pop_and_check_object(Rclass); __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset); if (!is_static) { patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no); } __ ba(checkVolatile); __ delayed()->tst(Lscratch); } __ bind(notFloat); // dtos { __ pop_d(); if (!is_static) pop_and_check_object(Rclass); __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset); if (!is_static) { patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no); } } __ bind(checkVolatile); __ tst(Lscratch); if (__ membar_has_effect(write_bits)) { // __ tst(Lscratch); in delay slot __ br(Assembler::zero, false, Assembler::pt, exit); __ delayed()->nop(); volatile_barrier(Assembler::StoreLoad); __ bind(exit); } } void TemplateTable::fast_storefield(TosState state) { transition(state, vtos); Register Rcache = G3_scratch; Register Rclass = Rcache; Register Roffset= G4_scratch; Register Rflags = G1_scratch; ByteSize cp_base_offset = ConstantPoolCache::base_offset(); jvmti_post_fast_field_mod(); __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1); Assembler::Membar_mask_bits read_bits = Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore); Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad; Label notVolatile, checkVolatile, exit; if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) { __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags); __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch); __ and3(Rflags, Lscratch, Lscratch); if (__ membar_has_effect(read_bits)) { __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile); volatile_barrier(read_bits); __ bind(notVolatile); } } __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset); pop_and_check_object(Rclass); switch (bytecode()) { case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break; case Bytecodes::_fast_cputfield: /* fall through */ case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break; case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset); break; case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break; case Bytecodes::_fast_fputfield: __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset); break; case Bytecodes::_fast_dputfield: __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset); break; case Bytecodes::_fast_aputfield: do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false); break; default: ShouldNotReachHere(); } if (__ membar_has_effect(write_bits)) { __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit); volatile_barrier(Assembler::StoreLoad); __ bind(exit); } } void TemplateTable::putfield(int byte_no) { putfield_or_static(byte_no, false); } void TemplateTable::putstatic(int byte_no) { putfield_or_static(byte_no, true); } void TemplateTable::fast_xaccess(TosState state) { transition(vtos, state); Register Rcache = G3_scratch; Register Roffset = G4_scratch; Register Rflags = G4_scratch; Register Rreceiver = Lscratch; __ ld_ptr(Llocals, 0, Rreceiver); // access constant pool cache (is resolved) __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2); __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset); __ add(Lbcp, 1, Lbcp); // needed to report exception at the correct bcp __ verify_oop(Rreceiver); __ null_check(Rreceiver); if (state == atos) { __ load_heap_oop(Rreceiver, Roffset, Otos_i); } else if (state == itos) { __ ld (Rreceiver, Roffset, Otos_i) ; } else if (state == ftos) { __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f); } else { ShouldNotReachHere(); } Assembler::Membar_mask_bits membar_bits = Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore); if (__ membar_has_effect(membar_bits)) { // Get is_volatile value in Rflags and check if membar is needed __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags); // Test volatile Label notVolatile; __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch); __ btst(Rflags, Lscratch); __ br(Assembler::zero, false, Assembler::pt, notVolatile); __ delayed()->nop(); volatile_barrier(membar_bits); __ bind(notVolatile); } __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__); __ sub(Lbcp, 1, Lbcp); } //---------------------------------------------------------------------------------------------------- // Calls void TemplateTable::count_calls(Register method, Register temp) { // implemented elsewhere ShouldNotReachHere(); } void TemplateTable::prepare_invoke(int byte_no, Register method, // linked method (or i-klass) Register ra, // return address Register index, // itable index, MethodType, etc. Register recv, // if caller wants to see it Register flags // if caller wants to test it ) { // determine flags const Bytecodes::Code code = bytecode(); const bool is_invokeinterface = code == Bytecodes::_invokeinterface; const bool is_invokedynamic = code == Bytecodes::_invokedynamic; const bool is_invokehandle = code == Bytecodes::_invokehandle; const bool is_invokevirtual = code == Bytecodes::_invokevirtual; const bool is_invokespecial = code == Bytecodes::_invokespecial; const bool load_receiver = (recv != noreg); assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); assert(recv == noreg || recv == O0, ""); assert(flags == noreg || flags == O1, ""); // setup registers & access constant pool cache if (recv == noreg) recv = O0; if (flags == noreg) flags = O1; const Register temp = O2; assert_different_registers(method, ra, index, recv, flags, temp); load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore // maybe push appendix to arguments if (is_invokedynamic || is_invokehandle) { Label L_no_push; __ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp); __ btst(flags, temp); __ br(Assembler::zero, false, Assembler::pt, L_no_push); __ delayed()->nop(); // Push the appendix as a trailing parameter. // This must be done before we get the receiver, // since the parameter_size includes it. assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0"); __ load_resolved_reference_at_index(temp, index); __ verify_oop(temp); __ push_ptr(temp); // push appendix (MethodType, CallSite, etc.) __ bind(L_no_push); } // load receiver if needed (after appendix is pushed so parameter size is correct) if (load_receiver) { __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp); // get parameter size __ load_receiver(temp, recv); // __ argument_address uses Gargs but we need Lesp __ verify_oop(recv); } // compute return type __ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra); // Make sure we don't need to mask flags after the above shift ConstantPoolCacheEntry::verify_tos_state_shift(); // load return address { const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); AddressLiteral table(table_addr); __ set(table, temp); __ sll(ra, LogBytesPerWord, ra); __ ld_ptr(Address(temp, ra), ra); } } void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) { Register Rcall = Rindex; assert_different_registers(Rcall, G5_method, Gargs, Rret); // get target Method* & entry point __ lookup_virtual_method(Rrecv, Rindex, G5_method); __ profile_arguments_type(G5_method, Rcall, Gargs, true); __ call_from_interpreter(Rcall, Gargs, Rret); } void TemplateTable::invokevirtual(int byte_no) { transition(vtos, vtos); assert(byte_no == f2_byte, "use this argument"); Register Rscratch = G3_scratch; Register Rtemp = G4_scratch; Register Rret = Lscratch; Register O0_recv = O0; Label notFinal; load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false); __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore // Check for vfinal __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch); __ btst(Rret, G4_scratch); __ br(Assembler::zero, false, Assembler::pt, notFinal); __ delayed()->and3(Rret, 0xFF, G4_scratch); // gets number of parameters patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp); invokevfinal_helper(Rscratch, Rret); __ bind(notFinal); __ mov(G5_method, Rscratch); // better scratch register __ load_receiver(G4_scratch, O0_recv); // gets receiverOop // receiver is in O0_recv __ verify_oop(O0_recv); // get return address AddressLiteral table(Interpreter::invoke_return_entry_table()); __ set(table, Rtemp); __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret); // get return type // Make sure we don't need to mask Rret after the above shift ConstantPoolCacheEntry::verify_tos_state_shift(); __ sll(Rret, LogBytesPerWord, Rret); __ ld_ptr(Rtemp, Rret, Rret); // get return address // get receiver klass __ null_check(O0_recv, oopDesc::klass_offset_in_bytes()); __ load_klass(O0_recv, O0_recv); __ verify_klass_ptr(O0_recv); __ profile_virtual_call(O0_recv, O4); generate_vtable_call(O0_recv, Rscratch, Rret); } void TemplateTable::fast_invokevfinal(int byte_no) { transition(vtos, vtos); assert(byte_no == f2_byte, "use this argument"); load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true, /*is_invokevfinal*/true, false); __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore invokevfinal_helper(G3_scratch, Lscratch); } void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) { Register Rtemp = G4_scratch; // Load receiver from stack slot __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G4_scratch); __ lduh(G4_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), G4_scratch); __ load_receiver(G4_scratch, O0); // receiver NULL check __ null_check(O0); __ profile_final_call(O4); __ profile_arguments_type(G5_method, Rscratch, Gargs, true); // get return address AddressLiteral table(Interpreter::invoke_return_entry_table()); __ set(table, Rtemp); __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret); // get return type // Make sure we don't need to mask Rret after the above shift ConstantPoolCacheEntry::verify_tos_state_shift(); __ sll(Rret, LogBytesPerWord, Rret); __ ld_ptr(Rtemp, Rret, Rret); // get return address // do the call __ call_from_interpreter(Rscratch, Gargs, Rret); } void TemplateTable::invokespecial(int byte_no) { transition(vtos, vtos); assert(byte_no == f1_byte, "use this argument"); const Register Rret = Lscratch; const Register O0_recv = O0; const Register Rscratch = G3_scratch; prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv); // get receiver also for null check __ null_check(O0_recv); // do the call __ profile_call(O4); __ profile_arguments_type(G5_method, Rscratch, Gargs, false); __ call_from_interpreter(Rscratch, Gargs, Rret); } void TemplateTable::invokestatic(int byte_no) { transition(vtos, vtos); assert(byte_no == f1_byte, "use this argument"); const Register Rret = Lscratch; const Register Rscratch = G3_scratch; prepare_invoke(byte_no, G5_method, Rret); // get f1 Method* // do the call __ profile_call(O4); __ profile_arguments_type(G5_method, Rscratch, Gargs, false); __ call_from_interpreter(Rscratch, Gargs, Rret); } void TemplateTable::invokeinterface_object_method(Register RKlass, Register Rcall, Register Rret, Register Rflags) { Register Rscratch = G4_scratch; Register Rindex = Lscratch; assert_different_registers(Rscratch, Rindex, Rret); Label notFinal; // Check for vfinal __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch); __ btst(Rflags, Rscratch); __ br(Assembler::zero, false, Assembler::pt, notFinal); __ delayed()->nop(); __ profile_final_call(O4); // do the call - the index (f2) contains the Method* assert_different_registers(G5_method, Gargs, Rcall); __ mov(Rindex, G5_method); __ profile_arguments_type(G5_method, Rcall, Gargs, true); __ call_from_interpreter(Rcall, Gargs, Rret); __ bind(notFinal); __ profile_virtual_call(RKlass, O4); generate_vtable_call(RKlass, Rindex, Rret); } void TemplateTable::invokeinterface(int byte_no) { transition(vtos, vtos); assert(byte_no == f1_byte, "use this argument"); const Register Rinterface = G1_scratch; const Register Rret = G3_scratch; const Register Rindex = Lscratch; const Register O0_recv = O0; const Register O1_flags = O1; const Register O2_Klass = O2; const Register Rscratch = G4_scratch; assert_different_registers(Rscratch, G5_method); prepare_invoke(byte_no, Rinterface, Rret, Rindex, O0_recv, O1_flags); // get receiver klass __ null_check(O0_recv, oopDesc::klass_offset_in_bytes()); __ load_klass(O0_recv, O2_Klass); // Special case of invokeinterface called for virtual method of // java.lang.Object. See cpCacheOop.cpp for details. // This code isn't produced by javac, but could be produced by // another compliant java compiler. Label notMethod; __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch); __ btst(O1_flags, Rscratch); __ br(Assembler::zero, false, Assembler::pt, notMethod); __ delayed()->nop(); invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags); __ bind(notMethod); __ profile_virtual_call(O2_Klass, O4); // // find entry point to call // // compute start of first itableOffsetEntry (which is at end of vtable) const int base = InstanceKlass::vtable_start_offset() * wordSize; Label search; Register Rtemp = O1_flags; __ ld(O2_Klass, InstanceKlass::vtable_length_offset() * wordSize, Rtemp); if (align_object_offset(1) > 1) { __ round_to(Rtemp, align_object_offset(1)); } __ sll(Rtemp, LogBytesPerWord, Rtemp); // Rscratch *= 4; if (Assembler::is_simm13(base)) { __ add(Rtemp, base, Rtemp); } else { __ set(base, Rscratch); __ add(Rscratch, Rtemp, Rtemp); } __ add(O2_Klass, Rtemp, Rscratch); __ bind(search); __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp); { Label ok; // Check that entry is non-null. Null entries are probably a bytecode // problem. If the interface isn't implemented by the receiver class, // the VM should throw IncompatibleClassChangeError. linkResolver checks // this too but that's only if the entry isn't already resolved, so we // need to check again. __ br_notnull_short( Rtemp, Assembler::pt, ok); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError)); __ should_not_reach_here(); __ bind(ok); } __ cmp(Rinterface, Rtemp); __ brx(Assembler::notEqual, true, Assembler::pn, search); __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch); // entry found and Rscratch points to it __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch); assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below"); __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex); // Rindex *= 8; __ add(Rscratch, Rindex, Rscratch); __ ld_ptr(O2_Klass, Rscratch, G5_method); // Check for abstract method error. { Label ok; __ br_notnull_short(G5_method, Assembler::pt, ok); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); __ should_not_reach_here(); __ bind(ok); } Register Rcall = Rinterface; assert_different_registers(Rcall, G5_method, Gargs, Rret); __ profile_arguments_type(G5_method, Rcall, Gargs, true); __ call_from_interpreter(Rcall, Gargs, Rret); } void TemplateTable::invokehandle(int byte_no) { transition(vtos, vtos); assert(byte_no == f1_byte, "use this argument"); const Register Rret = Lscratch; const Register G4_mtype = G4_scratch; const Register O0_recv = O0; const Register Rscratch = G3_scratch; prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv); __ null_check(O0_recv); // G4: MethodType object (from cpool->resolved_references[f1], if necessary) // G5: MH.invokeExact_MT method (from f2) // Note: G4_mtype is already pushed (if necessary) by prepare_invoke // do the call __ verify_oop(G4_mtype); __ profile_final_call(O4); // FIXME: profile the LambdaForm also __ profile_arguments_type(G5_method, Rscratch, Gargs, true); __ call_from_interpreter(Rscratch, Gargs, Rret); } void TemplateTable::invokedynamic(int byte_no) { transition(vtos, vtos); assert(byte_no == f1_byte, "use this argument"); const Register Rret = Lscratch; const Register G4_callsite = G4_scratch; const Register Rscratch = G3_scratch; prepare_invoke(byte_no, G5_method, Rret, G4_callsite); // G4: CallSite object (from cpool->resolved_references[f1]) // G5: MH.linkToCallSite method (from f2) // Note: G4_callsite is already pushed by prepare_invoke // %%% should make a type profile for any invokedynamic that takes a ref argument // profile this call __ profile_call(O4); // do the call __ verify_oop(G4_callsite); __ profile_arguments_type(G5_method, Rscratch, Gargs, false); __ call_from_interpreter(Rscratch, Gargs, Rret); } //---------------------------------------------------------------------------------------------------- // Allocation void TemplateTable::_new() { transition(vtos, atos); Label slow_case; Label done; Label initialize_header; Label initialize_object; // including clearing the fields Register RallocatedObject = Otos_i; Register RinstanceKlass = O1; Register Roffset = O3; Register Rscratch = O4; __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned); __ get_cpool_and_tags(Rscratch, G3_scratch); // make sure the class we're about to instantiate has been resolved // This is done before loading InstanceKlass to be consistent with the order // how Constant Pool is updated (see ConstantPool::klass_at_put) __ add(G3_scratch, Array::base_offset_in_bytes(), G3_scratch); __ ldub(G3_scratch, Roffset, G3_scratch); __ cmp(G3_scratch, JVM_CONSTANT_Class); __ br(Assembler::notEqual, false, Assembler::pn, slow_case); __ delayed()->sll(Roffset, LogBytesPerWord, Roffset); // get InstanceKlass //__ sll(Roffset, LogBytesPerWord, Roffset); // executed in delay slot __ add(Roffset, sizeof(ConstantPool), Roffset); __ ld_ptr(Rscratch, Roffset, RinstanceKlass); // make sure klass is fully initialized: __ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch); __ cmp(G3_scratch, InstanceKlass::fully_initialized); __ br(Assembler::notEqual, false, Assembler::pn, slow_case); __ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset); // get instance_size in InstanceKlass (already aligned) //__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset); // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class __ btst(Klass::_lh_instance_slow_path_bit, Roffset); __ br(Assembler::notZero, false, Assembler::pn, slow_case); __ delayed()->nop(); // allocate the instance // 1) Try to allocate in the TLAB // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden // 3) if the above fails (or is not applicable), go to a slow case // (creates a new TLAB, etc.) const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc(); if(UseTLAB) { Register RoldTopValue = RallocatedObject; Register RtlabWasteLimitValue = G3_scratch; Register RnewTopValue = G1_scratch; Register RendValue = Rscratch; Register RfreeValue = RnewTopValue; // check if we can allocate in the TLAB __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue); __ add(RoldTopValue, Roffset, RnewTopValue); // if there is enough space, we do not CAS and do not clear __ cmp(RnewTopValue, RendValue); if(ZeroTLAB) { // the fields have already been cleared __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header); } else { // initialize both the header and fields __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object); } __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset())); if (allow_shared_alloc) { // Check if tlab should be discarded (refill_waste_limit >= free) __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue); __ sub(RendValue, RoldTopValue, RfreeValue); #ifdef _LP64 __ srlx(RfreeValue, LogHeapWordSize, RfreeValue); #else __ srl(RfreeValue, LogHeapWordSize, RfreeValue); #endif __ cmp_and_brx_short(RtlabWasteLimitValue, RfreeValue, Assembler::greaterEqualUnsigned, Assembler::pt, slow_case); // tlab waste is small // increment waste limit to prevent getting stuck on this slow path __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue); __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())); } else { // No allocation in the shared eden. __ ba_short(slow_case); } } // Allocation in the shared Eden if (allow_shared_alloc) { Register RoldTopValue = G1_scratch; Register RtopAddr = G3_scratch; Register RnewTopValue = RallocatedObject; Register RendValue = Rscratch; __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr); Label retry; __ bind(retry); __ set((intptr_t)Universe::heap()->end_addr(), RendValue); __ ld_ptr(RendValue, 0, RendValue); __ ld_ptr(RtopAddr, 0, RoldTopValue); __ add(RoldTopValue, Roffset, RnewTopValue); // RnewTopValue contains the top address after the new object // has been allocated. __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case); __ cas_ptr(RtopAddr, RoldTopValue, RnewTopValue); // if someone beat us on the allocation, try again, otherwise continue __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry); // bump total bytes allocated by this thread // RoldTopValue and RtopAddr are dead, so can use G1 and G3 __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch); } if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) { // clear object fields __ bind(initialize_object); __ deccc(Roffset, sizeof(oopDesc)); __ br(Assembler::zero, false, Assembler::pt, initialize_header); __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch); // initialize remaining object fields if (UseBlockZeroing) { // Use BIS for zeroing __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header); } else { Label loop; __ subcc(Roffset, wordSize, Roffset); __ bind(loop); //__ subcc(Roffset, wordSize, Roffset); // executed above loop or in delay slot __ st_ptr(G0, G3_scratch, Roffset); __ br(Assembler::notEqual, false, Assembler::pt, loop); __ delayed()->subcc(Roffset, wordSize, Roffset); } __ ba_short(initialize_header); } // slow case __ bind(slow_case); __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned); __ get_constant_pool(O1); call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2); __ ba_short(done); // Initialize the header: mark, klass __ bind(initialize_header); if (UseBiasedLocking) { __ ld_ptr(RinstanceKlass, in_bytes(Klass::prototype_header_offset()), G4_scratch); } else { __ set((intptr_t)markOopDesc::prototype(), G4_scratch); } __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes()); // mark __ store_klass_gap(G0, RallocatedObject); // klass gap if compressed __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms) { SkipIfEqual skip_if( _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero); // Trigger dtrace event __ push(atos); __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0); __ pop(atos); } // continue __ bind(done); } void TemplateTable::newarray() { transition(itos, atos); __ ldub(Lbcp, 1, O1); call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i); } void TemplateTable::anewarray() { transition(itos, atos); __ get_constant_pool(O1); __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned); call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i); } void TemplateTable::arraylength() { transition(atos, itos); Label ok; __ verify_oop(Otos_i); __ tst(Otos_i); __ throw_if_not_1_x( Assembler::notZero, ok ); __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i); __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok); } void TemplateTable::checkcast() { transition(atos, atos); Label done, is_null, quicked, cast_ok, resolved; Register Roffset = G1_scratch; Register RobjKlass = O5; Register RspecifiedKlass = O4; // Check for casting a NULL __ br_null_short(Otos_i, Assembler::pn, is_null); // Get value klass in RobjKlass __ load_klass(Otos_i, RobjKlass); // get value klass // Get constant pool tag __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned); // See if the checkcast has been quickened __ get_cpool_and_tags(Lscratch, G3_scratch); __ add(G3_scratch, Array::base_offset_in_bytes(), G3_scratch); __ ldub(G3_scratch, Roffset, G3_scratch); __ cmp(G3_scratch, JVM_CONSTANT_Class); __ br(Assembler::equal, true, Assembler::pt, quicked); __ delayed()->sll(Roffset, LogBytesPerWord, Roffset); __ push_ptr(); // save receiver for result, and for GC call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) ); __ get_vm_result_2(RspecifiedKlass); __ pop_ptr(Otos_i, G3_scratch); // restore receiver __ ba_short(resolved); // Extract target class from constant pool __ bind(quicked); __ add(Roffset, sizeof(ConstantPool), Roffset); __ ld_ptr(Lscratch, Roffset, RspecifiedKlass); __ bind(resolved); __ load_klass(Otos_i, RobjKlass); // get value klass // Generate a fast subtype check. Branch to cast_ok if no // failure. Throw exception if failure. __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok ); // Not a subtype; so must throw exception __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch ); __ bind(cast_ok); if (ProfileInterpreter) { __ ba_short(done); } __ bind(is_null); __ profile_null_seen(G3_scratch); __ bind(done); } void TemplateTable::instanceof() { Label done, is_null, quicked, resolved; transition(atos, itos); Register Roffset = G1_scratch; Register RobjKlass = O5; Register RspecifiedKlass = O4; // Check for casting a NULL __ br_null_short(Otos_i, Assembler::pt, is_null); // Get value klass in RobjKlass __ load_klass(Otos_i, RobjKlass); // get value klass // Get constant pool tag __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned); // See if the checkcast has been quickened __ get_cpool_and_tags(Lscratch, G3_scratch); __ add(G3_scratch, Array::base_offset_in_bytes(), G3_scratch); __ ldub(G3_scratch, Roffset, G3_scratch); __ cmp(G3_scratch, JVM_CONSTANT_Class); __ br(Assembler::equal, true, Assembler::pt, quicked); __ delayed()->sll(Roffset, LogBytesPerWord, Roffset); __ push_ptr(); // save receiver for result, and for GC call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) ); __ get_vm_result_2(RspecifiedKlass); __ pop_ptr(Otos_i, G3_scratch); // restore receiver __ ba_short(resolved); // Extract target class from constant pool __ bind(quicked); __ add(Roffset, sizeof(ConstantPool), Roffset); __ get_constant_pool(Lscratch); __ ld_ptr(Lscratch, Roffset, RspecifiedKlass); __ bind(resolved); __ load_klass(Otos_i, RobjKlass); // get value klass // Generate a fast subtype check. Branch to cast_ok if no // failure. Return 0 if failure. __ or3(G0, 1, Otos_i); // set result assuming quick tests succeed __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done ); // Not a subtype; return 0; __ clr( Otos_i ); if (ProfileInterpreter) { __ ba_short(done); } __ bind(is_null); __ profile_null_seen(G3_scratch); __ bind(done); } void TemplateTable::_breakpoint() { // Note: We get here even if we are single stepping.. // jbug inists on setting breakpoints at every bytecode // even if we are in single step mode. transition(vtos, vtos); // get the unpatched byte code __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp); __ mov(O0, Lbyte_code); // post the breakpoint event __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp); // complete the execution of original bytecode __ dispatch_normal(vtos); } //---------------------------------------------------------------------------------------------------- // Exceptions void TemplateTable::athrow() { transition(atos, vtos); // This works because exception is cached in Otos_i which is same as O0, // which is same as what throw_exception_entry_expects assert(Otos_i == Oexception, "see explanation above"); __ verify_oop(Otos_i); __ null_check(Otos_i); __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch); } //---------------------------------------------------------------------------------------------------- // Synchronization // See frame_sparc.hpp for monitor block layout. // Monitor elements are dynamically allocated by growing stack as needed. void TemplateTable::monitorenter() { transition(atos, vtos); __ verify_oop(Otos_i); // Try to acquire a lock on the object // Repeat until succeeded (i.e., until // monitorenter returns true). { Label ok; __ tst(Otos_i); __ throw_if_not_1_x( Assembler::notZero, ok); __ delayed()->mov(Otos_i, Lscratch); // save obj __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok); } assert(O0 == Otos_i, "Be sure where the object to lock is"); // find a free slot in the monitor block // initialize entry pointer __ clr(O1); // points to free slot or NULL { Label entry, loop, exit; __ add( __ top_most_monitor(), O2 ); // last one to check __ ba( entry ); __ delayed()->mov( Lmonitors, O3 ); // first one to check __ bind( loop ); __ verify_oop(O4); // verify each monitor's oop __ tst(O4); // is this entry unused? __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1); __ cmp(O4, O0); // check if current entry is for same object __ brx( Assembler::equal, false, Assembler::pn, exit ); __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one __ bind( entry ); __ cmp( O3, O2 ); __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop ); __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4); __ bind( exit ); } { Label allocated; // found free slot? __ br_notnull_short(O1, Assembler::pn, allocated); __ add_monitor_to_stack( false, O2, O3 ); __ mov(Lmonitors, O1); __ bind(allocated); } // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly. // The object has already been poped from the stack, so the expression stack looks correct. __ inc(Lbcp); __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object __ lock_object(O1, O0); // check if there's enough space on the stack for the monitors after locking __ generate_stack_overflow_check(0); // The bcp has already been incremented. Just need to dispatch to next instruction. __ dispatch_next(vtos); } void TemplateTable::monitorexit() { transition(atos, vtos); __ verify_oop(Otos_i); __ tst(Otos_i); __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch ); assert(O0 == Otos_i, "just checking"); { Label entry, loop, found; __ add( __ top_most_monitor(), O2 ); // last one to check __ ba(entry); // use Lscratch to hold monitor elem to check, start with most recent monitor, // By using a local it survives the call to the C routine. __ delayed()->mov( Lmonitors, Lscratch ); __ bind( loop ); __ verify_oop(O4); // verify each monitor's oop __ cmp(O4, O0); // check if current entry is for desired object __ brx( Assembler::equal, true, Assembler::pt, found ); __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next __ bind( entry ); __ cmp( Lscratch, O2 ); __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop ); __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); __ should_not_reach_here(); __ bind(found); } __ unlock_object(O1); } //---------------------------------------------------------------------------------------------------- // Wide instructions void TemplateTable::wide() { transition(vtos, vtos); __ ldub(Lbcp, 1, G3_scratch);// get next bc __ sll(G3_scratch, LogBytesPerWord, G3_scratch); AddressLiteral ep(Interpreter::_wentry_point); __ set(ep, G4_scratch); __ ld_ptr(G4_scratch, G3_scratch, G3_scratch); __ jmp(G3_scratch, G0); __ delayed()->nop(); // Note: the Lbcp increment step is part of the individual wide bytecode implementations } //---------------------------------------------------------------------------------------------------- // Multi arrays void TemplateTable::multianewarray() { transition(vtos, atos); // put ndims * wordSize into Lscratch __ ldub( Lbcp, 3, Lscratch); __ sll( Lscratch, Interpreter::logStackElementSize, Lscratch); // Lesp points past last_dim, so set to O1 to first_dim address __ add( Lesp, Lscratch, O1); call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1); __ add( Lesp, Lscratch, Lesp); // pop all dimensions off the stack } #endif /* !CC_INTERP */