/* * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_OPTO_COMPILE_HPP #define SHARE_OPTO_COMPILE_HPP #include "asm/codeBuffer.hpp" #include "ci/compilerInterface.hpp" #include "code/debugInfoRec.hpp" #include "compiler/compilerOracle.hpp" #include "compiler/compileBroker.hpp" #include "compiler/compilerEvent.hpp" #include "libadt/dict.hpp" #include "libadt/vectset.hpp" #include "memory/resourceArea.hpp" #include "oops/methodData.hpp" #include "opto/idealGraphPrinter.hpp" #include "opto/phasetype.hpp" #include "opto/phase.hpp" #include "opto/regmask.hpp" #include "runtime/deoptimization.hpp" #include "runtime/timerTrace.hpp" #include "runtime/vmThread.hpp" #include "utilities/ticks.hpp" class AddPNode; class Block; class Bundle; class CallGenerator; class CloneMap; class ConnectionGraph; class IdealGraphPrinter; class InlineTree; class Int_Array; class Matcher; class MachConstantNode; class MachConstantBaseNode; class MachNode; class MachOper; class MachSafePointNode; class Node; class Node_Array; class Node_Notes; class NodeCloneInfo; class OptoReg; class PhaseCFG; class PhaseGVN; class PhaseIterGVN; class PhaseRegAlloc; class PhaseCCP; class PhaseCCP_DCE; class PhaseOutput; class RootNode; class relocInfo; class Scope; class StartNode; class SafePointNode; class JVMState; class Type; class TypeData; class TypeInt; class TypePtr; class TypeOopPtr; class TypeFunc; class TypeVect; class Unique_Node_List; class nmethod; class WarmCallInfo; class Node_Stack; struct Final_Reshape_Counts; enum LoopOptsMode { LoopOptsDefault, LoopOptsNone, LoopOptsMaxUnroll, LoopOptsShenandoahExpand, LoopOptsShenandoahPostExpand, LoopOptsSkipSplitIf, LoopOptsVerify }; typedef unsigned int node_idx_t; class NodeCloneInfo { private: uint64_t _idx_clone_orig; public: void set_idx(node_idx_t idx) { _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx; } node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); } void set_gen(int generation) { uint64_t g = (uint64_t)generation << 32; _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g; } int gen() const { return (int)(_idx_clone_orig >> 32); } void set(uint64_t x) { _idx_clone_orig = x; } void set(node_idx_t x, int g) { set_idx(x); set_gen(g); } uint64_t get() const { return _idx_clone_orig; } NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {} NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); } void dump() const; }; class CloneMap { friend class Compile; private: bool _debug; Dict* _dict; int _clone_idx; // current cloning iteration/generation in loop unroll public: void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; } Dict* dict() const { return _dict; } void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == NULL, "key existed"); _dict->Insert(_2p(key), (void*)val); } void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); } void remove(node_idx_t key) { _dict->Delete(_2p(key)); } uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); } node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); } int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); } int gen(const void* k) const { return gen(_2_node_idx_t(k)); } int max_gen() const; void clone(Node* old, Node* nnn, int gen); void verify_insert_and_clone(Node* old, Node* nnn, int gen); void dump(node_idx_t key) const; int clone_idx() const { return _clone_idx; } void set_clone_idx(int x) { _clone_idx = x; } bool is_debug() const { return _debug; } void set_debug(bool debug) { _debug = debug; } static const char* debug_option_name; bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); } bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); } }; //------------------------------Compile---------------------------------------- // This class defines a top-level Compiler invocation. class Compile : public Phase { friend class VMStructs; public: // Fixed alias indexes. (See also MergeMemNode.) enum { AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value) AliasIdxBot = 2, // pseudo-index, aliases to everything AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM }; // Variant of TraceTime(NULL, &_t_accumulator, CITime); // Integrated with logging. If logging is turned on, and CITimeVerbose is true, // then brackets are put into the log, with time stamps and node counts. // (The time collection itself is always conditionalized on CITime.) class TracePhase : public TraceTime { private: Compile* C; CompileLog* _log; const char* _phase_name; bool _dolog; public: TracePhase(const char* name, elapsedTimer* accumulator); ~TracePhase(); }; // Information per category of alias (memory slice) class AliasType { private: friend class Compile; int _index; // unique index, used with MergeMemNode const TypePtr* _adr_type; // normalized address type ciField* _field; // relevant instance field, or null if none const Type* _element; // relevant array element type, or null if none bool _is_rewritable; // false if the memory is write-once only int _general_index; // if this is type is an instance, the general // type that this is an instance of void Init(int i, const TypePtr* at); public: int index() const { return _index; } const TypePtr* adr_type() const { return _adr_type; } ciField* field() const { return _field; } const Type* element() const { return _element; } bool is_rewritable() const { return _is_rewritable; } bool is_volatile() const { return (_field ? _field->is_volatile() : false); } int general_index() const { return (_general_index != 0) ? _general_index : _index; } void set_rewritable(bool z) { _is_rewritable = z; } void set_field(ciField* f) { assert(!_field,""); _field = f; if (f->is_final() || f->is_stable()) { // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops. _is_rewritable = false; } } void set_element(const Type* e) { assert(_element == NULL, ""); _element = e; } BasicType basic_type() const; void print_on(outputStream* st) PRODUCT_RETURN; }; enum { logAliasCacheSize = 6, AliasCacheSize = (1<* _intrinsics; // List of intrinsics. GrowableArray* _macro_nodes; // List of nodes which need to be expanded before matching. GrowableArray* _predicate_opaqs; // List of Opaque1 nodes for the loop predicates. GrowableArray* _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common GrowableArray* _range_check_casts; // List of CastII nodes with a range check dependency GrowableArray* _opaque4_nodes; // List of Opaque4 nodes that have a default value ConnectionGraph* _congraph; #ifndef PRODUCT IdealGraphPrinter* _printer; static IdealGraphPrinter* _debug_file_printer; static IdealGraphPrinter* _debug_network_printer; #endif // Node management uint _unique; // Counter for unique Node indices VectorSet _dead_node_list; // Set of dead nodes uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N). // So use this to keep count and make the call O(1). DEBUG_ONLY( Unique_Node_List* _modified_nodes; ) // List of nodes which inputs were modified debug_only(static int _debug_idx;) // Monotonic counter (not reset), use -XX:BreakAtNode= Arena _node_arena; // Arena for new-space Nodes Arena _old_arena; // Arena for old-space Nodes, lifetime during xform RootNode* _root; // Unique root of compilation, or NULL after bail-out. Node* _top; // Unique top node. (Reset by various phases.) Node* _immutable_memory; // Initial memory state Node* _recent_alloc_obj; Node* _recent_alloc_ctl; // Constant table MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton. // Blocked array of debugging and profiling information, // tracked per node. enum { _log2_node_notes_block_size = 8, _node_notes_block_size = (1<<_log2_node_notes_block_size) }; GrowableArray* _node_note_array; Node_Notes* _default_node_notes; // default notes for new nodes // After parsing and every bulk phase we hang onto the Root instruction. // The RootNode instruction is where the whole program begins. It produces // the initial Control and BOTTOM for everybody else. // Type management Arena _Compile_types; // Arena for all types Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared() Dict* _type_dict; // Intern table CloneMap _clone_map; // used for recording history of cloned nodes size_t _type_last_size; // Last allocation size (see Type::operator new/delete) ciMethod* _last_tf_m; // Cache for const TypeFunc* _last_tf; // TypeFunc::make AliasType** _alias_types; // List of alias types seen so far. int _num_alias_types; // Logical length of _alias_types int _max_alias_types; // Physical length of _alias_types AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking // Parsing, optimization PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN Unique_Node_List* _for_igvn; // Initial work-list for next round of Iterative GVN WarmCallInfo* _warm_calls; // Sorted work-list for heat-based inlining. GrowableArray _late_inlines; // List of CallGenerators to be revisited after // main parsing has finished. GrowableArray _string_late_inlines; // same but for string operations GrowableArray _boxing_late_inlines; // same but for boxing operations int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining) uint _number_of_mh_late_inlines; // number of method handle late inlining still pending // Inlining may not happen in parse order which would make // PrintInlining output confusing. Keep track of PrintInlining // pieces in order. class PrintInliningBuffer : public ResourceObj { private: CallGenerator* _cg; stringStream* _ss; public: PrintInliningBuffer() : _cg(NULL) { _ss = new stringStream(); } void freeStream() { _ss->~stringStream(); _ss = NULL; } stringStream* ss() const { return _ss; } CallGenerator* cg() const { return _cg; } void set_cg(CallGenerator* cg) { _cg = cg; } }; stringStream* _print_inlining_stream; GrowableArray* _print_inlining_list; int _print_inlining_idx; char* _print_inlining_output; // Only keep nodes in the expensive node list that need to be optimized void cleanup_expensive_nodes(PhaseIterGVN &igvn); // Use for sorting expensive nodes to bring similar nodes together static int cmp_expensive_nodes(Node** n1, Node** n2); // Expensive nodes list already sorted? bool expensive_nodes_sorted() const; // Remove the speculative part of types and clean up the graph void remove_speculative_types(PhaseIterGVN &igvn); void* _replay_inline_data; // Pointer to data loaded from file void print_inlining_stream_free(); void print_inlining_init(); void print_inlining_reinit(); void print_inlining_commit(); void print_inlining_push(); PrintInliningBuffer& print_inlining_current(); void log_late_inline_failure(CallGenerator* cg, const char* msg); public: void* barrier_set_state() const { return _barrier_set_state; } outputStream* print_inlining_stream() const { assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); return _print_inlining_stream; } void print_inlining_update(CallGenerator* cg); void print_inlining_update_delayed(CallGenerator* cg); void print_inlining_move_to(CallGenerator* cg); void print_inlining_assert_ready(); void print_inlining_reset(); void print_inlining(ciMethod* method, int inline_level, int bci, const char* msg = NULL) { stringStream ss; CompileTask::print_inlining_inner(&ss, method, inline_level, bci, msg); print_inlining_stream()->print("%s", ss.as_string()); } #ifndef PRODUCT IdealGraphPrinter* printer() { return _printer; } #endif void log_late_inline(CallGenerator* cg); void log_inline_id(CallGenerator* cg); void log_inline_failure(const char* msg); void* replay_inline_data() const { return _replay_inline_data; } // Dump inlining replay data to the stream. void dump_inline_data(outputStream* out); private: // Matching, CFG layout, allocation, code generation PhaseCFG* _cfg; // Results of CFG finding int _java_calls; // Number of java calls in the method int _inner_loops; // Number of inner loops in the method Matcher* _matcher; // Engine to map ideal to machine instructions PhaseRegAlloc* _regalloc; // Results of register allocation. RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout) Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin void* _indexSet_free_block_list; // free list of IndexSet bit blocks int _interpreter_frame_size; PhaseOutput* _output; void reshape_address(AddPNode* n); public: // Accessors // The Compile instance currently active in this (compiler) thread. static Compile* current() { return (Compile*) ciEnv::current()->compiler_data(); } int interpreter_frame_size() const { return _interpreter_frame_size; } PhaseOutput* output() const { return _output; } void set_output(PhaseOutput* o) { _output = o; } // ID for this compilation. Useful for setting breakpoints in the debugger. int compile_id() const { return _compile_id; } DirectiveSet* directive() const { return _directive; } // Does this compilation allow instructions to subsume loads? User // instructions that subsume a load may result in an unschedulable // instruction sequence. bool subsume_loads() const { return _subsume_loads; } /** Do escape analysis. */ bool do_escape_analysis() const { return _do_escape_analysis; } /** Do boxing elimination. */ bool eliminate_boxing() const { return _eliminate_boxing; } /** Do aggressive boxing elimination. */ bool aggressive_unboxing() const { return _eliminate_boxing && AggressiveUnboxing; } bool save_argument_registers() const { return _save_argument_registers; } // Other fixed compilation parameters. ciMethod* method() const { return _method; } int entry_bci() const { return _entry_bci; } bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; } bool is_method_compilation() const { return (_method != NULL && !_method->flags().is_native()); } const TypeFunc* tf() const { assert(_tf!=NULL, ""); return _tf; } void init_tf(const TypeFunc* tf) { assert(_tf==NULL, ""); _tf = tf; } InlineTree* ilt() const { return _ilt; } address stub_function() const { return _stub_function; } const char* stub_name() const { return _stub_name; } address stub_entry_point() const { return _stub_entry_point; } void set_stub_entry_point(address z) { _stub_entry_point = z; } // Control of this compilation. int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; } void set_fixed_slots(int n) { _fixed_slots = n; } int major_progress() const { return _major_progress; } void set_inlining_progress(bool z) { _inlining_progress = z; } int inlining_progress() const { return _inlining_progress; } void set_inlining_incrementally(bool z) { _inlining_incrementally = z; } int inlining_incrementally() const { return _inlining_incrementally; } void set_do_cleanup(bool z) { _do_cleanup = z; } int do_cleanup() const { return _do_cleanup; } void set_major_progress() { _major_progress++; } void restore_major_progress(int progress) { _major_progress += progress; } void clear_major_progress() { _major_progress = 0; } int max_inline_size() const { return _max_inline_size; } void set_freq_inline_size(int n) { _freq_inline_size = n; } int freq_inline_size() const { return _freq_inline_size; } void set_max_inline_size(int n) { _max_inline_size = n; } bool has_loops() const { return _has_loops; } void set_has_loops(bool z) { _has_loops = z; } bool has_split_ifs() const { return _has_split_ifs; } void set_has_split_ifs(bool z) { _has_split_ifs = z; } bool has_unsafe_access() const { return _has_unsafe_access; } void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } bool has_stringbuilder() const { return _has_stringbuilder; } void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } bool has_boxed_value() const { return _has_boxed_value; } void set_has_boxed_value(bool z) { _has_boxed_value = z; } bool has_reserved_stack_access() const { return _has_reserved_stack_access; } void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; } uint max_vector_size() const { return _max_vector_size; } void set_max_vector_size(uint s) { _max_vector_size = s; } bool clear_upper_avx() const { return _clear_upper_avx; } void set_clear_upper_avx(bool s) { _clear_upper_avx = s; } void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; } bool trap_can_recompile() const { return _trap_can_recompile; } void set_trap_can_recompile(bool z) { _trap_can_recompile = z; } uint decompile_count() const { return _decompile_count; } void set_decompile_count(uint c) { _decompile_count = c; } bool allow_range_check_smearing() const; bool do_inlining() const { return _do_inlining; } void set_do_inlining(bool z) { _do_inlining = z; } bool do_scheduling() const { return _do_scheduling; } void set_do_scheduling(bool z) { _do_scheduling = z; } bool do_freq_based_layout() const{ return _do_freq_based_layout; } void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; } bool do_count_invocations() const{ return _do_count_invocations; } void set_do_count_invocations(bool z){ _do_count_invocations = z; } bool do_method_data_update() const { return _do_method_data_update; } void set_do_method_data_update(bool z) { _do_method_data_update = z; } bool do_vector_loop() const { return _do_vector_loop; } void set_do_vector_loop(bool z) { _do_vector_loop = z; } bool use_cmove() const { return _use_cmove; } void set_use_cmove(bool z) { _use_cmove = z; } bool age_code() const { return _age_code; } void set_age_code(bool z) { _age_code = z; } int AliasLevel() const { return _AliasLevel; } bool print_assembly() const { return _print_assembly; } void set_print_assembly(bool z) { _print_assembly = z; } bool print_inlining() const { return _print_inlining; } void set_print_inlining(bool z) { _print_inlining = z; } bool print_intrinsics() const { return _print_intrinsics; } void set_print_intrinsics(bool z) { _print_intrinsics = z; } RTMState rtm_state() const { return _rtm_state; } void set_rtm_state(RTMState s) { _rtm_state = s; } bool use_rtm() const { return (_rtm_state & NoRTM) == 0; } bool profile_rtm() const { return _rtm_state == ProfileRTM; } uint max_node_limit() const { return (uint)_max_node_limit; } void set_max_node_limit(uint n) { _max_node_limit = n; } bool clinit_barrier_on_entry() { return _clinit_barrier_on_entry; } void set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; } // check the CompilerOracle for special behaviours for this compile bool method_has_option(const char * option) { return method() != NULL && method()->has_option(option); } #ifndef PRODUCT bool trace_opto_output() const { return _trace_opto_output; } bool print_ideal() const { return _print_ideal; } bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; } void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; } int _in_dump_cnt; // Required for dumping ir nodes. #endif bool has_irreducible_loop() const { return _has_irreducible_loop; } void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; } // JSR 292 bool has_method_handle_invokes() const { return _has_method_handle_invokes; } void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; } Ticks _latest_stage_start_counter; void begin_method() { #ifndef PRODUCT if (_printer && _printer->should_print(1)) { _printer->begin_method(); } #endif C->_latest_stage_start_counter.stamp(); } bool should_print(int level = 1) { #ifndef PRODUCT return (_printer && _printer->should_print(level)); #else return false; #endif } void print_method(CompilerPhaseType cpt, int level = 1, int idx = 0) { EventCompilerPhase event; if (event.should_commit()) { CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); } #ifndef PRODUCT if (should_print(level)) { char output[1024]; if (idx != 0) { jio_snprintf(output, sizeof(output), "%s:%d", CompilerPhaseTypeHelper::to_string(cpt), idx); } else { jio_snprintf(output, sizeof(output), "%s", CompilerPhaseTypeHelper::to_string(cpt)); } _printer->print_method(output, level); } #endif C->_latest_stage_start_counter.stamp(); } #ifndef PRODUCT void igv_print_method_to_file(const char* phase_name = "Debug", bool append = false); void igv_print_method_to_network(const char* phase_name = "Debug"); static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; } static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; } #endif void end_method(int level = 1) { EventCompilerPhase event; if (event.should_commit()) { CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, level); } #ifndef PRODUCT if (_printer && _printer->should_print(level)) { _printer->end_method(); } #endif } int macro_count() const { return _macro_nodes->length(); } int predicate_count() const { return _predicate_opaqs->length();} int expensive_count() const { return _expensive_nodes->length(); } Node* macro_node(int idx) const { return _macro_nodes->at(idx); } Node* predicate_opaque1_node(int idx) const { return _predicate_opaqs->at(idx);} Node* expensive_node(int idx) const { return _expensive_nodes->at(idx); } ConnectionGraph* congraph() { return _congraph;} void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;} void add_macro_node(Node * n) { //assert(n->is_macro(), "must be a macro node"); assert(!_macro_nodes->contains(n), "duplicate entry in expand list"); _macro_nodes->append(n); } void remove_macro_node(Node * n) { // this function may be called twice for a node so check // that the node is in the array before attempting to remove it if (_macro_nodes->contains(n)) _macro_nodes->remove(n); // remove from _predicate_opaqs list also if it is there if (predicate_count() > 0 && _predicate_opaqs->contains(n)){ _predicate_opaqs->remove(n); } } void add_expensive_node(Node * n); void remove_expensive_node(Node * n) { if (_expensive_nodes->contains(n)) { _expensive_nodes->remove(n); } } void add_predicate_opaq(Node * n) { assert(!_predicate_opaqs->contains(n), "duplicate entry in predicate opaque1"); assert(_macro_nodes->contains(n), "should have already been in macro list"); _predicate_opaqs->append(n); } // Range check dependent CastII nodes that can be removed after loop optimizations void add_range_check_cast(Node* n); void remove_range_check_cast(Node* n) { if (_range_check_casts->contains(n)) { _range_check_casts->remove(n); } } Node* range_check_cast_node(int idx) const { return _range_check_casts->at(idx); } int range_check_cast_count() const { return _range_check_casts->length(); } // Remove all range check dependent CastIINodes. void remove_range_check_casts(PhaseIterGVN &igvn); void add_opaque4_node(Node* n); void remove_opaque4_node(Node* n) { if (_opaque4_nodes->contains(n)) { _opaque4_nodes->remove(n); } } Node* opaque4_node(int idx) const { return _opaque4_nodes->at(idx); } int opaque4_count() const { return _opaque4_nodes->length(); } void remove_opaque4_nodes(PhaseIterGVN &igvn); void sort_macro_nodes(); // remove the opaque nodes that protect the predicates so that the unused checks and // uncommon traps will be eliminated from the graph. void cleanup_loop_predicates(PhaseIterGVN &igvn); bool is_predicate_opaq(Node * n) { return _predicate_opaqs->contains(n); } // Are there candidate expensive nodes for optimization? bool should_optimize_expensive_nodes(PhaseIterGVN &igvn); // Check whether n1 and n2 are similar static int cmp_expensive_nodes(Node* n1, Node* n2); // Sort expensive nodes to locate similar expensive nodes void sort_expensive_nodes(); // Compilation environment. Arena* comp_arena() { return &_comp_arena; } ciEnv* env() const { return _env; } CompileLog* log() const { return _log; } bool failing() const { return _env->failing() || _failure_reason != NULL; } const char* failure_reason() const { return (_env->failing()) ? _env->failure_reason() : _failure_reason; } bool failure_reason_is(const char* r) const { return (r == _failure_reason) || (r != NULL && _failure_reason != NULL && strcmp(r, _failure_reason) == 0); } void record_failure(const char* reason); void record_method_not_compilable(const char* reason) { // Bailouts cover "all_tiers" when TieredCompilation is off. env()->record_method_not_compilable(reason, !TieredCompilation); // Record failure reason. record_failure(reason); } bool check_node_count(uint margin, const char* reason) { if (live_nodes() + margin > max_node_limit()) { record_method_not_compilable(reason); return true; } else { return false; } } // Node management uint unique() const { return _unique; } uint next_unique() { return _unique++; } void set_unique(uint i) { _unique = i; } static int debug_idx() { return debug_only(_debug_idx)+0; } static void set_debug_idx(int i) { debug_only(_debug_idx = i); } Arena* node_arena() { return &_node_arena; } Arena* old_arena() { return &_old_arena; } RootNode* root() const { return _root; } void set_root(RootNode* r) { _root = r; } StartNode* start() const; // (Derived from root.) void init_start(StartNode* s); Node* immutable_memory(); Node* recent_alloc_ctl() const { return _recent_alloc_ctl; } Node* recent_alloc_obj() const { return _recent_alloc_obj; } void set_recent_alloc(Node* ctl, Node* obj) { _recent_alloc_ctl = ctl; _recent_alloc_obj = obj; } void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return; _dead_node_count++; } void reset_dead_node_list() { _dead_node_list.reset(); _dead_node_count = 0; } uint live_nodes() const { int val = _unique - _dead_node_count; assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count); return (uint) val; } #ifdef ASSERT uint count_live_nodes_by_graph_walk(); void print_missing_nodes(); #endif // Record modified nodes to check that they are put on IGVN worklist void record_modified_node(Node* n) NOT_DEBUG_RETURN; void remove_modified_node(Node* n) NOT_DEBUG_RETURN; DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } ) MachConstantBaseNode* mach_constant_base_node(); bool has_mach_constant_base_node() const { return _mach_constant_base_node != NULL; } // Generated by adlc, true if CallNode requires MachConstantBase. bool needs_clone_jvms(); // Handy undefined Node Node* top() const { return _top; } // these are used by guys who need to know about creation and transformation of top: Node* cached_top_node() { return _top; } void set_cached_top_node(Node* tn); GrowableArray* node_note_array() const { return _node_note_array; } void set_node_note_array(GrowableArray* arr) { _node_note_array = arr; } Node_Notes* default_node_notes() const { return _default_node_notes; } void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; } Node_Notes* node_notes_at(int idx) { return locate_node_notes(_node_note_array, idx, false); } inline bool set_node_notes_at(int idx, Node_Notes* value); // Copy notes from source to dest, if they exist. // Overwrite dest only if source provides something. // Return true if information was moved. bool copy_node_notes_to(Node* dest, Node* source); // Workhorse function to sort out the blocked Node_Notes array: inline Node_Notes* locate_node_notes(GrowableArray* arr, int idx, bool can_grow = false); void grow_node_notes(GrowableArray* arr, int grow_by); // Type management Arena* type_arena() { return _type_arena; } Dict* type_dict() { return _type_dict; } size_t type_last_size() { return _type_last_size; } int num_alias_types() { return _num_alias_types; } void init_type_arena() { _type_arena = &_Compile_types; } void set_type_arena(Arena* a) { _type_arena = a; } void set_type_dict(Dict* d) { _type_dict = d; } void set_type_last_size(size_t sz) { _type_last_size = sz; } const TypeFunc* last_tf(ciMethod* m) { return (m == _last_tf_m) ? _last_tf : NULL; } void set_last_tf(ciMethod* m, const TypeFunc* tf) { assert(m != NULL || tf == NULL, ""); _last_tf_m = m; _last_tf = tf; } AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; } AliasType* alias_type(const TypePtr* adr_type, ciField* field = NULL) { return find_alias_type(adr_type, false, field); } bool have_alias_type(const TypePtr* adr_type); AliasType* alias_type(ciField* field); int get_alias_index(const TypePtr* at) { return alias_type(at)->index(); } const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); } int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); } // Building nodes void rethrow_exceptions(JVMState* jvms); void return_values(JVMState* jvms); JVMState* build_start_state(StartNode* start, const TypeFunc* tf); // Decide how to build a call. // The profile factor is a discount to apply to this site's interp. profile. CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = NULL, bool allow_intrinsics = true, bool delayed_forbidden = false); bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) { return should_delay_string_inlining(call_method, jvms) || should_delay_boxing_inlining(call_method, jvms); } bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms); bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms); // Helper functions to identify inlining potential at call-site ciMethod* optimize_virtual_call(ciMethod* caller, int bci, ciInstanceKlass* klass, ciKlass* holder, ciMethod* callee, const TypeOopPtr* receiver_type, bool is_virtual, bool &call_does_dispatch, int &vtable_index, bool check_access = true); ciMethod* optimize_inlining(ciMethod* caller, int bci, ciInstanceKlass* klass, ciMethod* callee, const TypeOopPtr* receiver_type, bool check_access = true); // Report if there were too many traps at a current method and bci. // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. // If there is no MDO at all, report no trap unless told to assume it. bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason); // This version, unspecific to a particular bci, asks if // PerMethodTrapLimit was exceeded for all inlined methods seen so far. bool too_many_traps(Deoptimization::DeoptReason reason, // Privately used parameter for logging: ciMethodData* logmd = NULL); // Report if there were too many recompiles at a method and bci. bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason); // Report if there were too many traps or recompiles at a method and bci. bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) { return too_many_traps(method, bci, reason) || too_many_recompiles(method, bci, reason); } // Return a bitset with the reasons where deoptimization is allowed, // i.e., where there were not too many uncommon traps. int _allowed_reasons; int allowed_deopt_reasons() { return _allowed_reasons; } void set_allowed_deopt_reasons(); // Parsing, optimization PhaseGVN* initial_gvn() { return _initial_gvn; } Unique_Node_List* for_igvn() { return _for_igvn; } inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List. void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; } void set_for_igvn(Unique_Node_List *for_igvn) { _for_igvn = for_igvn; } // Replace n by nn using initial_gvn, calling hash_delete and // record_for_igvn as needed. void gvn_replace_by(Node* n, Node* nn); void identify_useful_nodes(Unique_Node_List &useful); void update_dead_node_list(Unique_Node_List &useful); void remove_useless_nodes (Unique_Node_List &useful); WarmCallInfo* warm_calls() const { return _warm_calls; } void set_warm_calls(WarmCallInfo* l) { _warm_calls = l; } WarmCallInfo* pop_warm_call(); // Record this CallGenerator for inlining at the end of parsing. void add_late_inline(CallGenerator* cg) { _late_inlines.insert_before(_late_inlines_pos, cg); _late_inlines_pos++; } void prepend_late_inline(CallGenerator* cg) { _late_inlines.insert_before(0, cg); } void add_string_late_inline(CallGenerator* cg) { _string_late_inlines.push(cg); } void add_boxing_late_inline(CallGenerator* cg) { _boxing_late_inlines.push(cg); } void remove_useless_late_inlines(GrowableArray* inlines, Unique_Node_List &useful); void process_print_inlining(); void dump_print_inlining(); bool over_inlining_cutoff() const { if (!inlining_incrementally()) { return unique() > (uint)NodeCountInliningCutoff; } else { // Give some room for incremental inlining algorithm to "breathe" // and avoid thrashing when live node count is close to the limit. // Keep in mind that live_nodes() isn't accurate during inlining until // dead node elimination step happens (see Compile::inline_incrementally). return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10; } } void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; } void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; } bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; } bool inline_incrementally_one(); void inline_incrementally_cleanup(PhaseIterGVN& igvn); void inline_incrementally(PhaseIterGVN& igvn); void inline_string_calls(bool parse_time); void inline_boxing_calls(PhaseIterGVN& igvn); bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode); void remove_root_to_sfpts_edges(PhaseIterGVN& igvn); // Matching, CFG layout, allocation, code generation PhaseCFG* cfg() { return _cfg; } bool has_java_calls() const { return _java_calls > 0; } int java_calls() const { return _java_calls; } int inner_loops() const { return _inner_loops; } Matcher* matcher() { return _matcher; } PhaseRegAlloc* regalloc() { return _regalloc; } RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; } Arena* indexSet_arena() { return _indexSet_arena; } void* indexSet_free_block_list() { return _indexSet_free_block_list; } DebugInformationRecorder* debug_info() { return env()->debug_info(); } void update_interpreter_frame_size(int size) { if (_interpreter_frame_size < size) { _interpreter_frame_size = size; } } void set_matcher(Matcher* m) { _matcher = m; } //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; } void set_indexSet_arena(Arena* a) { _indexSet_arena = a; } void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; } void set_java_calls(int z) { _java_calls = z; } void set_inner_loops(int z) { _inner_loops = z; } Dependencies* dependencies() { return env()->dependencies(); } // Major entry point. Given a Scope, compile the associated method. // For normal compilations, entry_bci is InvocationEntryBci. For on stack // replacement, entry_bci indicates the bytecode for which to compile a // continuation. Compile(ciEnv* ci_env, ciMethod* target, int entry_bci, bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive); // Second major entry point. From the TypeFunc signature, generate code // to pass arguments from the Java calling convention to the C calling // convention. Compile(ciEnv* ci_env, const TypeFunc *(*gen)(), address stub_function, const char *stub_name, int is_fancy_jump, bool pass_tls, bool save_arg_registers, bool return_pc, DirectiveSet* directive); // From the TypeFunc signature, generate code to pass arguments // from Compiled calling convention to Interpreter's calling convention void Generate_Compiled_To_Interpreter_Graph(const TypeFunc *tf, address interpreter_entry); // From the TypeFunc signature, generate code to pass arguments // from Interpreter's calling convention to Compiler's calling convention void Generate_Interpreter_To_Compiled_Graph(const TypeFunc *tf); // Are we compiling a method? bool has_method() { return method() != NULL; } // Maybe print some information about this compile. void print_compile_messages(); // Final graph reshaping, a post-pass after the regular optimizer is done. bool final_graph_reshaping(); // returns true if adr is completely contained in the given alias category bool must_alias(const TypePtr* adr, int alias_idx); // returns true if adr overlaps with the given alias category bool can_alias(const TypePtr* adr, int alias_idx); // If "objs" contains an ObjectValue whose id is "id", returns it, else NULL. static ObjectValue* sv_for_node_id(GrowableArray *objs, int id); // Stack slots that may be unused by the calling convention but must // otherwise be preserved. On Intel this includes the return address. // On PowerPC it includes the 4 words holding the old TOC & LR glue. uint in_preserve_stack_slots(); // "Top of Stack" slots that may be unused by the calling convention but must // otherwise be preserved. // On Intel these are not necessary and the value can be zero. // On Sparc this describes the words reserved for storing a register window // when an interrupt occurs. static uint out_preserve_stack_slots(); // Number of outgoing stack slots killed above the out_preserve_stack_slots // for calls to C. Supports the var-args backing area for register parms. uint varargs_C_out_slots_killed() const; // Number of Stack Slots consumed by a synchronization entry int sync_stack_slots() const; // Compute the name of old_SP. See .ad for frame layout. OptoReg::Name compute_old_SP(); private: // Phase control: void Init(int aliaslevel); // Prepare for a single compilation int Inline_Warm(); // Find more inlining work. void Finish_Warm(); // Give up on further inlines. void Optimize(); // Given a graph, optimize it void Code_Gen(); // Generate code from a graph // Management of the AliasType table. void grow_alias_types(); AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type); const TypePtr *flatten_alias_type(const TypePtr* adr_type) const; AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field); void verify_top(Node*) const PRODUCT_RETURN; // Intrinsic setup. void register_library_intrinsics(); // initializer CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn void register_intrinsic(CallGenerator* cg); // update fn #ifndef PRODUCT static juint _intrinsic_hist_count[vmIntrinsics::ID_LIMIT]; static jubyte _intrinsic_hist_flags[vmIntrinsics::ID_LIMIT]; #endif // Function calls made by the public function final_graph_reshaping. // No need to be made public as they are not called elsewhere. void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc); void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop); void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ); void eliminate_redundant_card_marks(Node* n); // Logic cone optimization. void optimize_logic_cones(PhaseIterGVN &igvn); void collect_logic_cone_roots(Unique_Node_List& list); void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited); bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs); uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs); uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3); Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs); public: // Note: Histogram array size is about 1 Kb. enum { // flag bits: _intrinsic_worked = 1, // succeeded at least once _intrinsic_failed = 2, // tried it but it failed _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps) _intrinsic_virtual = 8, // was seen in the virtual form (rare) _intrinsic_both = 16 // was seen in the non-virtual form (usual) }; // Update histogram. Return boolean if this is a first-time occurrence. static bool gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) PRODUCT_RETURN0; static void print_intrinsic_statistics() PRODUCT_RETURN; // Graph verification code // Walk the node list, verifying that there is a one-to-one // correspondence between Use-Def edges and Def-Use edges // The option no_dead_code enables stronger checks that the // graph is strongly connected from root in both directions. void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN; // End-of-run dumps. static void print_statistics() PRODUCT_RETURN; // Verify ADLC assumptions during startup static void adlc_verification() PRODUCT_RETURN; // Definitions of pd methods static void pd_compiler2_init(); // Static parse-time type checking logic for gen_subtype_check: enum { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; int static_subtype_check(ciKlass* superk, ciKlass* subk); static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype, // Optional control dependency (for example, on range check) Node* ctrl = NULL); // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl); // Auxiliary method for randomized fuzzing/stressing static bool randomized_select(int count); // supporting clone_map CloneMap& clone_map(); void set_clone_map(Dict* d); bool needs_clinit_barrier(ciField* ik, ciMethod* accessing_method); bool needs_clinit_barrier(ciMethod* ik, ciMethod* accessing_method); bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method); #ifdef IA32 private: bool _select_24_bit_instr; // We selected an instruction with a 24-bit result bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results // Remember if this compilation changes hardware mode to 24-bit precision. void set_24_bit_selection_and_mode(bool selection, bool mode) { _select_24_bit_instr = selection; _in_24_bit_fp_mode = mode; } public: bool select_24_bit_instr() const { return _select_24_bit_instr; } bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; } #endif // IA32 #ifdef ASSERT bool _type_verify_symmetry; #endif }; #endif // SHARE_OPTO_COMPILE_HPP