/* * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/concurrentG1Refine.hpp" #include "gc/g1/concurrentG1RefineThread.hpp" #include "gc/g1/dirtyCardQueue.hpp" #include "gc/g1/g1BlockOffsetTable.inline.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1FromCardCache.hpp" #include "gc/g1/g1GCPhaseTimes.hpp" #include "gc/g1/g1HotCardCache.hpp" #include "gc/g1/g1OopClosures.inline.hpp" #include "gc/g1/g1RemSet.inline.hpp" #include "gc/g1/g1SATBCardTableModRefBS.inline.hpp" #include "gc/g1/heapRegion.inline.hpp" #include "gc/g1/heapRegionManager.inline.hpp" #include "gc/g1/heapRegionRemSet.hpp" #include "gc/shared/gcTraceTime.inline.hpp" #include "memory/iterator.hpp" #include "memory/resourceArea.hpp" #include "oops/oop.inline.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/intHisto.hpp" #include "utilities/stack.inline.hpp" // Collects information about the overall remembered set scan progress during an evacuation. class G1RemSetScanState : public CHeapObj<mtGC> { private: class G1ClearCardTableTask : public AbstractGangTask { G1CollectedHeap* _g1h; uint* _dirty_region_list; size_t _num_dirty_regions; size_t _chunk_length; size_t volatile _cur_dirty_regions; public: G1ClearCardTableTask(G1CollectedHeap* g1h, uint* dirty_region_list, size_t num_dirty_regions, size_t chunk_length) : AbstractGangTask("G1 Clear Card Table Task"), _g1h(g1h), _dirty_region_list(dirty_region_list), _num_dirty_regions(num_dirty_regions), _chunk_length(chunk_length), _cur_dirty_regions(0) { assert(chunk_length > 0, "must be"); } static size_t chunk_size() { return M; } void work(uint worker_id) { G1SATBCardTableModRefBS* ct_bs = _g1h->g1_barrier_set(); while (_cur_dirty_regions < _num_dirty_regions) { size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length; size_t max = MIN2(next + _chunk_length, _num_dirty_regions); for (size_t i = next; i < max; i++) { HeapRegion* r = _g1h->region_at(_dirty_region_list[i]); if (!r->is_survivor()) { ct_bs->clear(MemRegion(r->bottom(), r->end())); } } } } }; size_t _max_regions; // Scan progress for the remembered set of a single region. Transitions from // Unclaimed -> Claimed -> Complete. // At each of the transitions the thread that does the transition needs to perform // some special action once. This is the reason for the extra "Claimed" state. typedef jint G1RemsetIterState; static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet. static const G1RemsetIterState Claimed = 1; // The remembered set is currently being scanned. static const G1RemsetIterState Complete = 2; // The remembered set has been completely scanned. G1RemsetIterState volatile* _iter_states; // The current location where the next thread should continue scanning in a region's // remembered set. size_t volatile* _iter_claims; // Temporary buffer holding the regions we used to store remembered set scan duplicate // information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region) uint* _dirty_region_buffer; typedef jbyte IsDirtyRegionState; static const IsDirtyRegionState Clean = 0; static const IsDirtyRegionState Dirty = 1; // Holds a flag for every region whether it is in the _dirty_region_buffer already // to avoid duplicates. Uses jbyte since there are no atomic instructions for bools. IsDirtyRegionState* _in_dirty_region_buffer; size_t _cur_dirty_region; public: G1RemSetScanState() : _max_regions(0), _iter_states(NULL), _iter_claims(NULL), _dirty_region_buffer(NULL), _in_dirty_region_buffer(NULL), _cur_dirty_region(0) { } ~G1RemSetScanState() { if (_iter_states != NULL) { FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states); } if (_iter_claims != NULL) { FREE_C_HEAP_ARRAY(size_t, _iter_claims); } if (_dirty_region_buffer != NULL) { FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer); } if (_in_dirty_region_buffer != NULL) { FREE_C_HEAP_ARRAY(IsDirtyRegionState, _in_dirty_region_buffer); } } void initialize(uint max_regions) { assert(_iter_states == NULL, "Must not be initialized twice"); assert(_iter_claims == NULL, "Must not be initialized twice"); _max_regions = max_regions; _iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC); _iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC); _dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC); _in_dirty_region_buffer = NEW_C_HEAP_ARRAY(IsDirtyRegionState, max_regions, mtGC); } void reset() { for (uint i = 0; i < _max_regions; i++) { _iter_states[i] = Unclaimed; } memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t)); memset(_in_dirty_region_buffer, Clean, _max_regions * sizeof(IsDirtyRegionState)); _cur_dirty_region = 0; } // Attempt to claim the remembered set of the region for iteration. Returns true // if this call caused the transition from Unclaimed to Claimed. inline bool claim_iter(uint region) { assert(region < _max_regions, "Tried to access invalid region %u", region); if (_iter_states[region] != Unclaimed) { return false; } jint res = Atomic::cmpxchg(Claimed, (jint*)(&_iter_states[region]), Unclaimed); return (res == Unclaimed); } // Try to atomically sets the iteration state to "complete". Returns true for the // thread that caused the transition. inline bool set_iter_complete(uint region) { if (iter_is_complete(region)) { return false; } jint res = Atomic::cmpxchg(Complete, (jint*)(&_iter_states[region]), Claimed); return (res == Claimed); } // Returns true if the region's iteration is complete. inline bool iter_is_complete(uint region) const { assert(region < _max_regions, "Tried to access invalid region %u", region); return _iter_states[region] == Complete; } // The current position within the remembered set of the given region. inline size_t iter_claimed(uint region) const { assert(region < _max_regions, "Tried to access invalid region %u", region); return _iter_claims[region]; } // Claim the next block of cards within the remembered set of the region with // step size. inline size_t iter_claimed_next(uint region, size_t step) { return Atomic::add(step, &_iter_claims[region]) - step; } void add_dirty_region(uint region) { if (_in_dirty_region_buffer[region] == Dirty) { return; } bool marked_as_dirty = Atomic::cmpxchg(Dirty, &_in_dirty_region_buffer[region], Clean) == Clean; if (marked_as_dirty) { size_t allocated = Atomic::add(1, &_cur_dirty_region) - 1; _dirty_region_buffer[allocated] = region; } } // Clear the card table of "dirty" regions. void clear_card_table(WorkGang* workers) { if (_cur_dirty_region == 0) { return; } size_t const num_chunks = align_size_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size(); uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers()); size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion; // Iterate over the dirty cards region list. G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length); log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " " "units of work for " SIZE_FORMAT " regions.", cl.name(), num_workers, num_chunks, _cur_dirty_region); workers->run_task(&cl, num_workers); #ifndef PRODUCT // Need to synchronize with concurrent cleanup since it needs to // finish its card table clearing before we can verify. G1CollectedHeap::heap()->wait_while_free_regions_coming(); G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup(); #endif } }; G1RemSet::G1RemSet(G1CollectedHeap* g1, CardTableModRefBS* ct_bs) : _g1(g1), _scan_state(new G1RemSetScanState()), _conc_refine_cards(0), _ct_bs(ct_bs), _g1p(_g1->g1_policy()), _cg1r(g1->concurrent_g1_refine()), _prev_period_summary(), _into_cset_dirty_card_queue_set(false) { if (log_is_enabled(Trace, gc, remset)) { _prev_period_summary.initialize(this); } // Initialize the card queue set used to hold cards containing // references into the collection set. _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code DirtyCardQ_CBL_mon, DirtyCardQ_FL_lock, -1, // never trigger processing -1, // no limit on length Shared_DirtyCardQ_lock, &JavaThread::dirty_card_queue_set()); } G1RemSet::~G1RemSet() { if (_scan_state != NULL) { delete _scan_state; } } uint G1RemSet::num_par_rem_sets() { return MAX2(DirtyCardQueueSet::num_par_ids() + ConcurrentG1Refine::thread_num(), ParallelGCThreads); } void G1RemSet::initialize(size_t capacity, uint max_regions) { G1FromCardCache::initialize(num_par_rem_sets(), max_regions); _scan_state->initialize(max_regions); { GCTraceTime(Debug, gc, marking)("Initialize Card Live Data"); _card_live_data.initialize(capacity, max_regions); } if (G1PretouchAuxiliaryMemory) { GCTraceTime(Debug, gc, marking)("Pre-Touch Card Live Data"); _card_live_data.pretouch(); } } G1ScanRSClosure::G1ScanRSClosure(G1RemSetScanState* scan_state, G1ParPushHeapRSClosure* push_heap_cl, CodeBlobClosure* code_root_cl, uint worker_i) : _scan_state(scan_state), _push_heap_cl(push_heap_cl), _code_root_cl(code_root_cl), _strong_code_root_scan_time_sec(0.0), _cards(0), _cards_done(0), _worker_i(worker_i) { _g1h = G1CollectedHeap::heap(); _bot = _g1h->bot(); _ct_bs = _g1h->g1_barrier_set(); _block_size = MAX2<size_t>(G1RSetScanBlockSize, 1); } void G1ScanRSClosure::scan_card(size_t index, HeapRegion *r) { // Stack allocate the DirtyCardToOopClosure instance HeapRegionDCTOC cl(_g1h, r, _push_heap_cl, CardTableModRefBS::Precise); // Set the "from" region in the closure. _push_heap_cl->set_region(r); MemRegion card_region(_bot->address_for_index(index), BOTConstants::N_words); MemRegion pre_gc_allocated(r->bottom(), r->scan_top()); MemRegion mr = pre_gc_allocated.intersection(card_region); if (!mr.is_empty() && !_ct_bs->is_card_claimed(index)) { // We make the card as "claimed" lazily (so races are possible // but they're benign), which reduces the number of duplicate // scans (the rsets of the regions in the cset can intersect). _ct_bs->set_card_claimed(index); _cards_done++; cl.do_MemRegion(mr); } } void G1ScanRSClosure::scan_strong_code_roots(HeapRegion* r) { double scan_start = os::elapsedTime(); r->strong_code_roots_do(_code_root_cl); _strong_code_root_scan_time_sec += (os::elapsedTime() - scan_start); } bool G1ScanRSClosure::doHeapRegion(HeapRegion* r) { assert(r->in_collection_set(), "should only be called on elements of CS."); uint region_idx = r->hrm_index(); if (_scan_state->iter_is_complete(region_idx)) { return false; } if (_scan_state->claim_iter(region_idx)) { // If we ever free the collection set concurrently, we should also // clear the card table concurrently therefore we won't need to // add regions of the collection set to the dirty cards region. _scan_state->add_dirty_region(region_idx); } HeapRegionRemSetIterator iter(r->rem_set()); size_t card_index; // We claim cards in block so as to reduce the contention. The block size is determined by // the G1RSetScanBlockSize parameter. size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, _block_size); for (size_t current_card = 0; iter.has_next(card_index); current_card++) { if (current_card >= claimed_card_block + _block_size) { claimed_card_block = _scan_state->iter_claimed_next(region_idx, _block_size); } if (current_card < claimed_card_block) { continue; } HeapWord* card_start = _g1h->bot()->address_for_index(card_index); HeapRegion* card_region = _g1h->heap_region_containing(card_start); _cards++; _scan_state->add_dirty_region(card_region->hrm_index()); // If the card is dirty, then we will scan it during updateRS. if (!card_region->in_collection_set() && !_ct_bs->is_card_dirty(card_index)) { scan_card(card_index, card_region); } } if (_scan_state->set_iter_complete(region_idx)) { // Scan the strong code root list attached to the current region scan_strong_code_roots(r); } return false; } size_t G1RemSet::scan_rem_set(G1ParPushHeapRSClosure* oops_in_heap_closure, CodeBlobClosure* heap_region_codeblobs, uint worker_i) { double rs_time_start = os::elapsedTime(); HeapRegion *startRegion = _g1->start_cset_region_for_worker(worker_i); G1ScanRSClosure cl(_scan_state, oops_in_heap_closure, heap_region_codeblobs, worker_i); _g1->collection_set_iterate_from(startRegion, &cl); double scan_rs_time_sec = (os::elapsedTime() - rs_time_start) - cl.strong_code_root_scan_time_sec(); _g1p->phase_times()->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, scan_rs_time_sec); _g1p->phase_times()->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, cl.strong_code_root_scan_time_sec()); return cl.cards_done(); } // Closure used for updating RSets and recording references that // point into the collection set. Only called during an // evacuation pause. class RefineRecordRefsIntoCSCardTableEntryClosure: public CardTableEntryClosure { G1RemSet* _g1rs; DirtyCardQueue* _into_cset_dcq; G1ParPushHeapRSClosure* _cl; public: RefineRecordRefsIntoCSCardTableEntryClosure(G1CollectedHeap* g1h, DirtyCardQueue* into_cset_dcq, G1ParPushHeapRSClosure* cl) : _g1rs(g1h->g1_rem_set()), _into_cset_dcq(into_cset_dcq), _cl(cl) {} bool do_card_ptr(jbyte* card_ptr, uint worker_i) { // The only time we care about recording cards that // contain references that point into the collection set // is during RSet updating within an evacuation pause. // In this case worker_i should be the id of a GC worker thread. assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause"); assert(worker_i < ParallelGCThreads, "should be a GC worker"); if (_g1rs->refine_card(card_ptr, worker_i, _cl)) { // 'card_ptr' contains references that point into the collection // set. We need to record the card in the DCQS // (_into_cset_dirty_card_queue_set) // that's used for that purpose. // // Enqueue the card _into_cset_dcq->enqueue(card_ptr); } return true; } }; void G1RemSet::update_rem_set(DirtyCardQueue* into_cset_dcq, G1ParPushHeapRSClosure* oops_in_heap_closure, uint worker_i) { RefineRecordRefsIntoCSCardTableEntryClosure into_cset_update_rs_cl(_g1, into_cset_dcq, oops_in_heap_closure); G1GCParPhaseTimesTracker x(_g1p->phase_times(), G1GCPhaseTimes::UpdateRS, worker_i); if (ConcurrentG1Refine::hot_card_cache_enabled()) { // Apply the closure to the entries of the hot card cache. G1GCParPhaseTimesTracker y(_g1p->phase_times(), G1GCPhaseTimes::ScanHCC, worker_i); _g1->iterate_hcc_closure(&into_cset_update_rs_cl, worker_i); } // Apply the closure to all remaining log entries. _g1->iterate_dirty_card_closure(&into_cset_update_rs_cl, worker_i); } void G1RemSet::cleanupHRRS() { HeapRegionRemSet::cleanup(); } size_t G1RemSet::oops_into_collection_set_do(G1ParPushHeapRSClosure* cl, CodeBlobClosure* heap_region_codeblobs, uint worker_i) { // A DirtyCardQueue that is used to hold cards containing references // that point into the collection set. This DCQ is associated with a // special DirtyCardQueueSet (see g1CollectedHeap.hpp). Under normal // circumstances (i.e. the pause successfully completes), these cards // are just discarded (there's no need to update the RSets of regions // that were in the collection set - after the pause these regions // are wholly 'free' of live objects. In the event of an evacuation // failure the cards/buffers in this queue set are passed to the // DirtyCardQueueSet that is used to manage RSet updates DirtyCardQueue into_cset_dcq(&_into_cset_dirty_card_queue_set); update_rem_set(&into_cset_dcq, cl, worker_i); return scan_rem_set(cl, heap_region_codeblobs, worker_i);; } void G1RemSet::prepare_for_oops_into_collection_set_do() { _g1->set_refine_cte_cl_concurrency(false); DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); dcqs.concatenate_logs(); _scan_state->reset(); } void G1RemSet::cleanup_after_oops_into_collection_set_do() { G1GCPhaseTimes* phase_times = _g1->g1_policy()->phase_times(); // Cleanup after copy _g1->set_refine_cte_cl_concurrency(true); // Set all cards back to clean. double start = os::elapsedTime(); _scan_state->clear_card_table(_g1->workers()); phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0); DirtyCardQueueSet& into_cset_dcqs = _into_cset_dirty_card_queue_set; if (_g1->evacuation_failed()) { double restore_remembered_set_start = os::elapsedTime(); // Restore remembered sets for the regions pointing into the collection set. // We just need to transfer the completed buffers from the DirtyCardQueueSet // used to hold cards that contain references that point into the collection set // to the DCQS used to hold the deferred RS updates. _g1->dirty_card_queue_set().merge_bufferlists(&into_cset_dcqs); phase_times->record_evac_fail_restore_remsets((os::elapsedTime() - restore_remembered_set_start) * 1000.0); } // Free any completed buffers in the DirtyCardQueueSet used to hold cards // which contain references that point into the collection. _into_cset_dirty_card_queue_set.clear(); assert(_into_cset_dirty_card_queue_set.completed_buffers_num() == 0, "all buffers should be freed"); _into_cset_dirty_card_queue_set.clear_n_completed_buffers(); } class G1ScrubRSClosure: public HeapRegionClosure { G1CollectedHeap* _g1h; G1CardLiveData* _live_data; public: G1ScrubRSClosure(G1CardLiveData* live_data) : _g1h(G1CollectedHeap::heap()), _live_data(live_data) { } bool doHeapRegion(HeapRegion* r) { if (!r->is_continues_humongous()) { r->rem_set()->scrub(_live_data); } return false; } }; void G1RemSet::scrub(uint worker_num, HeapRegionClaimer *hrclaimer) { G1ScrubRSClosure scrub_cl(&_card_live_data); _g1->heap_region_par_iterate(&scrub_cl, worker_num, hrclaimer); } G1TriggerClosure::G1TriggerClosure() : _triggered(false) { } G1InvokeIfNotTriggeredClosure::G1InvokeIfNotTriggeredClosure(G1TriggerClosure* t_cl, OopClosure* oop_cl) : _trigger_cl(t_cl), _oop_cl(oop_cl) { } G1Mux2Closure::G1Mux2Closure(OopClosure *c1, OopClosure *c2) : _c1(c1), _c2(c2) { } G1UpdateRSOrPushRefOopClosure:: G1UpdateRSOrPushRefOopClosure(G1CollectedHeap* g1h, G1RemSet* rs, G1ParPushHeapRSClosure* push_ref_cl, bool record_refs_into_cset, uint worker_i) : _g1(g1h), _g1_rem_set(rs), _from(NULL), _record_refs_into_cset(record_refs_into_cset), _push_ref_cl(push_ref_cl), _worker_i(worker_i) { } // Returns true if the given card contains references that point // into the collection set, if we're checking for such references; // false otherwise. bool G1RemSet::refine_card(jbyte* card_ptr, uint worker_i, G1ParPushHeapRSClosure* oops_in_heap_closure) { assert(_g1->is_in_exact(_ct_bs->addr_for(card_ptr)), "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap", p2i(card_ptr), _ct_bs->index_for(_ct_bs->addr_for(card_ptr)), p2i(_ct_bs->addr_for(card_ptr)), _g1->addr_to_region(_ct_bs->addr_for(card_ptr))); bool check_for_refs_into_cset = oops_in_heap_closure != NULL; // If the card is no longer dirty, nothing to do. if (*card_ptr != CardTableModRefBS::dirty_card_val()) { // No need to return that this card contains refs that point // into the collection set. return false; } // Construct the region representing the card. HeapWord* start = _ct_bs->addr_for(card_ptr); // And find the region containing it. HeapRegion* r = _g1->heap_region_containing(start); // Why do we have to check here whether a card is on a young region, // given that we dirty young regions and, as a result, the // post-barrier is supposed to filter them out and never to enqueue // them? When we allocate a new region as the "allocation region" we // actually dirty its cards after we release the lock, since card // dirtying while holding the lock was a performance bottleneck. So, // as a result, it is possible for other threads to actually // allocate objects in the region (after the acquire the lock) // before all the cards on the region are dirtied. This is unlikely, // and it doesn't happen often, but it can happen. So, the extra // check below filters out those cards. if (r->is_young()) { return false; } // While we are processing RSet buffers during the collection, we // actually don't want to scan any cards on the collection set, // since we don't want to update remembered sets with entries that // point into the collection set, given that live objects from the // collection set are about to move and such entries will be stale // very soon. This change also deals with a reliability issue which // involves scanning a card in the collection set and coming across // an array that was being chunked and looking malformed. Note, // however, that if evacuation fails, we have to scan any objects // that were not moved and create any missing entries. if (r->in_collection_set()) { return false; } // The result from the hot card cache insert call is either: // * pointer to the current card // (implying that the current card is not 'hot'), // * null // (meaning we had inserted the card ptr into the "hot" card cache, // which had some headroom), // * a pointer to a "hot" card that was evicted from the "hot" cache. // G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); if (hot_card_cache->use_cache()) { assert(!check_for_refs_into_cset, "sanity"); assert(!SafepointSynchronize::is_at_safepoint(), "sanity"); card_ptr = hot_card_cache->insert(card_ptr); if (card_ptr == NULL) { // There was no eviction. Nothing to do. return false; } start = _ct_bs->addr_for(card_ptr); r = _g1->heap_region_containing(start); // Checking whether the region we got back from the cache // is young here is inappropriate. The region could have been // freed, reallocated and tagged as young while in the cache. // Hence we could see its young type change at any time. } // Don't use addr_for(card_ptr + 1) which can ask for // a card beyond the heap. This is not safe without a perm // gen at the upper end of the heap. HeapWord* end = start + CardTableModRefBS::card_size_in_words; MemRegion dirtyRegion(start, end); G1UpdateRSOrPushRefOopClosure update_rs_oop_cl(_g1, _g1->g1_rem_set(), oops_in_heap_closure, check_for_refs_into_cset, worker_i); update_rs_oop_cl.set_from(r); G1TriggerClosure trigger_cl; FilterIntoCSClosure into_cs_cl(_g1, &trigger_cl); G1InvokeIfNotTriggeredClosure invoke_cl(&trigger_cl, &into_cs_cl); G1Mux2Closure mux(&invoke_cl, &update_rs_oop_cl); FilterOutOfRegionClosure filter_then_update_rs_oop_cl(r, (check_for_refs_into_cset ? (OopClosure*)&mux : (OopClosure*)&update_rs_oop_cl)); // The region for the current card may be a young region. The // current card may have been a card that was evicted from the // card cache. When the card was inserted into the cache, we had // determined that its region was non-young. While in the cache, // the region may have been freed during a cleanup pause, reallocated // and tagged as young. // // We wish to filter out cards for such a region but the current // thread, if we're running concurrently, may "see" the young type // change at any time (so an earlier "is_young" check may pass or // fail arbitrarily). We tell the iteration code to perform this // filtering when it has been determined that there has been an actual // allocation in this region and making it safe to check the young type. bool filter_young = true; HeapWord* stop_point = r->oops_on_card_seq_iterate_careful(dirtyRegion, &filter_then_update_rs_oop_cl, filter_young, card_ptr); // If stop_point is non-null, then we encountered an unallocated region // (perhaps the unfilled portion of a TLAB.) For now, we'll dirty the // card and re-enqueue: if we put off the card until a GC pause, then the // unallocated portion will be filled in. Alternatively, we might try // the full complexity of the technique used in "regular" precleaning. if (stop_point != NULL) { // The card might have gotten re-dirtied and re-enqueued while we // worked. (In fact, it's pretty likely.) if (*card_ptr != CardTableModRefBS::dirty_card_val()) { *card_ptr = CardTableModRefBS::dirty_card_val(); MutexLockerEx x(Shared_DirtyCardQ_lock, Mutex::_no_safepoint_check_flag); DirtyCardQueue* sdcq = JavaThread::dirty_card_queue_set().shared_dirty_card_queue(); sdcq->enqueue(card_ptr); } } else { _conc_refine_cards++; } // This gets set to true if the card being refined has // references that point into the collection set. bool has_refs_into_cset = trigger_cl.triggered(); // We should only be detecting that the card contains references // that point into the collection set if the current thread is // a GC worker thread. assert(!has_refs_into_cset || SafepointSynchronize::is_at_safepoint(), "invalid result at non safepoint"); return has_refs_into_cset; } void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) { if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) && (period_count % G1SummarizeRSetStatsPeriod == 0)) { if (!_prev_period_summary.initialized()) { _prev_period_summary.initialize(this); } G1RemSetSummary current; current.initialize(this); _prev_period_summary.subtract_from(¤t); Log(gc, remset) log; log.trace("%s", header); ResourceMark rm; _prev_period_summary.print_on(log.trace_stream()); _prev_period_summary.set(¤t); } } void G1RemSet::print_summary_info() { Log(gc, remset, exit) log; if (log.is_trace()) { log.trace(" Cumulative RS summary"); G1RemSetSummary current; current.initialize(this); ResourceMark rm; current.print_on(log.trace_stream()); } } void G1RemSet::prepare_for_verify() { if (G1HRRSFlushLogBuffersOnVerify && (VerifyBeforeGC || VerifyAfterGC) && (!_g1->collector_state()->full_collection() || G1VerifyRSetsDuringFullGC)) { cleanupHRRS(); _g1->set_refine_cte_cl_concurrency(false); if (SafepointSynchronize::is_at_safepoint()) { DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); dcqs.concatenate_logs(); } G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); bool use_hot_card_cache = hot_card_cache->use_cache(); hot_card_cache->set_use_cache(false); DirtyCardQueue into_cset_dcq(&_into_cset_dirty_card_queue_set); update_rem_set(&into_cset_dcq, NULL, 0); _into_cset_dirty_card_queue_set.clear(); hot_card_cache->set_use_cache(use_hot_card_cache); assert(JavaThread::dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed"); } } void G1RemSet::create_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) { _card_live_data.create(workers, mark_bitmap); } void G1RemSet::finalize_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) { _card_live_data.finalize(workers, mark_bitmap); } void G1RemSet::verify_card_live_data(WorkGang* workers, G1CMBitMap* bitmap) { _card_live_data.verify(workers, bitmap); } void G1RemSet::clear_card_live_data(WorkGang* workers) { _card_live_data.clear(workers); } #ifdef ASSERT void G1RemSet::verify_card_live_data_is_clear() { _card_live_data.verify_is_clear(); } #endif