/* * Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test id=Vanilla * @bug 8253191 * @summary Fuzzing loops with different (random) init, limit, stride, scale etc. Do not force alignment. * @modules java.base/jdk.internal.misc * @library /test/lib * @requires vm.compiler2.enabled * @key randomness * @run main/bootclasspath/othervm -XX:+IgnoreUnrecognizedVMOptions * -XX:LoopUnrollLimit=250 * -XX:CompileCommand=printcompilation,compiler.loopopts.superword.TestAlignVectorFuzzer::* * compiler.loopopts.superword.TestAlignVectorFuzzer */ /* * @test id=VerifyAlignVector * @bug 8253191 * @summary Fuzzing loops with different (random) init, limit, stride, scale etc. Verify AlignVector. * @modules java.base/jdk.internal.misc * @library /test/lib * @requires vm.compiler2.enabled * @key randomness * @run main/bootclasspath/othervm -XX:+IgnoreUnrecognizedVMOptions * -XX:+AlignVector -XX:+VerifyAlignVector * -XX:LoopUnrollLimit=250 * -XX:CompileCommand=printcompilation,compiler.loopopts.superword.TestAlignVectorFuzzer::* * compiler.loopopts.superword.TestAlignVectorFuzzer */ /* * @test id=VerifyAlignVector-Align16 * @bug 8253191 * @summary Fuzzing loops with different (random) init, limit, stride, scale etc. Verify AlignVector. * @modules java.base/jdk.internal.misc * @library /test/lib * @requires vm.compiler2.enabled * @requires vm.bits == 64 * @key randomness * @run main/bootclasspath/othervm -XX:+IgnoreUnrecognizedVMOptions * -XX:+AlignVector -XX:+VerifyAlignVector * -XX:LoopUnrollLimit=250 * -XX:CompileCommand=printcompilation,compiler.loopopts.superword.TestAlignVectorFuzzer::* * -XX:ObjectAlignmentInBytes=16 * compiler.loopopts.superword.TestAlignVectorFuzzer */ /* * @test id=VerifyAlignVector-NoTieredCompilation-Xbatch * @bug 8253191 * @summary Fuzzing loops with different (random) init, limit, stride, scale etc. Verify AlignVector. * @modules java.base/jdk.internal.misc * @library /test/lib * @requires vm.compiler2.enabled * @key randomness * @run main/bootclasspath/othervm -XX:+IgnoreUnrecognizedVMOptions * -XX:+AlignVector -XX:+VerifyAlignVector * -XX:LoopUnrollLimit=250 * -XX:CompileCommand=printcompilation,compiler.loopopts.superword.TestAlignVectorFuzzer::* * -XX:-TieredCompilation -Xbatch * compiler.loopopts.superword.TestAlignVectorFuzzer */ package compiler.loopopts.superword; import java.lang.reflect.Array; import java.util.Map; import java.util.HashMap; import java.lang.invoke.*; import java.util.Random; import jdk.test.lib.Utils; import jdk.internal.misc.Unsafe; public class TestAlignVectorFuzzer { static final int ITERATIONS_MAX = 5; // time allowance may lead to fewer iterations static final int RANGE_CON = 1024 * 8; static int ZERO = 0; private static final Random random = Utils.getRandomInstance(); private static final Unsafe UNSAFE = Unsafe.getUnsafe(); interface TestFunction { Object[] run(); } // Setup for variable compile-time constants: private static final CallSite INIT_CS = new MutableCallSite(MethodType.methodType(int.class)); private static final CallSite LIMIT_CS = new MutableCallSite(MethodType.methodType(int.class)); private static final CallSite STRIDE_CS = new MutableCallSite(MethodType.methodType(int.class)); private static final CallSite SCALE_CS = new MutableCallSite(MethodType.methodType(int.class)); private static final CallSite OFFSET1_CS = new MutableCallSite(MethodType.methodType(int.class)); private static final CallSite OFFSET2_CS = new MutableCallSite(MethodType.methodType(int.class)); private static final CallSite OFFSET3_CS = new MutableCallSite(MethodType.methodType(int.class)); private static final MethodHandle INIT_MH = INIT_CS.dynamicInvoker(); private static final MethodHandle LIMIT_MH = LIMIT_CS.dynamicInvoker(); private static final MethodHandle STRIDE_MH = STRIDE_CS.dynamicInvoker(); private static final MethodHandle SCALE_MH = SCALE_CS.dynamicInvoker(); private static final MethodHandle OFFSET1_MH = OFFSET1_CS.dynamicInvoker(); private static final MethodHandle OFFSET2_MH = OFFSET2_CS.dynamicInvoker(); private static final MethodHandle OFFSET3_MH = OFFSET3_CS.dynamicInvoker(); // Toggle if init, limit and offset are constants or variables private static final CallSite INIT_IS_CON_CS = new MutableCallSite(MethodType.methodType(boolean.class)); private static final CallSite LIMIT_IS_CON_CS = new MutableCallSite(MethodType.methodType(boolean.class)); private static final CallSite OFFSET1_IS_CON_CS = new MutableCallSite(MethodType.methodType(boolean.class)); private static final CallSite OFFSET2_IS_CON_CS = new MutableCallSite(MethodType.methodType(boolean.class)); private static final CallSite OFFSET3_IS_CON_CS = new MutableCallSite(MethodType.methodType(boolean.class)); private static final MethodHandle INIT_IS_CON_MH = INIT_IS_CON_CS.dynamicInvoker(); private static final MethodHandle LIMIT_IS_CON_MH = LIMIT_IS_CON_CS.dynamicInvoker(); private static final MethodHandle OFFSET1_IS_CON_MH = OFFSET1_IS_CON_CS.dynamicInvoker(); private static final MethodHandle OFFSET2_IS_CON_MH = OFFSET2_IS_CON_CS.dynamicInvoker(); private static final MethodHandle OFFSET3_IS_CON_MH = OFFSET3_IS_CON_CS.dynamicInvoker(); // Hand-Unrolling compile-constants private static final CallSite HAND_UNROLLING1_CS = new MutableCallSite(MethodType.methodType(int.class)); private static final CallSite HAND_UNROLLING2_CS = new MutableCallSite(MethodType.methodType(int.class)); private static final CallSite HAND_UNROLLING3_CS = new MutableCallSite(MethodType.methodType(int.class)); private static final MethodHandle HAND_UNROLLING1_MH = HAND_UNROLLING1_CS.dynamicInvoker(); private static final MethodHandle HAND_UNROLLING2_MH = HAND_UNROLLING2_CS.dynamicInvoker(); private static final MethodHandle HAND_UNROLLING3_MH = HAND_UNROLLING3_CS.dynamicInvoker(); static void setConstant(CallSite cs, int value) { MethodHandle constant = MethodHandles.constant(int.class, value); cs.setTarget(constant); } static void setConstant(CallSite cs, boolean value) { MethodHandle constant = MethodHandles.constant(boolean.class, value); cs.setTarget(constant); } static int init_con() { // compile-time constant try { return (int) INIT_MH.invokeExact(); } catch (Throwable t) { throw new InternalError(t); // should NOT happen } } static boolean init_is_con() { // compile-time constant try { return (boolean) INIT_IS_CON_MH.invokeExact(); } catch (Throwable t) { throw new InternalError(t); // should NOT happen } } static int init_con_or_var() { int init = init_con(); if (!init_is_con()) { // branch constant folds to true or false init += ZERO; // LoadI } return init; } static int limit_con() { // compile-time constant try { return (int) LIMIT_MH.invokeExact(); } catch (Throwable t) { throw new InternalError(t); // should NOT happen } } static boolean limit_is_con() { // compile-time constant try { return (boolean) LIMIT_IS_CON_MH.invokeExact(); } catch (Throwable t) { throw new InternalError(t); // should NOT happen } } static int limit_con_or_var() { int limit = limit_con(); if (!limit_is_con()) { // branch constant folds to true or false limit -= ZERO; // LoadI } return limit; } static int stride_con() { // compile-time constant try { return (int) STRIDE_MH.invokeExact(); } catch (Throwable t) { throw new InternalError(t); // should NOT happen } } static int scale_con() { // compile-time constant try { return (int) SCALE_MH.invokeExact(); } catch (Throwable t) { throw new InternalError(t); // should NOT happen } } static int offset1_con() { // compile-time constant try { return (int) OFFSET1_MH.invokeExact(); } catch (Throwable t) { throw new InternalError(t); // should NOT happen } } static int offset2_con() { // compile-time constant try { return (int) OFFSET2_MH.invokeExact(); } catch (Throwable t) { throw new InternalError(t); // should NOT happen } } static int offset3_con() { // compile-time constant try { return (int) OFFSET3_MH.invokeExact(); } catch (Throwable t) { throw new InternalError(t); // should NOT happen } } static boolean offset1_is_con() { // compile-time constant try { return (boolean) OFFSET1_IS_CON_MH.invokeExact(); } catch (Throwable t) { throw new InternalError(t); // should NOT happen } } static boolean offset2_is_con() { // compile-time constant try { return (boolean) OFFSET2_IS_CON_MH.invokeExact(); } catch (Throwable t) { throw new InternalError(t); // should NOT happen } } static boolean offset3_is_con() { // compile-time constant try { return (boolean) OFFSET3_IS_CON_MH.invokeExact(); } catch (Throwable t) { throw new InternalError(t); // should NOT happen } } static int offset1_con_or_var() { int offset = offset1_con(); if (!offset1_is_con()) { // branch constant folds to true or false offset += ZERO; // LoadI } return offset; } static int offset2_con_or_var() { int offset = offset2_con(); if (!offset2_is_con()) { // branch constant folds to true or false offset += ZERO; // LoadI } return offset; } static int offset3_con_or_var() { int offset = offset3_con(); if (!offset3_is_con()) { // branch constant folds to true or false offset += ZERO; // LoadI } return offset; } static int opposite_direction_offset1_con_or_var() { // When indexing in the opposite direction to i, we Want to have: // // a[x - i * scale] // // So we want to fulfill these constraints: // // x - init * scale = offset + limit * scale // x - limit * scale = offset + init * scale // // Hence: // // x = offset + limit * scale + init * scale; int offset = offset1_con_or_var(); int init = init_con(); int limit = limit_con(); int scale = scale_con(); return offset + limit * scale + init * scale; } static int opposite_direction_offset2_con_or_var() { int offset = offset2_con_or_var(); int init = init_con(); int limit = limit_con(); int scale = scale_con(); return offset + limit * scale + init * scale; } static int opposite_direction_offset3_con_or_var() { int offset = offset3_con_or_var(); int init = init_con(); int limit = limit_con(); int scale = scale_con(); return offset + limit * scale + init * scale; } static int hand_unrolling1_con() { // compile-time constant try { return (int) HAND_UNROLLING1_MH.invokeExact(); } catch (Throwable t) { throw new InternalError(t); // should NOT happen } } static int hand_unrolling2_con() { // compile-time constant try { return (int) HAND_UNROLLING2_MH.invokeExact(); } catch (Throwable t) { throw new InternalError(t); // should NOT happen } } static int hand_unrolling3_con() { // compile-time constant try { return (int) HAND_UNROLLING3_MH.invokeExact(); } catch (Throwable t) { throw new InternalError(t); // should NOT happen } } static int randomStride() { return switch (random.nextInt(6)) { case 0 -> random.nextInt(64) + 1; // [1..64] case 1, 2, 3 -> 1; default -> 1 << random.nextInt(7); // powers of 2: 1..64 }; } static int randomScale() { return switch (random.nextInt(6)) { case 0 -> random.nextInt(64) + 1; // [1..64] case 1, 2, 3 -> 1; default -> 1 << random.nextInt(7); // powers of 2: 1..64 }; } static int randomOffsetDiff() { return switch (random.nextInt(6)) { case 0 -> random.nextInt(256) + 128; case 1, 2, 3 -> 0; case 4 -> +(1 << random.nextInt(8)); // powers of 2: 1..128 default -> -(1 << random.nextInt(8)); // powers of 2: -1..-128 }; } static int randomHandUnrolling() { return switch (random.nextInt(2)) { case 0 -> random.nextInt(16) + 1; // [1..16] default -> 1 << random.nextInt(5); // powers of 2: 1..16 }; } static void setRandomConstants() { // We want to create random constants for a loop, but they should never go out of bounds. // We constrain i to be in the range [init..limit], with init < limit. For simplicity, we // always generate: // // 1 <= scale <= 64 // 1 <= stride <= 64 // // We work with this reference memory access: // // a[offset + i * scale] // // It is up to the test function to re-arrange the the given terms to iterate upward or // downward, to hand-unroll etc. // // We must ensure that the first and last indices are in range: // // 0 + error <= offset + init * scale // offset + limit * scale < range - error // // The "error" term is there such that the test functions have the freedom to slightly // diverge from the reference memory access pattern (for example modify the offset). // // The values for scale and range are already fixed. We now want to generate values for // offset, init and limit. // // (1) Fix offset: // // init >= (error - offset) / scale // limit < (range - error - offset) / scale // // (2) Fix init: // // offset >= error - init * scale // limit < (range - error - offset) / scale // // (3) Fix limit: // // offset < range - error - limit * scale // init >= (error - offset) / scale // // We can still slightly perturb the results in the direction permitted by the inequality. int stride = randomStride(); int scale = randomScale(); int range = RANGE_CON; int error = 1024; // generous int init; int limit; int offset1; switch(random.nextInt(3)) { case 0 -> { offset1 = random.nextInt(2_000_000) - 1_000_000; init = (error - offset1) / scale + random.nextInt(64); limit = (range - error - offset1) / scale - random.nextInt(64); } case 1 -> { init = random.nextInt(2_000_000) - 1_000_000; offset1 = error - init * scale + random.nextInt(64); limit = (range - error - offset1) / scale - random.nextInt(64); } default -> { limit = random.nextInt(2_000_000) - 1_000_000; offset1 = range - error - limit * scale - random.nextInt(64); init = (error - offset1) / scale + random.nextInt(64); } } int offset2 = offset1 + randomOffsetDiff(); int offset3 = offset1 + randomOffsetDiff(); // We can toggle the init, limit and offset to either be constant or variable: boolean init_is_con = random.nextInt(3) != 0; boolean limit_is_con = random.nextInt(3) != 0; boolean offset1_is_con = random.nextInt(3) != 0; boolean offset2_is_con = random.nextInt(3) != 0; boolean offset3_is_con = random.nextInt(3) != 0; int hand_unrolling1 = randomHandUnrolling(); int hand_unrolling2 = randomHandUnrolling(); int hand_unrolling3 = randomHandUnrolling(); // Overwrite the fuzzed values below to reproduce a specific failure: // // init = 1; // limit = init + 3000; // offset1 = 0; // offset2 = 0; // offset3 = 32 - 2*init; // stride = 1; // scale = 2; // hand_unrolling1 = 0; // hand_unrolling2 = 0; // hand_unrolling3 = 4; // // init_is_con = true; // limit_is_con = true; // offset1_is_con = true; // offset2_is_con = true; // offset3_is_con = true; System.out.println(" init: " + init + " (con: " + init_is_con + ")"); System.out.println(" limit: " + limit + " (con: " + limit_is_con + ")"); System.out.println(" offset1: " + offset1 + " (con: " + offset1_is_con + ")"); System.out.println(" offset2: " + offset2 + " (con: " + offset2_is_con + ")"); System.out.println(" offset3: " + offset3 + " (con: " + offset3_is_con + ")"); System.out.println(" stride: " + stride); System.out.println(" scale: " + scale); System.out.println(" hand_unrolling1: " + hand_unrolling1); System.out.println(" hand_unrolling2: " + hand_unrolling2); System.out.println(" hand_unrolling3: " + hand_unrolling3); setConstant(INIT_CS, init); setConstant(LIMIT_CS, limit); setConstant(STRIDE_CS, stride); setConstant(SCALE_CS, scale); setConstant(OFFSET1_CS, offset1); setConstant(OFFSET2_CS, offset2); setConstant(OFFSET3_CS, offset3); setConstant(INIT_IS_CON_CS, init_is_con); setConstant(LIMIT_IS_CON_CS, limit_is_con); setConstant(OFFSET1_IS_CON_CS, offset1_is_con); setConstant(OFFSET2_IS_CON_CS, offset2_is_con); setConstant(OFFSET3_IS_CON_CS, offset3_is_con); setConstant(HAND_UNROLLING1_CS, hand_unrolling1); setConstant(HAND_UNROLLING2_CS, hand_unrolling2); setConstant(HAND_UNROLLING3_CS, hand_unrolling3); } public static void main(String[] args) { byte[] aB = generateB(); byte[] bB = generateB(); byte[] cB = generateB(); short[] aS = generateS(); short[] bS = generateS(); short[] cS = generateS(); char[] aC = generateC(); char[] bC = generateC(); char[] cC = generateC(); int[] aI = generateI(); int[] bI = generateI(); int[] cI = generateI(); long[] aL = generateL(); long[] bL = generateL(); long[] cL = generateL(); float[] aF = generateF(); float[] bF = generateF(); float[] cF = generateF(); double[] aD = generateD(); double[] bD = generateD(); double[] cD = generateD(); // Add all tests to list Map tests = new HashMap(); tests.put("testUUB", () -> { return testUUB(aB.clone()); }); tests.put("testDDB", () -> { return testDDB(aB.clone()); }); tests.put("testUDB", () -> { return testUDB(aB.clone()); }); tests.put("testDUB", () -> { return testDUB(aB.clone()); }); tests.put("testUUBH", () -> { return testUUBH(aB.clone()); }); tests.put("testUUBBB", () -> { return testUUBBB(aB.clone(), bB.clone(), cB.clone()); }); tests.put("testUUBSI", () -> { return testUUBSI(aB.clone(), bS.clone(), cI.clone()); }); tests.put("testUUBBBH", () -> { return testUUBBBH(aB.clone(), bB.clone(), cB.clone()); }); tests.put("testUUBCFH", () -> { return testUUBCFH(aB.clone(), bC.clone(), cF.clone()); }); tests.put("testDDBCFH", () -> { return testDDBCFH(aB.clone(), bC.clone(), cF.clone()); }); tests.put("testUDBCFH", () -> { return testUDBCFH(aB.clone(), bC.clone(), cF.clone()); }); tests.put("testDUBCFH", () -> { return testDUBCFH(aB.clone(), bC.clone(), cF.clone()); }); tests.put("testMMSFD", () -> { return testMMSFD(aS.clone(), bF.clone(), cD.clone()); }); tests.put("testUU_unsafe_BasI", () -> { return testUU_unsafe_BasI(aB.clone()); }); tests.put("testUU_unsafe_BasIH", () -> { return testUU_unsafe_BasIH(aB.clone(), bB.clone(), cB.clone()); }); // Only run for 90% of the time, and subtract some margin. This ensures the shutdown has sufficient time, // even for very slow runs. long test_time_allowance = System.currentTimeMillis() + (long)(Utils.adjustTimeout(Utils.DEFAULT_TEST_TIMEOUT) * 0.9) - 20_000; long test_hard_timeout = System.currentTimeMillis() + Utils.adjustTimeout(Utils.DEFAULT_TEST_TIMEOUT); for (int i = 1; i <= ITERATIONS_MAX; i++) { setRandomConstants(); for (Map.Entry entry : tests.entrySet()) { String name = entry.getKey(); TestFunction test = entry.getValue(); long allowance = test_time_allowance - System.currentTimeMillis(); long until_timeout = test_hard_timeout - System.currentTimeMillis(); System.out.println("ITERATION " + i + " of " + ITERATIONS_MAX + ". Test " + name + ", time allowance: " + allowance + ", until timeout: " + until_timeout); // Compute gold value, probably deopt first if constants have changed. Object[] gold = test.run(); // Have enough iterations to (re)compile for (int j = 0; j < 10_000; j++) { Object[] result = test.run(); verify(name, gold, result); } if (System.currentTimeMillis() > test_time_allowance) { allowance = test_time_allowance - System.currentTimeMillis(); until_timeout = test_hard_timeout - System.currentTimeMillis(); System.out.println("TEST PASSED: hit maximal time allownance during iteration " + i + ", time allowance: " + allowance + ", until timeout: " + until_timeout); return; } } } long allowance = test_time_allowance - System.currentTimeMillis(); long until_timeout = test_hard_timeout - System.currentTimeMillis(); System.out.println("TEST PASSED, time allowance: " + allowance + ", until timeout: " + until_timeout); } // Test names: // test // {U: i goes up, D: i goes down, M: mixed} // {U: indexing goes up, D: indexing goes down, M: mixed} // BSCILFD (types used) // -------------------- BASIC SINGLE -------------------- static Object[] testUUB(byte[] a) { int init = init_con_or_var(); int limit = limit_con_or_var(); int stride = stride_con(); int scale = scale_con(); int offset = offset1_con_or_var(); for (int i = init; i < limit; i += stride) { a[offset + i * scale]++; } return new Object[]{ a }; } static Object[] testDDB(byte[] a) { int init = init_con_or_var(); int limit = limit_con_or_var(); int stride = stride_con(); int scale = scale_con(); int offset = offset1_con_or_var(); for (int i = limit; i > init; i -= stride) { a[offset + i * scale]++; } return new Object[]{ a }; } static Object[] testUDB(byte[] a) { int init = init_con_or_var(); int limit = limit_con_or_var(); int stride = stride_con(); int scale = scale_con(); int x = opposite_direction_offset1_con_or_var(); for (int i = init; i < limit; i += stride) { a[x - i * scale]++; } return new Object[]{ a }; } static Object[] testDUB(byte[] a) { int init = init_con_or_var(); int limit = limit_con_or_var(); int stride = stride_con(); int scale = scale_con(); int x = opposite_direction_offset1_con_or_var(); for (int i = limit; i > init; i -= stride) { a[x - i * scale]++; } return new Object[]{ a }; } // -------------------- BASIC HAND UNROLL -------------------- static Object[] testUUBH(byte[] a) { int init = init_con_or_var(); int limit = limit_con_or_var(); int stride = stride_con(); int scale = scale_con(); int offset = offset1_con_or_var(); // All if statements with constant h fold to true or false int h = hand_unrolling1_con(); for (int i = init; i < limit; i += stride) { if (h >= 1) { a[offset + i * scale + 0]++; } if (h >= 2) { a[offset + i * scale + 1]++; } if (h >= 3) { a[offset + i * scale + 2]++; } if (h >= 4) { a[offset + i * scale + 3]++; } if (h >= 5) { a[offset + i * scale + 4]++; } if (h >= 6) { a[offset + i * scale + 5]++; } if (h >= 7) { a[offset + i * scale + 6]++; } if (h >= 8) { a[offset + i * scale + 7]++; } if (h >= 9) { a[offset + i * scale + 8]++; } if (h >= 10) { a[offset + i * scale + 9]++; } if (h >= 11) { a[offset + i * scale + 10]++; } if (h >= 12) { a[offset + i * scale + 11]++; } if (h >= 13) { a[offset + i * scale + 12]++; } if (h >= 14) { a[offset + i * scale + 13]++; } if (h >= 15) { a[offset + i * scale + 14]++; } if (h >= 16) { a[offset + i * scale + 15]++; } } return new Object[]{ a }; } // -------------------- BASIC TRIPPLE -------------------- static Object[] testUUBBB(byte[] a, byte[] b, byte[] c) { int init = init_con_or_var(); int limit = limit_con_or_var(); int stride = stride_con(); int scale = scale_con(); int offset1 = offset1_con_or_var(); int offset2 = offset2_con_or_var(); int offset3 = offset3_con_or_var(); for (int i = init; i < limit; i += stride) { a[offset1 + i * scale]++; b[offset2 + i * scale]++; c[offset3 + i * scale]++; } return new Object[]{ a, b, c }; } static Object[] testUUBSI(byte[] a, short[] b, int[] c) { int init = init_con_or_var(); int limit = limit_con_or_var(); int stride = stride_con(); int scale = scale_con(); int offset1 = offset1_con_or_var(); int offset2 = offset2_con_or_var(); int offset3 = offset3_con_or_var(); for (int i = init; i < limit; i += stride) { a[offset1 + i * scale]++; b[offset2 + i * scale]++; c[offset3 + i * scale]++; } return new Object[]{ a, b, c }; } // -------------------- HAND UNROLL TRIPPLE -------------------- static Object[] testUUBBBH(byte[] a, byte[] b, byte[] c) { int init = init_con_or_var(); int limit = limit_con_or_var(); int stride = stride_con(); int scale = scale_con(); int offset1 = offset1_con_or_var(); int offset2 = offset2_con_or_var(); int offset3 = offset3_con_or_var(); int h1 = hand_unrolling1_con(); int h2 = hand_unrolling2_con(); int h3 = hand_unrolling3_con(); for (int i = init; i < limit; i += stride) { if (h1 >= 1) { a[offset1 + i * scale + 0]++; } if (h1 >= 2) { a[offset1 + i * scale + 1]++; } if (h1 >= 3) { a[offset1 + i * scale + 2]++; } if (h1 >= 4) { a[offset1 + i * scale + 3]++; } if (h1 >= 5) { a[offset1 + i * scale + 4]++; } if (h1 >= 6) { a[offset1 + i * scale + 5]++; } if (h1 >= 7) { a[offset1 + i * scale + 6]++; } if (h1 >= 8) { a[offset1 + i * scale + 7]++; } if (h1 >= 9) { a[offset1 + i * scale + 8]++; } if (h1 >= 10) { a[offset1 + i * scale + 9]++; } if (h1 >= 11) { a[offset1 + i * scale + 10]++; } if (h1 >= 12) { a[offset1 + i * scale + 11]++; } if (h1 >= 13) { a[offset1 + i * scale + 12]++; } if (h1 >= 14) { a[offset1 + i * scale + 13]++; } if (h1 >= 15) { a[offset1 + i * scale + 14]++; } if (h1 >= 16) { a[offset1 + i * scale + 15]++; } if (h2 >= 1) { b[offset2 + i * scale + 0]++; } if (h2 >= 2) { b[offset2 + i * scale + 1]++; } if (h2 >= 3) { b[offset2 + i * scale + 2]++; } if (h2 >= 4) { b[offset2 + i * scale + 3]++; } if (h2 >= 5) { b[offset2 + i * scale + 4]++; } if (h2 >= 6) { b[offset2 + i * scale + 5]++; } if (h2 >= 7) { b[offset2 + i * scale + 6]++; } if (h2 >= 8) { b[offset2 + i * scale + 7]++; } if (h2 >= 9) { b[offset2 + i * scale + 8]++; } if (h2 >= 10) { b[offset2 + i * scale + 9]++; } if (h2 >= 11) { b[offset2 + i * scale + 10]++; } if (h2 >= 12) { b[offset2 + i * scale + 11]++; } if (h2 >= 13) { b[offset2 + i * scale + 12]++; } if (h2 >= 14) { b[offset2 + i * scale + 13]++; } if (h2 >= 15) { b[offset2 + i * scale + 14]++; } if (h2 >= 16) { b[offset2 + i * scale + 15]++; } if (h3 >= 1) { c[offset3 + i * scale + 0]++; } if (h3 >= 2) { c[offset3 + i * scale + 1]++; } if (h3 >= 3) { c[offset3 + i * scale + 2]++; } if (h3 >= 4) { c[offset3 + i * scale + 3]++; } if (h3 >= 5) { c[offset3 + i * scale + 4]++; } if (h3 >= 6) { c[offset3 + i * scale + 5]++; } if (h3 >= 7) { c[offset3 + i * scale + 6]++; } if (h3 >= 8) { c[offset3 + i * scale + 7]++; } if (h3 >= 9) { c[offset3 + i * scale + 8]++; } if (h3 >= 10) { c[offset3 + i * scale + 9]++; } if (h3 >= 11) { c[offset3 + i * scale + 10]++; } if (h3 >= 12) { c[offset3 + i * scale + 11]++; } if (h3 >= 13) { c[offset3 + i * scale + 12]++; } if (h3 >= 14) { c[offset3 + i * scale + 13]++; } if (h3 >= 15) { c[offset3 + i * scale + 14]++; } if (h3 >= 16) { c[offset3 + i * scale + 15]++; } } return new Object[]{ a, b, c }; } static Object[] testUUBCFH(byte[] a, char[] b, float[] c) { int init = init_con_or_var(); int limit = limit_con_or_var(); int stride = stride_con(); int scale = scale_con(); int offset1 = offset1_con_or_var(); int offset2 = offset2_con_or_var(); int offset3 = offset3_con_or_var(); int h1 = hand_unrolling1_con(); int h2 = hand_unrolling2_con(); int h3 = hand_unrolling3_con(); for (int i = init; i < limit; i += stride) { if (h1 >= 1) { a[offset1 + i * scale + 0]++; } if (h1 >= 2) { a[offset1 + i * scale + 1]++; } if (h1 >= 3) { a[offset1 + i * scale + 2]++; } if (h1 >= 4) { a[offset1 + i * scale + 3]++; } if (h1 >= 5) { a[offset1 + i * scale + 4]++; } if (h1 >= 6) { a[offset1 + i * scale + 5]++; } if (h1 >= 7) { a[offset1 + i * scale + 6]++; } if (h1 >= 8) { a[offset1 + i * scale + 7]++; } if (h1 >= 9) { a[offset1 + i * scale + 8]++; } if (h1 >= 10) { a[offset1 + i * scale + 9]++; } if (h1 >= 11) { a[offset1 + i * scale + 10]++; } if (h1 >= 12) { a[offset1 + i * scale + 11]++; } if (h1 >= 13) { a[offset1 + i * scale + 12]++; } if (h1 >= 14) { a[offset1 + i * scale + 13]++; } if (h1 >= 15) { a[offset1 + i * scale + 14]++; } if (h1 >= 16) { a[offset1 + i * scale + 15]++; } if (h2 >= 1) { b[offset2 + i * scale + 0]++; } if (h2 >= 2) { b[offset2 + i * scale + 1]++; } if (h2 >= 3) { b[offset2 + i * scale + 2]++; } if (h2 >= 4) { b[offset2 + i * scale + 3]++; } if (h2 >= 5) { b[offset2 + i * scale + 4]++; } if (h2 >= 6) { b[offset2 + i * scale + 5]++; } if (h2 >= 7) { b[offset2 + i * scale + 6]++; } if (h2 >= 8) { b[offset2 + i * scale + 7]++; } if (h2 >= 9) { b[offset2 + i * scale + 8]++; } if (h2 >= 10) { b[offset2 + i * scale + 9]++; } if (h2 >= 11) { b[offset2 + i * scale + 10]++; } if (h2 >= 12) { b[offset2 + i * scale + 11]++; } if (h2 >= 13) { b[offset2 + i * scale + 12]++; } if (h2 >= 14) { b[offset2 + i * scale + 13]++; } if (h2 >= 15) { b[offset2 + i * scale + 14]++; } if (h2 >= 16) { b[offset2 + i * scale + 15]++; } if (h3 >= 1) { c[offset3 + i * scale + 0]++; } if (h3 >= 2) { c[offset3 + i * scale + 1]++; } if (h3 >= 3) { c[offset3 + i * scale + 2]++; } if (h3 >= 4) { c[offset3 + i * scale + 3]++; } if (h3 >= 5) { c[offset3 + i * scale + 4]++; } if (h3 >= 6) { c[offset3 + i * scale + 5]++; } if (h3 >= 7) { c[offset3 + i * scale + 6]++; } if (h3 >= 8) { c[offset3 + i * scale + 7]++; } if (h3 >= 9) { c[offset3 + i * scale + 8]++; } if (h3 >= 10) { c[offset3 + i * scale + 9]++; } if (h3 >= 11) { c[offset3 + i * scale + 10]++; } if (h3 >= 12) { c[offset3 + i * scale + 11]++; } if (h3 >= 13) { c[offset3 + i * scale + 12]++; } if (h3 >= 14) { c[offset3 + i * scale + 13]++; } if (h3 >= 15) { c[offset3 + i * scale + 14]++; } if (h3 >= 16) { c[offset3 + i * scale + 15]++; } } return new Object[]{ a, b, c }; } static Object[] testDDBCFH(byte[] a, char[] b, float[] c) { int init = init_con_or_var(); int limit = limit_con_or_var(); int stride = stride_con(); int scale = scale_con(); int offset1 = offset1_con_or_var(); int offset2 = offset2_con_or_var(); int offset3 = offset3_con_or_var(); int h1 = hand_unrolling1_con(); int h2 = hand_unrolling2_con(); int h3 = hand_unrolling3_con(); for (int i = limit; i > init; i -= stride) { if (h1 >= 1) { a[offset1 + i * scale + 0]++; } if (h1 >= 2) { a[offset1 + i * scale + 1]++; } if (h1 >= 3) { a[offset1 + i * scale + 2]++; } if (h1 >= 4) { a[offset1 + i * scale + 3]++; } if (h1 >= 5) { a[offset1 + i * scale + 4]++; } if (h1 >= 6) { a[offset1 + i * scale + 5]++; } if (h1 >= 7) { a[offset1 + i * scale + 6]++; } if (h1 >= 8) { a[offset1 + i * scale + 7]++; } if (h1 >= 9) { a[offset1 + i * scale + 8]++; } if (h1 >= 10) { a[offset1 + i * scale + 9]++; } if (h1 >= 11) { a[offset1 + i * scale + 10]++; } if (h1 >= 12) { a[offset1 + i * scale + 11]++; } if (h1 >= 13) { a[offset1 + i * scale + 12]++; } if (h1 >= 14) { a[offset1 + i * scale + 13]++; } if (h1 >= 15) { a[offset1 + i * scale + 14]++; } if (h1 >= 16) { a[offset1 + i * scale + 15]++; } if (h2 >= 1) { b[offset2 + i * scale + 0]++; } if (h2 >= 2) { b[offset2 + i * scale + 1]++; } if (h2 >= 3) { b[offset2 + i * scale + 2]++; } if (h2 >= 4) { b[offset2 + i * scale + 3]++; } if (h2 >= 5) { b[offset2 + i * scale + 4]++; } if (h2 >= 6) { b[offset2 + i * scale + 5]++; } if (h2 >= 7) { b[offset2 + i * scale + 6]++; } if (h2 >= 8) { b[offset2 + i * scale + 7]++; } if (h2 >= 9) { b[offset2 + i * scale + 8]++; } if (h2 >= 10) { b[offset2 + i * scale + 9]++; } if (h2 >= 11) { b[offset2 + i * scale + 10]++; } if (h2 >= 12) { b[offset2 + i * scale + 11]++; } if (h2 >= 13) { b[offset2 + i * scale + 12]++; } if (h2 >= 14) { b[offset2 + i * scale + 13]++; } if (h2 >= 15) { b[offset2 + i * scale + 14]++; } if (h2 >= 16) { b[offset2 + i * scale + 15]++; } if (h3 >= 1) { c[offset3 + i * scale + 0]++; } if (h3 >= 2) { c[offset3 + i * scale + 1]++; } if (h3 >= 3) { c[offset3 + i * scale + 2]++; } if (h3 >= 4) { c[offset3 + i * scale + 3]++; } if (h3 >= 5) { c[offset3 + i * scale + 4]++; } if (h3 >= 6) { c[offset3 + i * scale + 5]++; } if (h3 >= 7) { c[offset3 + i * scale + 6]++; } if (h3 >= 8) { c[offset3 + i * scale + 7]++; } if (h3 >= 9) { c[offset3 + i * scale + 8]++; } if (h3 >= 10) { c[offset3 + i * scale + 9]++; } if (h3 >= 11) { c[offset3 + i * scale + 10]++; } if (h3 >= 12) { c[offset3 + i * scale + 11]++; } if (h3 >= 13) { c[offset3 + i * scale + 12]++; } if (h3 >= 14) { c[offset3 + i * scale + 13]++; } if (h3 >= 15) { c[offset3 + i * scale + 14]++; } if (h3 >= 16) { c[offset3 + i * scale + 15]++; } } return new Object[]{ a, b, c }; } static Object[] testUDBCFH(byte[] a, char[] b, float[] c) { int init = init_con_or_var(); int limit = limit_con_or_var(); int stride = stride_con(); int scale = scale_con(); int x1 = opposite_direction_offset1_con_or_var(); int x2 = opposite_direction_offset2_con_or_var(); int x3 = opposite_direction_offset3_con_or_var(); int h1 = hand_unrolling1_con(); int h2 = hand_unrolling2_con(); int h3 = hand_unrolling3_con(); for (int i = init; i < limit; i += stride) { if (h1 >= 1) { a[x1 - i * scale + 0]++; } if (h1 >= 2) { a[x1 - i * scale + 1]++; } if (h1 >= 3) { a[x1 - i * scale + 2]++; } if (h1 >= 4) { a[x1 - i * scale + 3]++; } if (h1 >= 5) { a[x1 - i * scale + 4]++; } if (h1 >= 6) { a[x1 - i * scale + 5]++; } if (h1 >= 7) { a[x1 - i * scale + 6]++; } if (h1 >= 8) { a[x1 - i * scale + 7]++; } if (h1 >= 9) { a[x1 - i * scale + 8]++; } if (h1 >= 10) { a[x1 - i * scale + 9]++; } if (h1 >= 11) { a[x1 - i * scale + 10]++; } if (h1 >= 12) { a[x1 - i * scale + 11]++; } if (h1 >= 13) { a[x1 - i * scale + 12]++; } if (h1 >= 14) { a[x1 - i * scale + 13]++; } if (h1 >= 15) { a[x1 - i * scale + 14]++; } if (h1 >= 16) { a[x1 - i * scale + 15]++; } if (h2 >= 1) { b[x2 - i * scale + 0]++; } if (h2 >= 2) { b[x2 - i * scale + 1]++; } if (h2 >= 3) { b[x2 - i * scale + 2]++; } if (h2 >= 4) { b[x2 - i * scale + 3]++; } if (h2 >= 5) { b[x2 - i * scale + 4]++; } if (h2 >= 6) { b[x2 - i * scale + 5]++; } if (h2 >= 7) { b[x2 - i * scale + 6]++; } if (h2 >= 8) { b[x2 - i * scale + 7]++; } if (h2 >= 9) { b[x2 - i * scale + 8]++; } if (h2 >= 10) { b[x2 - i * scale + 9]++; } if (h2 >= 11) { b[x2 - i * scale + 10]++; } if (h2 >= 12) { b[x2 - i * scale + 11]++; } if (h2 >= 13) { b[x2 - i * scale + 12]++; } if (h2 >= 14) { b[x2 - i * scale + 13]++; } if (h2 >= 15) { b[x2 - i * scale + 14]++; } if (h2 >= 16) { b[x2 - i * scale + 15]++; } if (h3 >= 1) { c[x3 - i * scale + 0]++; } if (h3 >= 2) { c[x3 - i * scale + 1]++; } if (h3 >= 3) { c[x3 - i * scale + 2]++; } if (h3 >= 4) { c[x3 - i * scale + 3]++; } if (h3 >= 5) { c[x3 - i * scale + 4]++; } if (h3 >= 6) { c[x3 - i * scale + 5]++; } if (h3 >= 7) { c[x3 - i * scale + 6]++; } if (h3 >= 8) { c[x3 - i * scale + 7]++; } if (h3 >= 9) { c[x3 - i * scale + 8]++; } if (h3 >= 10) { c[x3 - i * scale + 9]++; } if (h3 >= 11) { c[x3 - i * scale + 10]++; } if (h3 >= 12) { c[x3 - i * scale + 11]++; } if (h3 >= 13) { c[x3 - i * scale + 12]++; } if (h3 >= 14) { c[x3 - i * scale + 13]++; } if (h3 >= 15) { c[x3 - i * scale + 14]++; } if (h3 >= 16) { c[x3 - i * scale + 15]++; } } return new Object[]{ a, b, c }; } static Object[] testDUBCFH(byte[] a, char[] b, float[] c) { int init = init_con_or_var(); int limit = limit_con_or_var(); int stride = stride_con(); int scale = scale_con(); int x1 = opposite_direction_offset1_con_or_var(); int x2 = opposite_direction_offset2_con_or_var(); int x3 = opposite_direction_offset3_con_or_var(); int h1 = hand_unrolling1_con(); int h2 = hand_unrolling2_con(); int h3 = hand_unrolling3_con(); for (int i = limit; i > init; i -= stride) { if (h1 >= 1) { a[x1 - i * scale + 0]++; } if (h1 >= 2) { a[x1 - i * scale + 1]++; } if (h1 >= 3) { a[x1 - i * scale + 2]++; } if (h1 >= 4) { a[x1 - i * scale + 3]++; } if (h1 >= 5) { a[x1 - i * scale + 4]++; } if (h1 >= 6) { a[x1 - i * scale + 5]++; } if (h1 >= 7) { a[x1 - i * scale + 6]++; } if (h1 >= 8) { a[x1 - i * scale + 7]++; } if (h1 >= 9) { a[x1 - i * scale + 8]++; } if (h1 >= 10) { a[x1 - i * scale + 9]++; } if (h1 >= 11) { a[x1 - i * scale + 10]++; } if (h1 >= 12) { a[x1 - i * scale + 11]++; } if (h1 >= 13) { a[x1 - i * scale + 12]++; } if (h1 >= 14) { a[x1 - i * scale + 13]++; } if (h1 >= 15) { a[x1 - i * scale + 14]++; } if (h1 >= 16) { a[x1 - i * scale + 15]++; } if (h2 >= 1) { b[x2 - i * scale + 0]++; } if (h2 >= 2) { b[x2 - i * scale + 1]++; } if (h2 >= 3) { b[x2 - i * scale + 2]++; } if (h2 >= 4) { b[x2 - i * scale + 3]++; } if (h2 >= 5) { b[x2 - i * scale + 4]++; } if (h2 >= 6) { b[x2 - i * scale + 5]++; } if (h2 >= 7) { b[x2 - i * scale + 6]++; } if (h2 >= 8) { b[x2 - i * scale + 7]++; } if (h2 >= 9) { b[x2 - i * scale + 8]++; } if (h2 >= 10) { b[x2 - i * scale + 9]++; } if (h2 >= 11) { b[x2 - i * scale + 10]++; } if (h2 >= 12) { b[x2 - i * scale + 11]++; } if (h2 >= 13) { b[x2 - i * scale + 12]++; } if (h2 >= 14) { b[x2 - i * scale + 13]++; } if (h2 >= 15) { b[x2 - i * scale + 14]++; } if (h2 >= 16) { b[x2 - i * scale + 15]++; } if (h3 >= 1) { c[x3 - i * scale + 0]++; } if (h3 >= 2) { c[x3 - i * scale + 1]++; } if (h3 >= 3) { c[x3 - i * scale + 2]++; } if (h3 >= 4) { c[x3 - i * scale + 3]++; } if (h3 >= 5) { c[x3 - i * scale + 4]++; } if (h3 >= 6) { c[x3 - i * scale + 5]++; } if (h3 >= 7) { c[x3 - i * scale + 6]++; } if (h3 >= 8) { c[x3 - i * scale + 7]++; } if (h3 >= 9) { c[x3 - i * scale + 8]++; } if (h3 >= 10) { c[x3 - i * scale + 9]++; } if (h3 >= 11) { c[x3 - i * scale + 10]++; } if (h3 >= 12) { c[x3 - i * scale + 11]++; } if (h3 >= 13) { c[x3 - i * scale + 12]++; } if (h3 >= 14) { c[x3 - i * scale + 13]++; } if (h3 >= 15) { c[x3 - i * scale + 14]++; } if (h3 >= 16) { c[x3 - i * scale + 15]++; } } return new Object[]{ a, b, c }; } // -------------------- MIXED DIRECTION TRIPPLE -------------------- static Object[] testMMSFD(short[] a, float[] b, double[] c) { int init = init_con_or_var(); int limit = limit_con_or_var(); int stride = stride_con(); int scale = scale_con(); int offset1 = offset1_con_or_var(); int offset2 = opposite_direction_offset2_con_or_var(); int offset3 = offset3_con_or_var(); for (int i = init; i < limit; i += stride) { a[offset1 + i * scale]++; b[offset2 - i * scale]++; c[offset3 + i * scale]++; } return new Object[]{ a, b, c }; } // -------------------- UNSAFE -------------------- static Object[] testUU_unsafe_BasI(byte[] a) { int init = init_con_or_var(); int limit = limit_con_or_var(); int stride = stride_con(); int scale = scale_con(); int offset = offset1_con_or_var(); for (int i = init; i < limit; i += stride) { int adr = UNSAFE.ARRAY_BYTE_BASE_OFFSET + offset + i * scale; int v = UNSAFE.getIntUnaligned(a, adr); UNSAFE.putIntUnaligned(a, adr, v + 1); } return new Object[]{ a }; } static Object[] testUU_unsafe_BasIH(byte[] a, byte[] b, byte[] c) { int init = init_con_or_var(); int limit = limit_con_or_var(); int stride = stride_con(); int scale = scale_con(); int offset1 = offset1_con_or_var(); int offset2 = offset2_con_or_var(); int offset3 = offset3_con_or_var(); int h1 = hand_unrolling1_con(); int h2 = hand_unrolling2_con(); int h3 = hand_unrolling3_con(); for (int i = init; i < limit; i += stride) { int adr1 = UNSAFE.ARRAY_BYTE_BASE_OFFSET + offset1 + i * scale; int adr2 = UNSAFE.ARRAY_BYTE_BASE_OFFSET + offset2 + i * scale; int adr3 = UNSAFE.ARRAY_BYTE_BASE_OFFSET + offset3 + i * scale; if (h1 >= 1) { UNSAFE.putIntUnaligned(a, adr1 + 0*4, UNSAFE.getIntUnaligned(a, adr1 + 0*4) + 1); } if (h1 >= 2) { UNSAFE.putIntUnaligned(a, adr1 + 1*4, UNSAFE.getIntUnaligned(a, adr1 + 1*4) + 1); } if (h1 >= 3) { UNSAFE.putIntUnaligned(a, adr1 + 2*4, UNSAFE.getIntUnaligned(a, adr1 + 2*4) + 1); } if (h1 >= 4) { UNSAFE.putIntUnaligned(a, adr1 + 3*4, UNSAFE.getIntUnaligned(a, adr1 + 3*4) + 1); } if (h1 >= 5) { UNSAFE.putIntUnaligned(a, adr1 + 4*4, UNSAFE.getIntUnaligned(a, adr1 + 4*4) + 1); } if (h1 >= 6) { UNSAFE.putIntUnaligned(a, adr1 + 5*4, UNSAFE.getIntUnaligned(a, adr1 + 5*4) + 1); } if (h1 >= 7) { UNSAFE.putIntUnaligned(a, adr1 + 6*4, UNSAFE.getIntUnaligned(a, adr1 + 6*4) + 1); } if (h1 >= 8) { UNSAFE.putIntUnaligned(a, adr1 + 7*4, UNSAFE.getIntUnaligned(a, adr1 + 7*4) + 1); } if (h1 >= 9) { UNSAFE.putIntUnaligned(a, adr1 + 8*4, UNSAFE.getIntUnaligned(a, adr1 + 8*4) + 1); } if (h1 >= 10) { UNSAFE.putIntUnaligned(a, adr1 + 9*4, UNSAFE.getIntUnaligned(a, adr1 + 9*4) + 1); } if (h1 >= 11) { UNSAFE.putIntUnaligned(a, adr1 + 10*4, UNSAFE.getIntUnaligned(a, adr1 + 10*4) + 1); } if (h1 >= 12) { UNSAFE.putIntUnaligned(a, adr1 + 11*4, UNSAFE.getIntUnaligned(a, adr1 + 11*4) + 1); } if (h1 >= 13) { UNSAFE.putIntUnaligned(a, adr1 + 12*4, UNSAFE.getIntUnaligned(a, adr1 + 12*4) + 1); } if (h1 >= 14) { UNSAFE.putIntUnaligned(a, adr1 + 13*4, UNSAFE.getIntUnaligned(a, adr1 + 13*4) + 1); } if (h1 >= 15) { UNSAFE.putIntUnaligned(a, adr1 + 14*4, UNSAFE.getIntUnaligned(a, adr1 + 14*4) + 1); } if (h1 >= 16) { UNSAFE.putIntUnaligned(a, adr1 + 15*4, UNSAFE.getIntUnaligned(a, adr1 + 15*4) + 1); } if (h2 >= 1) { UNSAFE.putIntUnaligned(b, adr2 + 0*4, UNSAFE.getIntUnaligned(b, adr2 + 0*4) + 1); } if (h2 >= 2) { UNSAFE.putIntUnaligned(b, adr2 + 1*4, UNSAFE.getIntUnaligned(b, adr2 + 1*4) + 1); } if (h2 >= 3) { UNSAFE.putIntUnaligned(b, adr2 + 2*4, UNSAFE.getIntUnaligned(b, adr2 + 2*4) + 1); } if (h2 >= 4) { UNSAFE.putIntUnaligned(b, adr2 + 3*4, UNSAFE.getIntUnaligned(b, adr2 + 3*4) + 1); } if (h2 >= 5) { UNSAFE.putIntUnaligned(b, adr2 + 4*4, UNSAFE.getIntUnaligned(b, adr2 + 4*4) + 1); } if (h2 >= 6) { UNSAFE.putIntUnaligned(b, adr2 + 5*4, UNSAFE.getIntUnaligned(b, adr2 + 5*4) + 1); } if (h2 >= 7) { UNSAFE.putIntUnaligned(b, adr2 + 6*4, UNSAFE.getIntUnaligned(b, adr2 + 6*4) + 1); } if (h2 >= 8) { UNSAFE.putIntUnaligned(b, adr2 + 7*4, UNSAFE.getIntUnaligned(b, adr2 + 7*4) + 1); } if (h2 >= 9) { UNSAFE.putIntUnaligned(b, adr2 + 8*4, UNSAFE.getIntUnaligned(b, adr2 + 8*4) + 1); } if (h2 >= 10) { UNSAFE.putIntUnaligned(b, adr2 + 9*4, UNSAFE.getIntUnaligned(b, adr2 + 9*4) + 1); } if (h2 >= 11) { UNSAFE.putIntUnaligned(b, adr2 + 10*4, UNSAFE.getIntUnaligned(b, adr2 + 10*4) + 1); } if (h2 >= 12) { UNSAFE.putIntUnaligned(b, adr2 + 11*4, UNSAFE.getIntUnaligned(b, adr2 + 11*4) + 1); } if (h2 >= 13) { UNSAFE.putIntUnaligned(b, adr2 + 12*4, UNSAFE.getIntUnaligned(b, adr2 + 12*4) + 1); } if (h2 >= 14) { UNSAFE.putIntUnaligned(b, adr2 + 13*4, UNSAFE.getIntUnaligned(b, adr2 + 13*4) + 1); } if (h2 >= 15) { UNSAFE.putIntUnaligned(b, adr2 + 14*4, UNSAFE.getIntUnaligned(b, adr2 + 14*4) + 1); } if (h2 >= 16) { UNSAFE.putIntUnaligned(b, adr2 + 15*4, UNSAFE.getIntUnaligned(b, adr2 + 15*4) + 1); } if (h3 >= 1) { UNSAFE.putIntUnaligned(c, adr3 + 0*4, UNSAFE.getIntUnaligned(c, adr3 + 0*4) + 1); } if (h3 >= 2) { UNSAFE.putIntUnaligned(c, adr3 + 1*4, UNSAFE.getIntUnaligned(c, adr3 + 1*4) + 1); } if (h3 >= 3) { UNSAFE.putIntUnaligned(c, adr3 + 2*4, UNSAFE.getIntUnaligned(c, adr3 + 2*4) + 1); } if (h3 >= 4) { UNSAFE.putIntUnaligned(c, adr3 + 3*4, UNSAFE.getIntUnaligned(c, adr3 + 3*4) + 1); } if (h3 >= 5) { UNSAFE.putIntUnaligned(c, adr3 + 4*4, UNSAFE.getIntUnaligned(c, adr3 + 4*4) + 1); } if (h3 >= 6) { UNSAFE.putIntUnaligned(c, adr3 + 5*4, UNSAFE.getIntUnaligned(c, adr3 + 5*4) + 1); } if (h3 >= 7) { UNSAFE.putIntUnaligned(c, adr3 + 6*4, UNSAFE.getIntUnaligned(c, adr3 + 6*4) + 1); } if (h3 >= 8) { UNSAFE.putIntUnaligned(c, adr3 + 7*4, UNSAFE.getIntUnaligned(c, adr3 + 7*4) + 1); } if (h3 >= 9) { UNSAFE.putIntUnaligned(c, adr3 + 8*4, UNSAFE.getIntUnaligned(c, adr3 + 8*4) + 1); } if (h3 >= 10) { UNSAFE.putIntUnaligned(c, adr3 + 9*4, UNSAFE.getIntUnaligned(c, adr3 + 9*4) + 1); } if (h3 >= 11) { UNSAFE.putIntUnaligned(c, adr3 + 10*4, UNSAFE.getIntUnaligned(c, adr3 + 10*4) + 1); } if (h3 >= 12) { UNSAFE.putIntUnaligned(c, adr3 + 11*4, UNSAFE.getIntUnaligned(c, adr3 + 11*4) + 1); } if (h3 >= 13) { UNSAFE.putIntUnaligned(c, adr3 + 12*4, UNSAFE.getIntUnaligned(c, adr3 + 12*4) + 1); } if (h3 >= 14) { UNSAFE.putIntUnaligned(c, adr3 + 13*4, UNSAFE.getIntUnaligned(c, adr3 + 13*4) + 1); } if (h3 >= 15) { UNSAFE.putIntUnaligned(c, adr3 + 14*4, UNSAFE.getIntUnaligned(c, adr3 + 14*4) + 1); } if (h3 >= 16) { UNSAFE.putIntUnaligned(c, adr3 + 15*4, UNSAFE.getIntUnaligned(c, adr3 + 15*4) + 1); } } return new Object[]{ a, b, c }; } static byte[] generateB() { byte[] a = new byte[RANGE_CON]; for (int i = 0; i < a.length; i++) { a[i] = (byte)random.nextInt(); } return a; } static char[] generateC() { char[] a = new char[RANGE_CON]; for (int i = 0; i < a.length; i++) { a[i] = (char)random.nextInt(); } return a; } static short[] generateS() { short[] a = new short[RANGE_CON]; for (int i = 0; i < a.length; i++) { a[i] = (short)random.nextInt(); } return a; } static int[] generateI() { int[] a = new int[RANGE_CON]; for (int i = 0; i < a.length; i++) { a[i] = random.nextInt(); } return a; } static long[] generateL() { long[] a = new long[RANGE_CON]; for (int i = 0; i < a.length; i++) { a[i] = random.nextLong(); } return a; } static float[] generateF() { float[] a = new float[RANGE_CON]; for (int i = 0; i < a.length; i++) { a[i] = Float.intBitsToFloat(random.nextInt()); } return a; } static double[] generateD() { double[] a = new double[RANGE_CON]; for (int i = 0; i < a.length; i++) { a[i] = Double.longBitsToDouble(random.nextLong()); } return a; } static void verify(String name, Object[] gold, Object[] result) { if (gold.length != result.length) { throw new RuntimeException("verify " + name + ": not the same number of outputs: gold.length = " + gold.length + ", result.length = " + result.length); } for (int i = 0; i < gold.length; i++) { Object g = gold[i]; Object r = result[i]; if (g.getClass() != r.getClass() || !g.getClass().isArray() || !r.getClass().isArray()) { throw new RuntimeException("verify " + name + ": must both be array of same type:" + " gold[" + i + "].getClass() = " + g.getClass().getSimpleName() + " result[" + i + "].getClass() = " + r.getClass().getSimpleName()); } if (g == r) { throw new RuntimeException("verify " + name + ": should be two separate arrays (with identical content):" + " gold[" + i + "] == result[" + i + "]"); } if (Array.getLength(g) != Array.getLength(r)) { throw new RuntimeException("verify " + name + ": arrays must have same length:" + " gold[" + i + "].length = " + Array.getLength(g) + " result[" + i + "].length = " + Array.getLength(r)); } Class c = g.getClass().getComponentType(); if (c == byte.class) { verifyB(name, i, (byte[])g, (byte[])r); } else if (c == char.class) { verifyC(name, i, (char[])g, (char[])r); } else if (c == short.class) { verifyS(name, i, (short[])g, (short[])r); } else if (c == int.class) { verifyI(name, i, (int[])g, (int[])r); } else if (c == long.class) { verifyL(name, i, (long[])g, (long[])r); } else if (c == float.class) { verifyF(name, i, (float[])g, (float[])r); } else if (c == double.class) { verifyD(name, i, (double[])g, (double[])r); } else { throw new RuntimeException("verify " + name + ": array type not supported for verify:" + " gold[" + i + "].getClass() = " + g.getClass().getSimpleName() + " result[" + i + "].getClass() = " + r.getClass().getSimpleName()); } } } static void verifyB(String name, int i, byte[] g, byte[] r) { for (int j = 0; j < g.length; j++) { if (g[j] != r[j]) { throw new RuntimeException("verifyB " + name + ": arrays must have same content:" + " gold[" + i + "][" + j + "] = " + g[j] + " result[" + i + "][" + j + "] = " + r[j]); } } } static void verifyC(String name, int i, char[] g, char[] r) { for (int j = 0; j < g.length; j++) { if (g[j] != r[j]) { throw new RuntimeException("verifyC " + name + ": arrays must have same content:" + " gold[" + i + "][" + j + "] = " + g[j] + " result[" + i + "][" + j + "] = " + r[j]); } } } static void verifyS(String name, int i, short[] g, short[] r) { for (int j = 0; j < g.length; j++) { if (g[j] != r[j]) { throw new RuntimeException("verifyS " + name + ": arrays must have same content:" + " gold[" + i + "][" + j + "] = " + g[j] + " result[" + i + "][" + j + "] = " + r[j]); } } } static void verifyI(String name, int i, int[] g, int[] r) { for (int j = 0; j < g.length; j++) { if (g[j] != r[j]) { throw new RuntimeException("verifyI " + name + ": arrays must have same content:" + " gold[" + i + "][" + j + "] = " + g[j] + " result[" + i + "][" + j + "] = " + r[j]); } } } static void verifyL(String name, int i, long[] g, long[] r) { for (int j = 0; j < g.length; j++) { if (g[j] != r[j]) { throw new RuntimeException("verifyL " + name + ": arrays must have same content:" + " gold[" + i + "][" + j + "] = " + g[j] + " result[" + i + "][" + j + "] = " + r[j]); } } } static void verifyF(String name, int i, float[] g, float[] r) { for (int j = 0; j < g.length; j++) { int gv = UNSAFE.getInt(g, UNSAFE.ARRAY_FLOAT_BASE_OFFSET + 4 * j); int rv = UNSAFE.getInt(r, UNSAFE.ARRAY_FLOAT_BASE_OFFSET + 4 * j); if (gv != rv) { throw new RuntimeException("verifyF " + name + ": arrays must have same content:" + " gold[" + i + "][" + j + "] = " + gv + " result[" + i + "][" + j + "] = " + rv); } } } static void verifyD(String name, int i, double[] g, double[] r) { for (int j = 0; j < g.length; j++) { long gv = UNSAFE.getLong(g, UNSAFE.ARRAY_DOUBLE_BASE_OFFSET + 8 * j); long rv = UNSAFE.getLong(r, UNSAFE.ARRAY_DOUBLE_BASE_OFFSET + 8 * j); if (gv != rv) { throw new RuntimeException("verifyF " + name + ": arrays must have same content:" + " gold[" + i + "][" + j + "] = " + gv + " result[" + i + "][" + j + "] = " + rv); } } } }