/* * Copyright (c) 2013, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/concurrentG1Refine.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1GCPhaseTimes.hpp" #include "gc/g1/g1Log.hpp" #include "gc/g1/g1StringDedup.hpp" #include "memory/allocation.hpp" #include "runtime/os.hpp" // Helper class for avoiding interleaved logging class LineBuffer: public StackObj { private: static const int BUFFER_LEN = 1024; static const int INDENT_CHARS = 3; char _buffer[BUFFER_LEN]; int _indent_level; int _cur; void vappend(const char* format, va_list ap) ATTRIBUTE_PRINTF(2, 0) { int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap); if (res != -1) { _cur += res; } else { DEBUG_ONLY(warning("buffer too small in LineBuffer");) _buffer[BUFFER_LEN -1] = 0; _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again } } public: explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) { for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) { _buffer[_cur] = ' '; } } #ifndef PRODUCT ~LineBuffer() { assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?"); } #endif void append(const char* format, ...) ATTRIBUTE_PRINTF(2, 3) { va_list ap; va_start(ap, format); vappend(format, ap); va_end(ap); } void print_cr() { gclog_or_tty->print_cr("%s", _buffer); _cur = _indent_level * INDENT_CHARS; } void append_and_print_cr(const char* format, ...) ATTRIBUTE_PRINTF(2, 3) { va_list ap; va_start(ap, format); vappend(format, ap); va_end(ap); print_cr(); } }; template class WorkerDataArray : public CHeapObj { friend class G1GCParPhasePrinter; T* _data; uint _length; const char* _title; bool _print_sum; int _log_level; uint _indent_level; bool _enabled; WorkerDataArray* _thread_work_items; NOT_PRODUCT(T uninitialized();) // We are caching the sum and average to only have to calculate them once. // This is not done in an MT-safe way. It is intended to allow single // threaded code to call sum() and average() multiple times in any order // without having to worry about the cost. bool _has_new_data; T _sum; T _min; T _max; double _average; public: WorkerDataArray(uint length, const char* title, bool print_sum, int log_level, uint indent_level) : _title(title), _length(0), _print_sum(print_sum), _log_level(log_level), _indent_level(indent_level), _has_new_data(true), _thread_work_items(NULL), _enabled(true) { assert(length > 0, "Must have some workers to store data for"); _length = length; _data = NEW_C_HEAP_ARRAY(T, _length, mtGC); } ~WorkerDataArray() { FREE_C_HEAP_ARRAY(T, _data); } void link_thread_work_items(WorkerDataArray* thread_work_items) { _thread_work_items = thread_work_items; } WorkerDataArray* thread_work_items() { return _thread_work_items; } void set(uint worker_i, T value) { assert(worker_i < _length, "Worker %d is greater than max: %d", worker_i, _length); assert(_data[worker_i] == WorkerDataArray::uninitialized(), "Overwriting data for worker %d in %s", worker_i, _title); _data[worker_i] = value; _has_new_data = true; } void set_thread_work_item(uint worker_i, size_t value) { assert(_thread_work_items != NULL, "No sub count"); _thread_work_items->set(worker_i, value); } T get(uint worker_i) { assert(worker_i < _length, "Worker %d is greater than max: %d", worker_i, _length); assert(_data[worker_i] != WorkerDataArray::uninitialized(), "No data added for worker %d", worker_i); return _data[worker_i]; } void add(uint worker_i, T value) { assert(worker_i < _length, "Worker %d is greater than max: %d", worker_i, _length); assert(_data[worker_i] != WorkerDataArray::uninitialized(), "No data to add to for worker %d", worker_i); _data[worker_i] += value; _has_new_data = true; } double average(uint active_threads){ calculate_totals(active_threads); return _average; } T sum(uint active_threads) { calculate_totals(active_threads); return _sum; } T minimum(uint active_threads) { calculate_totals(active_threads); return _min; } T maximum(uint active_threads) { calculate_totals(active_threads); return _max; } void reset() PRODUCT_RETURN; void verify(uint active_threads) PRODUCT_RETURN; void set_enabled(bool enabled) { _enabled = enabled; } int log_level() { return _log_level; } private: void calculate_totals(uint active_threads){ if (!_has_new_data) { return; } _sum = (T)0; _min = _data[0]; _max = _min; assert(active_threads <= _length, "Wrong number of active threads"); for (uint i = 0; i < active_threads; ++i) { T val = _data[i]; _sum += val; _min = MIN2(_min, val); _max = MAX2(_max, val); } _average = (double)_sum / (double)active_threads; _has_new_data = false; } }; #ifndef PRODUCT template <> size_t WorkerDataArray::uninitialized() { return (size_t)-1; } template <> double WorkerDataArray::uninitialized() { return -1.0; } template void WorkerDataArray::reset() { for (uint i = 0; i < _length; i++) { _data[i] = WorkerDataArray::uninitialized(); } if (_thread_work_items != NULL) { _thread_work_items->reset(); } } template void WorkerDataArray::verify(uint active_threads) { if (!_enabled) { return; } assert(active_threads <= _length, "Wrong number of active threads"); for (uint i = 0; i < active_threads; i++) { assert(_data[i] != WorkerDataArray::uninitialized(), "Invalid data for worker %u in '%s'", i, _title); } if (_thread_work_items != NULL) { _thread_work_items->verify(active_threads); } } #endif G1GCPhaseTimes::G1GCPhaseTimes(uint max_gc_threads) : _max_gc_threads(max_gc_threads) { assert(max_gc_threads > 0, "Must have some GC threads"); _gc_par_phases[GCWorkerStart] = new WorkerDataArray(max_gc_threads, "GC Worker Start (ms)", false, G1Log::LevelFiner, 2); _gc_par_phases[ExtRootScan] = new WorkerDataArray(max_gc_threads, "Ext Root Scanning (ms)", true, G1Log::LevelFiner, 2); // Root scanning phases _gc_par_phases[ThreadRoots] = new WorkerDataArray(max_gc_threads, "Thread Roots (ms)", true, G1Log::LevelFinest, 3); _gc_par_phases[StringTableRoots] = new WorkerDataArray(max_gc_threads, "StringTable Roots (ms)", true, G1Log::LevelFinest, 3); _gc_par_phases[UniverseRoots] = new WorkerDataArray(max_gc_threads, "Universe Roots (ms)", true, G1Log::LevelFinest, 3); _gc_par_phases[JNIRoots] = new WorkerDataArray(max_gc_threads, "JNI Handles Roots (ms)", true, G1Log::LevelFinest, 3); _gc_par_phases[ObjectSynchronizerRoots] = new WorkerDataArray(max_gc_threads, "ObjectSynchronizer Roots (ms)", true, G1Log::LevelFinest, 3); _gc_par_phases[FlatProfilerRoots] = new WorkerDataArray(max_gc_threads, "FlatProfiler Roots (ms)", true, G1Log::LevelFinest, 3); _gc_par_phases[ManagementRoots] = new WorkerDataArray(max_gc_threads, "Management Roots (ms)", true, G1Log::LevelFinest, 3); _gc_par_phases[SystemDictionaryRoots] = new WorkerDataArray(max_gc_threads, "SystemDictionary Roots (ms)", true, G1Log::LevelFinest, 3); _gc_par_phases[CLDGRoots] = new WorkerDataArray(max_gc_threads, "CLDG Roots (ms)", true, G1Log::LevelFinest, 3); _gc_par_phases[JVMTIRoots] = new WorkerDataArray(max_gc_threads, "JVMTI Roots (ms)", true, G1Log::LevelFinest, 3); _gc_par_phases[CMRefRoots] = new WorkerDataArray(max_gc_threads, "CM RefProcessor Roots (ms)", true, G1Log::LevelFinest, 3); _gc_par_phases[WaitForStrongCLD] = new WorkerDataArray(max_gc_threads, "Wait For Strong CLD (ms)", true, G1Log::LevelFinest, 3); _gc_par_phases[WeakCLDRoots] = new WorkerDataArray(max_gc_threads, "Weak CLD Roots (ms)", true, G1Log::LevelFinest, 3); _gc_par_phases[SATBFiltering] = new WorkerDataArray(max_gc_threads, "SATB Filtering (ms)", true, G1Log::LevelFinest, 3); _gc_par_phases[UpdateRS] = new WorkerDataArray(max_gc_threads, "Update RS (ms)", true, G1Log::LevelFiner, 2); _gc_par_phases[ScanHCC] = new WorkerDataArray(max_gc_threads, "Scan HCC (ms)", true, G1Log::LevelFiner, 3); _gc_par_phases[ScanHCC]->set_enabled(ConcurrentG1Refine::hot_card_cache_enabled()); _gc_par_phases[ScanRS] = new WorkerDataArray(max_gc_threads, "Scan RS (ms)", true, G1Log::LevelFiner, 2); _gc_par_phases[CodeRoots] = new WorkerDataArray(max_gc_threads, "Code Root Scanning (ms)", true, G1Log::LevelFiner, 2); _gc_par_phases[ObjCopy] = new WorkerDataArray(max_gc_threads, "Object Copy (ms)", true, G1Log::LevelFiner, 2); _gc_par_phases[Termination] = new WorkerDataArray(max_gc_threads, "Termination (ms)", true, G1Log::LevelFiner, 2); _gc_par_phases[GCWorkerTotal] = new WorkerDataArray(max_gc_threads, "GC Worker Total (ms)", true, G1Log::LevelFiner, 2); _gc_par_phases[GCWorkerEnd] = new WorkerDataArray(max_gc_threads, "GC Worker End (ms)", false, G1Log::LevelFiner, 2); _gc_par_phases[Other] = new WorkerDataArray(max_gc_threads, "GC Worker Other (ms)", true, G1Log::LevelFiner, 2); _update_rs_processed_buffers = new WorkerDataArray(max_gc_threads, "Processed Buffers", true, G1Log::LevelFiner, 3); _gc_par_phases[UpdateRS]->link_thread_work_items(_update_rs_processed_buffers); _termination_attempts = new WorkerDataArray(max_gc_threads, "Termination Attempts", true, G1Log::LevelFinest, 3); _gc_par_phases[Termination]->link_thread_work_items(_termination_attempts); _gc_par_phases[StringDedupQueueFixup] = new WorkerDataArray(max_gc_threads, "Queue Fixup (ms)", true, G1Log::LevelFiner, 2); _gc_par_phases[StringDedupTableFixup] = new WorkerDataArray(max_gc_threads, "Table Fixup (ms)", true, G1Log::LevelFiner, 2); _gc_par_phases[RedirtyCards] = new WorkerDataArray(max_gc_threads, "Parallel Redirty", true, G1Log::LevelFinest, 3); _redirtied_cards = new WorkerDataArray(max_gc_threads, "Redirtied Cards", true, G1Log::LevelFinest, 3); _gc_par_phases[RedirtyCards]->link_thread_work_items(_redirtied_cards); } void G1GCPhaseTimes::note_gc_start(uint active_gc_threads, bool mark_in_progress) { assert(active_gc_threads > 0, "The number of threads must be > 0"); assert(active_gc_threads <= _max_gc_threads, "The number of active threads must be <= the max number of threads"); _active_gc_threads = active_gc_threads; _cur_expand_heap_time_ms = 0.0; for (int i = 0; i < GCParPhasesSentinel; i++) { _gc_par_phases[i]->reset(); } _gc_par_phases[StringDedupQueueFixup]->set_enabled(G1StringDedup::is_enabled()); _gc_par_phases[StringDedupTableFixup]->set_enabled(G1StringDedup::is_enabled()); } void G1GCPhaseTimes::note_gc_end() { for (uint i = 0; i < _active_gc_threads; i++) { double worker_time = _gc_par_phases[GCWorkerEnd]->get(i) - _gc_par_phases[GCWorkerStart]->get(i); record_time_secs(GCWorkerTotal, i , worker_time); double worker_known_time = _gc_par_phases[ExtRootScan]->get(i) + _gc_par_phases[SATBFiltering]->get(i) + _gc_par_phases[UpdateRS]->get(i) + _gc_par_phases[ScanRS]->get(i) + _gc_par_phases[CodeRoots]->get(i) + _gc_par_phases[ObjCopy]->get(i) + _gc_par_phases[Termination]->get(i); record_time_secs(Other, i, worker_time - worker_known_time); } for (int i = 0; i < GCParPhasesSentinel; i++) { _gc_par_phases[i]->verify(_active_gc_threads); } } void G1GCPhaseTimes::print_stats(int level, const char* str, double value) { LineBuffer(level).append_and_print_cr("[%s: %.1lf ms]", str, value); } void G1GCPhaseTimes::print_stats(int level, const char* str, size_t value) { LineBuffer(level).append_and_print_cr("[%s: " SIZE_FORMAT "]", str, value); } void G1GCPhaseTimes::print_stats(int level, const char* str, double value, uint workers) { LineBuffer(level).append_and_print_cr("[%s: %.1lf ms, GC Workers: %u]", str, value, workers); } double G1GCPhaseTimes::accounted_time_ms() { // Subtract the root region scanning wait time. It's initialized to // zero at the start of the pause. double misc_time_ms = _root_region_scan_wait_time_ms; misc_time_ms += _cur_collection_par_time_ms; // Now subtract the time taken to fix up roots in generated code misc_time_ms += _cur_collection_code_root_fixup_time_ms; // Strong code root purge time misc_time_ms += _cur_strong_code_root_purge_time_ms; if (G1StringDedup::is_enabled()) { // String dedup fixup time misc_time_ms += _cur_string_dedup_fixup_time_ms; } // Subtract the time taken to clean the card table from the // current value of "other time" misc_time_ms += _cur_clear_ct_time_ms; // Remove expand heap time from "other time" misc_time_ms += _cur_expand_heap_time_ms; return misc_time_ms; } // record the time a phase took in seconds void G1GCPhaseTimes::record_time_secs(GCParPhases phase, uint worker_i, double secs) { _gc_par_phases[phase]->set(worker_i, secs); } // add a number of seconds to a phase void G1GCPhaseTimes::add_time_secs(GCParPhases phase, uint worker_i, double secs) { _gc_par_phases[phase]->add(worker_i, secs); } void G1GCPhaseTimes::record_thread_work_item(GCParPhases phase, uint worker_i, size_t count) { _gc_par_phases[phase]->set_thread_work_item(worker_i, count); } // return the average time for a phase in milliseconds double G1GCPhaseTimes::average_time_ms(GCParPhases phase) { return _gc_par_phases[phase]->average(_active_gc_threads) * 1000.0; } double G1GCPhaseTimes::get_time_ms(GCParPhases phase, uint worker_i) { return _gc_par_phases[phase]->get(worker_i) * 1000.0; } double G1GCPhaseTimes::sum_time_ms(GCParPhases phase) { return _gc_par_phases[phase]->sum(_active_gc_threads) * 1000.0; } double G1GCPhaseTimes::min_time_ms(GCParPhases phase) { return _gc_par_phases[phase]->minimum(_active_gc_threads) * 1000.0; } double G1GCPhaseTimes::max_time_ms(GCParPhases phase) { return _gc_par_phases[phase]->maximum(_active_gc_threads) * 1000.0; } size_t G1GCPhaseTimes::get_thread_work_item(GCParPhases phase, uint worker_i) { assert(_gc_par_phases[phase]->thread_work_items() != NULL, "No sub count"); return _gc_par_phases[phase]->thread_work_items()->get(worker_i); } size_t G1GCPhaseTimes::sum_thread_work_items(GCParPhases phase) { assert(_gc_par_phases[phase]->thread_work_items() != NULL, "No sub count"); return _gc_par_phases[phase]->thread_work_items()->sum(_active_gc_threads); } double G1GCPhaseTimes::average_thread_work_items(GCParPhases phase) { assert(_gc_par_phases[phase]->thread_work_items() != NULL, "No sub count"); return _gc_par_phases[phase]->thread_work_items()->average(_active_gc_threads); } size_t G1GCPhaseTimes::min_thread_work_items(GCParPhases phase) { assert(_gc_par_phases[phase]->thread_work_items() != NULL, "No sub count"); return _gc_par_phases[phase]->thread_work_items()->minimum(_active_gc_threads); } size_t G1GCPhaseTimes::max_thread_work_items(GCParPhases phase) { assert(_gc_par_phases[phase]->thread_work_items() != NULL, "No sub count"); return _gc_par_phases[phase]->thread_work_items()->maximum(_active_gc_threads); } class G1GCParPhasePrinter : public StackObj { G1GCPhaseTimes* _phase_times; public: G1GCParPhasePrinter(G1GCPhaseTimes* phase_times) : _phase_times(phase_times) {} void print(G1GCPhaseTimes::GCParPhases phase_id) { WorkerDataArray* phase = _phase_times->_gc_par_phases[phase_id]; if (phase->_log_level > G1Log::level() || !phase->_enabled) { return; } if (phase->_length == 1) { print_single_length(phase_id, phase); } else { print_multi_length(phase_id, phase); } } private: void print_single_length(G1GCPhaseTimes::GCParPhases phase_id, WorkerDataArray* phase) { // No need for min, max, average and sum for only one worker LineBuffer buf(phase->_indent_level); buf.append_and_print_cr("[%s: %.1lf]", phase->_title, _phase_times->get_time_ms(phase_id, 0)); if (phase->_thread_work_items != NULL) { LineBuffer buf2(phase->_thread_work_items->_indent_level); buf2.append_and_print_cr("[%s: " SIZE_FORMAT "]", phase->_thread_work_items->_title, _phase_times->sum_thread_work_items(phase_id)); } } void print_time_values(LineBuffer& buf, G1GCPhaseTimes::GCParPhases phase_id, WorkerDataArray* phase) { uint active_length = _phase_times->_active_gc_threads; for (uint i = 0; i < active_length; ++i) { buf.append(" %.1lf", _phase_times->get_time_ms(phase_id, i)); } buf.print_cr(); } void print_count_values(LineBuffer& buf, G1GCPhaseTimes::GCParPhases phase_id, WorkerDataArray* thread_work_items) { uint active_length = _phase_times->_active_gc_threads; for (uint i = 0; i < active_length; ++i) { buf.append(" " SIZE_FORMAT, _phase_times->get_thread_work_item(phase_id, i)); } buf.print_cr(); } void print_thread_work_items(G1GCPhaseTimes::GCParPhases phase_id, WorkerDataArray* thread_work_items) { LineBuffer buf(thread_work_items->_indent_level); buf.append("[%s:", thread_work_items->_title); if (G1Log::finest()) { print_count_values(buf, phase_id, thread_work_items); } assert(thread_work_items->_print_sum, "%s does not have print sum true even though it is a count", thread_work_items->_title); buf.append_and_print_cr(" Min: " SIZE_FORMAT ", Avg: %.1lf, Max: " SIZE_FORMAT ", Diff: " SIZE_FORMAT ", Sum: " SIZE_FORMAT "]", _phase_times->min_thread_work_items(phase_id), _phase_times->average_thread_work_items(phase_id), _phase_times->max_thread_work_items(phase_id), _phase_times->max_thread_work_items(phase_id) - _phase_times->min_thread_work_items(phase_id), _phase_times->sum_thread_work_items(phase_id)); } void print_multi_length(G1GCPhaseTimes::GCParPhases phase_id, WorkerDataArray* phase) { LineBuffer buf(phase->_indent_level); buf.append("[%s:", phase->_title); if (G1Log::finest()) { print_time_values(buf, phase_id, phase); } buf.append(" Min: %.1lf, Avg: %.1lf, Max: %.1lf, Diff: %.1lf", _phase_times->min_time_ms(phase_id), _phase_times->average_time_ms(phase_id), _phase_times->max_time_ms(phase_id), _phase_times->max_time_ms(phase_id) - _phase_times->min_time_ms(phase_id)); if (phase->_print_sum) { // for things like the start and end times the sum is not // that relevant buf.append(", Sum: %.1lf", _phase_times->sum_time_ms(phase_id)); } buf.append_and_print_cr("]"); if (phase->_thread_work_items != NULL) { print_thread_work_items(phase_id, phase->_thread_work_items); } } }; void G1GCPhaseTimes::print(double pause_time_sec) { G1GCParPhasePrinter par_phase_printer(this); if (_root_region_scan_wait_time_ms > 0.0) { print_stats(1, "Root Region Scan Waiting", _root_region_scan_wait_time_ms); } print_stats(1, "Parallel Time", _cur_collection_par_time_ms, _active_gc_threads); for (int i = 0; i <= GCMainParPhasesLast; i++) { par_phase_printer.print((GCParPhases) i); } print_stats(1, "Code Root Fixup", _cur_collection_code_root_fixup_time_ms); print_stats(1, "Code Root Purge", _cur_strong_code_root_purge_time_ms); if (G1StringDedup::is_enabled()) { print_stats(1, "String Dedup Fixup", _cur_string_dedup_fixup_time_ms, _active_gc_threads); for (int i = StringDedupPhasesFirst; i <= StringDedupPhasesLast; i++) { par_phase_printer.print((GCParPhases) i); } } print_stats(1, "Clear CT", _cur_clear_ct_time_ms); print_stats(1, "Expand Heap After Collection", _cur_expand_heap_time_ms); double misc_time_ms = pause_time_sec * MILLIUNITS - accounted_time_ms(); print_stats(1, "Other", misc_time_ms); if (_cur_verify_before_time_ms > 0.0) { print_stats(2, "Verify Before", _cur_verify_before_time_ms); } if (G1CollectedHeap::heap()->evacuation_failed()) { double evac_fail_handling = _cur_evac_fail_recalc_used + _cur_evac_fail_remove_self_forwards + _cur_evac_fail_restore_remsets; print_stats(2, "Evacuation Failure", evac_fail_handling); if (G1Log::finest()) { print_stats(3, "Recalculate Used", _cur_evac_fail_recalc_used); print_stats(3, "Remove Self Forwards", _cur_evac_fail_remove_self_forwards); print_stats(3, "Restore RemSet", _cur_evac_fail_restore_remsets); } } print_stats(2, "Choose CSet", (_recorded_young_cset_choice_time_ms + _recorded_non_young_cset_choice_time_ms)); print_stats(2, "Ref Proc", _cur_ref_proc_time_ms); print_stats(2, "Ref Enq", _cur_ref_enq_time_ms); print_stats(2, "Redirty Cards", _recorded_redirty_logged_cards_time_ms); par_phase_printer.print(RedirtyCards); if (G1EagerReclaimHumongousObjects) { print_stats(2, "Humongous Register", _cur_fast_reclaim_humongous_register_time_ms); if (G1Log::finest()) { print_stats(3, "Humongous Total", _cur_fast_reclaim_humongous_total); print_stats(3, "Humongous Candidate", _cur_fast_reclaim_humongous_candidates); } print_stats(2, "Humongous Reclaim", _cur_fast_reclaim_humongous_time_ms); if (G1Log::finest()) { print_stats(3, "Humongous Reclaimed", _cur_fast_reclaim_humongous_reclaimed); } } print_stats(2, "Free CSet", (_recorded_young_free_cset_time_ms + _recorded_non_young_free_cset_time_ms)); if (G1Log::finest()) { print_stats(3, "Young Free CSet", _recorded_young_free_cset_time_ms); print_stats(3, "Non-Young Free CSet", _recorded_non_young_free_cset_time_ms); } if (_cur_verify_after_time_ms > 0.0) { print_stats(2, "Verify After", _cur_verify_after_time_ms); } } G1GCParPhaseTimesTracker::G1GCParPhaseTimesTracker(G1GCPhaseTimes* phase_times, G1GCPhaseTimes::GCParPhases phase, uint worker_id) : _phase_times(phase_times), _phase(phase), _worker_id(worker_id) { if (_phase_times != NULL) { _start_time = os::elapsedTime(); } } G1GCParPhaseTimesTracker::~G1GCParPhaseTimesTracker() { if (_phase_times != NULL) { _phase_times->record_time_secs(_phase, _worker_id, os::elapsedTime() - _start_time); } }