/* * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package org.openjdk.bench.vm.compiler; import org.openjdk.jmh.annotations.Benchmark; import org.openjdk.jmh.annotations.BenchmarkMode; import org.openjdk.jmh.annotations.Mode; import org.openjdk.jmh.annotations.OutputTimeUnit; import org.openjdk.jmh.annotations.Scope; import org.openjdk.jmh.annotations.Setup; import org.openjdk.jmh.annotations.State; import java.util.Random; import java.util.concurrent.TimeUnit; /** * Tests speed of division and remainder calculations. */ @BenchmarkMode(Mode.AverageTime) @OutputTimeUnit(TimeUnit.NANOSECONDS) @State(Scope.Thread) public class DivRem { private static final int ARRAYSIZE = 500; /* instance fields for the constant int division tests. */ public int[] intValues, intValues2; /* instance fields for the constant long division tests. */ public long[] longValues, longValues2; /* instance fields for the tests using the testdr-method. */ public long[] drLongValues1, drLongValues2; public long[] drLongValuesAsInts1, drLongValuesAsInts2; @Setup public void setupSubclass() { Random r = new Random(4711); intValues = new int[ARRAYSIZE]; intValues2 = new int[ARRAYSIZE]; longValues = new long[ARRAYSIZE]; longValues2 = new long[ARRAYSIZE]; for (int i = 0; i < ARRAYSIZE; i++) { intValues[i] = r.nextInt(); if (intValues[i] == 0) { intValues[i] = 5353; } intValues2[i] = r.nextInt(); longValues[i] = r.nextLong(); if (longValues[i] == 0) { longValues[i] = 5353L; } longValues2[i] = r.nextLong(); } /* generate random longs for 32-64 tests */ drLongValues1 = new long[ARRAYSIZE]; drLongValues2 = new long[ARRAYSIZE]; drLongValuesAsInts1 = new long[ARRAYSIZE]; drLongValuesAsInts2 = new long[ARRAYSIZE]; for (int i = 0; i < ARRAYSIZE; i++) { long l = r.nextLong(); if (l == 0L) { l++; } drLongValues1[i] = l; drLongValuesAsInts1[i] = (long) (int) l; l = r.nextLong(); if (l == 0L) { l++; } drLongValues2[i] = l; drLongValuesAsInts2[i] = (long) (int) l; } } /** * Tests integer division with a constant divisor. Hopefully the JVM will do a Granlund-Montgomery and convert it to * a multiplication instead. */ @Benchmark public int testIntDivConstantDivisor() { int dummy = 0; for (int i = 0; i < intValues.length; i++) { dummy += intValues[i] / 49; } return dummy; } /** * Tests long division with a constant divisor. Hopefully the JVM will do a Granlund-Montgomery and convert it to a * multiplication instead. */ @Benchmark public long testLongDivConstantDivisor() { long dummy = 0; for (int i = 0; i < longValues.length; i++) { dummy += longValues[i] / 49L + longValues[i] / 0x4949494949L; } return dummy; } /** * Tests integer remainder with a constant divisor. Hopefully the JVM will do a Granlund-Montgomery and convert it to * two multiplications instead. */ @Benchmark public int testIntRemConstantDivisor() { int dummy = 0; for (int i = 0; i < intValues.length; i++) { dummy += intValues[i] % 49; } return dummy; } /** * Tests long division with a constant divisor. Hopefully the JVM will do a Granlund-Montgomery and convert it to a * multiplication instead. */ @Benchmark public long testLongRemConstantDivisor() { long dummy = 0; for (int i = 0; i < longValues.length; i++) { dummy += longValues[i] % 49L + longValues[i] % 0x4949494949L; } return dummy; } /** * Tests integer division with a variable divisor. This benchmark is mainly here to be a comparison against the * benchmark that performs both divisions and remainder calculations. */ @Benchmark public int testIntDivVariableDivisor() { int dummy = 0; for (int i = 0; i < intValues.length; i++) { dummy += intValues2[i] / intValues[i]; } return dummy; } /** * Tests integer division and remainder with a variable divisor. Both calculations are performed with the same * divisor, so a JVM should not have to perform two complex calculations. Either a division followed by a * multiplication, or on X86 using idiv, where the reminder is also returned from the idiv instruction. */ @Benchmark public int testIntDivRemVariableDivisor() { int dummy = 0; for (int i = 0; i < intValues.length; i++) { dummy += intValues2[i] / intValues[i]; dummy += intValues2[i] % intValues[i]; } return dummy; } @Benchmark public long test64DivRem64() { long dummy = 0; for (int i = 0; i < drLongValues1.length; i++) { long l1 = drLongValues1[i]; long l2 = drLongValues2[i]; dummy += l1 / l2; dummy += l1 % l2; } return dummy; } @Benchmark public long test32DivRem32() { long dummy = 0; for (int i = 0; i < drLongValuesAsInts1.length; i++) { long l1 = drLongValuesAsInts1[i]; long l2 = drLongValuesAsInts2[i]; dummy += l1 / l2; dummy += l1 % l2; } return dummy; } @Benchmark public long test64DivRem32() { long dummy = 0; for (int i = 0; i < drLongValues1.length; i++) { long l1 = drLongValues1[i]; long l2 = drLongValuesAsInts2[i]; dummy += l1 / l2; dummy += l1 % l2; } return dummy; } }