/* * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/altHashing.hpp" #include "classfile/classLoaderData.hpp" #include "gc/shared/collectedHeap.hpp" #include "logging/log.hpp" #include "logging/logStream.hpp" #include "memory/allocation.inline.hpp" #include "memory/metaspaceShared.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "oops/symbol.hpp" #include "runtime/atomic.hpp" #include "runtime/os.hpp" #include "runtime/signature.hpp" #include "utilities/utf8.hpp" uint32_t Symbol::pack_hash_and_refcount(short hash, int refcount) { STATIC_ASSERT(PERM_REFCOUNT == ((1 << 16) - 1)); assert(refcount >= 0, "negative refcount"); assert(refcount <= PERM_REFCOUNT, "invalid refcount"); uint32_t hi = hash; uint32_t lo = refcount; return (hi << 16) | lo; } Symbol::Symbol(const u1* name, int length, int refcount) { _hash_and_refcount = pack_hash_and_refcount((short)os::random(), refcount); _length = length; _body[0] = 0; // in case length == 0 for (int i = 0; i < length; i++) { byte_at_put(i, name[i]); } } void* Symbol::operator new(size_t sz, int len) throw() { #if INCLUDE_CDS if (DumpSharedSpaces) { // To get deterministic output from -Xshare:dump, we ensure that Symbols are allocated in // increasing addresses. When the symbols are copied into the archive, we preserve their // relative address order (see SortedSymbolClosure in metaspaceShared.cpp) // // We cannot use arena because arena chunks are allocated by the OS. As a result, for example, // the archived symbol of "java/lang/Object" may sometimes be lower than "java/lang/String", and // sometimes be higher. This would cause non-deterministic contents in the archive. DEBUG_ONLY(static void* last = 0); void* p = (void*)MetaspaceShared::symbol_space_alloc(size(len)*wordSize); assert(p > last, "must increase monotonically"); DEBUG_ONLY(last = p); return p; } #endif int alloc_size = size(len)*wordSize; address res = (address) AllocateHeap(alloc_size, mtSymbol); return res; } void* Symbol::operator new(size_t sz, int len, Arena* arena) throw() { int alloc_size = size(len)*wordSize; address res = (address)arena->Amalloc_4(alloc_size); return res; } void Symbol::operator delete(void *p) { assert(((Symbol*)p)->refcount() == 0, "should not call this"); FreeHeap(p); } #if INCLUDE_CDS void Symbol::update_identity_hash() { // This is called at a safepoint during dumping of a static CDS archive. The caller should have // called os::init_random() with a deterministic seed and then iterate all archived Symbols in // a deterministic order. assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); _hash_and_refcount = pack_hash_and_refcount((short)os::random(), PERM_REFCOUNT); } void Symbol::set_permanent() { // This is called at a safepoint during dumping of a dynamic CDS archive. assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); _hash_and_refcount = pack_hash_and_refcount(extract_hash(_hash_and_refcount), PERM_REFCOUNT); } #endif // ------------------------------------------------------------------ // Symbol::index_of // // Finds if the given string is a substring of this symbol's utf8 bytes. // Return -1 on failure. Otherwise return the first index where str occurs. int Symbol::index_of_at(int i, const char* str, int len) const { assert(i >= 0 && i <= utf8_length(), "oob"); if (len <= 0) return 0; char first_char = str[0]; address bytes = (address) ((Symbol*)this)->base(); address limit = bytes + utf8_length() - len; // inclusive limit address scan = bytes + i; if (scan > limit) return -1; for (; scan <= limit; scan++) { scan = (address) memchr(scan, first_char, (limit + 1 - scan)); if (scan == NULL) return -1; // not found assert(scan >= bytes+i && scan <= limit, "scan oob"); if (len <= 2 ? (char) scan[len-1] == str[len-1] : memcmp(scan+1, str+1, len-1) == 0) { return (int)(scan - bytes); } } return -1; } char* Symbol::as_C_string(char* buf, int size) const { if (size > 0) { int len = MIN2(size - 1, utf8_length()); for (int i = 0; i < len; i++) { buf[i] = char_at(i); } buf[len] = '\0'; } return buf; } char* Symbol::as_C_string() const { int len = utf8_length(); char* str = NEW_RESOURCE_ARRAY(char, len + 1); return as_C_string(str, len + 1); } void Symbol::print_utf8_on(outputStream* st) const { st->print("%s", as_C_string()); } void Symbol::print_symbol_on(outputStream* st) const { char *s; st = st ? st : tty; { // ResourceMark may not affect st->print(). If st is a string // stream it could resize, using the same resource arena. ResourceMark rm; s = as_quoted_ascii(); s = os::strdup(s); } if (s == NULL) { st->print("(null)"); } else { st->print("%s", s); os::free(s); } } char* Symbol::as_quoted_ascii() const { const char *ptr = (const char *)&_body[0]; int quoted_length = UTF8::quoted_ascii_length(ptr, utf8_length()); char* result = NEW_RESOURCE_ARRAY(char, quoted_length + 1); UTF8::as_quoted_ascii(ptr, utf8_length(), result, quoted_length + 1); return result; } jchar* Symbol::as_unicode(int& length) const { Symbol* this_ptr = (Symbol*)this; length = UTF8::unicode_length((char*)this_ptr->bytes(), utf8_length()); jchar* result = NEW_RESOURCE_ARRAY(jchar, length); if (length > 0) { UTF8::convert_to_unicode((char*)this_ptr->bytes(), result, length); } return result; } const char* Symbol::as_klass_external_name(char* buf, int size) const { if (size > 0) { char* str = as_C_string(buf, size); int length = (int)strlen(str); // Turn all '/'s into '.'s (also for array klasses) for (int index = 0; index < length; index++) { if (str[index] == JVM_SIGNATURE_SLASH) { str[index] = JVM_SIGNATURE_DOT; } } return str; } else { return buf; } } const char* Symbol::as_klass_external_name() const { char* str = as_C_string(); int length = (int)strlen(str); // Turn all '/'s into '.'s (also for array klasses) for (int index = 0; index < length; index++) { if (str[index] == JVM_SIGNATURE_SLASH) { str[index] = JVM_SIGNATURE_DOT; } } return str; } static void print_class(outputStream *os, const SignatureStream& ss) { int sb = ss.raw_symbol_begin(), se = ss.raw_symbol_end(); for (int i = sb; i < se; ++i) { int ch = ss.raw_char_at(i); if (ch == JVM_SIGNATURE_SLASH) { os->put(JVM_SIGNATURE_DOT); } else { os->put(ch); } } } static void print_array(outputStream *os, SignatureStream& ss) { int dimensions = ss.skip_array_prefix(); assert(dimensions > 0, ""); if (ss.is_reference()) { print_class(os, ss); } else { os->print("%s", type2name(ss.type())); } for (int i = 0; i < dimensions; ++i) { os->print("[]"); } } void Symbol::print_as_signature_external_return_type(outputStream *os) { for (SignatureStream ss(this); !ss.is_done(); ss.next()) { if (ss.at_return_type()) { if (ss.is_array()) { print_array(os, ss); } else if (ss.is_reference()) { print_class(os, ss); } else { os->print("%s", type2name(ss.type())); } } } } void Symbol::print_as_signature_external_parameters(outputStream *os) { bool first = true; for (SignatureStream ss(this); !ss.is_done(); ss.next()) { if (ss.at_return_type()) break; if (!first) { os->print(", "); } if (ss.is_array()) { print_array(os, ss); } else if (ss.is_reference()) { print_class(os, ss); } else { os->print("%s", type2name(ss.type())); } first = false; } } // Increment refcount while checking for zero. If the Symbol's refcount becomes zero // a thread could be concurrently removing the Symbol. This is used during SymbolTable // lookup to avoid reviving a dead Symbol. bool Symbol::try_increment_refcount() { uint32_t found = _hash_and_refcount; while (true) { uint32_t old_value = found; int refc = extract_refcount(old_value); if (refc == PERM_REFCOUNT) { return true; // sticky max or created permanent } else if (refc == 0) { return false; // dead, can't revive. } else { found = Atomic::cmpxchg(&_hash_and_refcount, old_value, old_value + 1); if (found == old_value) { return true; // successfully updated. } // refcount changed, try again. } } } // The increment_refcount() is called when not doing lookup. It is assumed that you // have a symbol with a non-zero refcount and it can't become zero while referenced by // this caller. void Symbol::increment_refcount() { if (!try_increment_refcount()) { #ifdef ASSERT print(); fatal("refcount has gone to zero"); #endif } #ifndef PRODUCT if (refcount() != PERM_REFCOUNT) { // not a permanent symbol NOT_PRODUCT(Atomic::inc(&_total_count);) } #endif } // Decrement refcount potentially while racing increment, so we need // to check the value after attempting to decrement so that if another // thread increments to PERM_REFCOUNT the value is not decremented. void Symbol::decrement_refcount() { uint32_t found = _hash_and_refcount; while (true) { uint32_t old_value = found; int refc = extract_refcount(old_value); if (refc == PERM_REFCOUNT) { return; // refcount is permanent, permanent is sticky } else if (refc == 0) { #ifdef ASSERT print(); fatal("refcount underflow"); #endif return; } else { found = Atomic::cmpxchg(&_hash_and_refcount, old_value, old_value - 1); if (found == old_value) { return; // successfully updated. } // refcount changed, try again. } } } void Symbol::make_permanent() { uint32_t found = _hash_and_refcount; while (true) { uint32_t old_value = found; int refc = extract_refcount(old_value); if (refc == PERM_REFCOUNT) { return; // refcount is permanent, permanent is sticky } else if (refc == 0) { #ifdef ASSERT print(); fatal("refcount underflow"); #endif return; } else { int hash = extract_hash(old_value); found = Atomic::cmpxchg(&_hash_and_refcount, old_value, pack_hash_and_refcount(hash, PERM_REFCOUNT)); if (found == old_value) { return; // successfully updated. } // refcount changed, try again. } } } void Symbol::metaspace_pointers_do(MetaspaceClosure* it) { if (log_is_enabled(Trace, cds)) { LogStream trace_stream(Log(cds)::trace()); trace_stream.print("Iter(Symbol): %p ", this); print_value_on(&trace_stream); trace_stream.cr(); } } void Symbol::print_on(outputStream* st) const { st->print("Symbol: '"); print_symbol_on(st); st->print("'"); st->print(" count %d", refcount()); } void Symbol::print() const { print_on(tty); } // The print_value functions are present in all builds, to support the // disassembler and error reporting. void Symbol::print_value_on(outputStream* st) const { st->print("'"); for (int i = 0; i < utf8_length(); i++) { st->print("%c", char_at(i)); } st->print("'"); } void Symbol::print_value() const { print_value_on(tty); } bool Symbol::is_valid(Symbol* s) { if (!is_aligned(s, sizeof(MetaWord))) return false; if ((size_t)s < os::min_page_size()) return false; if (!os::is_readable_range(s, s + 1)) return false; // Symbols are not allocated in Java heap. if (Universe::heap()->is_in(s)) return false; int len = s->utf8_length(); if (len < 0) return false; jbyte* bytes = (jbyte*) s->bytes(); return os::is_readable_range(bytes, bytes + len); } // SymbolTable prints this in its statistics NOT_PRODUCT(size_t Symbol::_total_count = 0;)