/* * Copyright 1999-2009 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ #include "incls/_precompiled.incl" #include "incls/_c1_Runtime1_x86.cpp.incl" // Implementation of StubAssembler int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, int args_size) { // setup registers const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions) assert(!(oop_result1->is_valid() || oop_result2->is_valid()) || oop_result1 != oop_result2, "registers must be different"); assert(oop_result1 != thread && oop_result2 != thread, "registers must be different"); assert(args_size >= 0, "illegal args_size"); #ifdef _LP64 mov(c_rarg0, thread); set_num_rt_args(0); // Nothing on stack #else set_num_rt_args(1 + args_size); // push java thread (becomes first argument of C function) get_thread(thread); push(thread); #endif // _LP64 set_last_Java_frame(thread, noreg, rbp, NULL); // do the call call(RuntimeAddress(entry)); int call_offset = offset(); // verify callee-saved register #ifdef ASSERT guarantee(thread != rax, "change this code"); push(rax); { Label L; get_thread(rax); cmpptr(thread, rax); jcc(Assembler::equal, L); int3(); stop("StubAssembler::call_RT: rdi not callee saved?"); bind(L); } pop(rax); #endif reset_last_Java_frame(thread, true, false); // discard thread and arguments NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord)); // check for pending exceptions { Label L; cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); jcc(Assembler::equal, L); // exception pending => remove activation and forward to exception handler movptr(rax, Address(thread, Thread::pending_exception_offset())); // make sure that the vm_results are cleared if (oop_result1->is_valid()) { movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD); } if (oop_result2->is_valid()) { movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD); } if (frame_size() == no_frame_size) { leave(); jump(RuntimeAddress(StubRoutines::forward_exception_entry())); } else if (_stub_id == Runtime1::forward_exception_id) { should_not_reach_here(); } else { jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id))); } bind(L); } // get oop results if there are any and reset the values in the thread if (oop_result1->is_valid()) { movptr(oop_result1, Address(thread, JavaThread::vm_result_offset())); movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD); verify_oop(oop_result1); } if (oop_result2->is_valid()) { movptr(oop_result2, Address(thread, JavaThread::vm_result_2_offset())); movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD); verify_oop(oop_result2); } return call_offset; } int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1) { #ifdef _LP64 mov(c_rarg1, arg1); #else push(arg1); #endif // _LP64 return call_RT(oop_result1, oop_result2, entry, 1); } int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2) { #ifdef _LP64 if (c_rarg1 == arg2) { if (c_rarg2 == arg1) { xchgq(arg1, arg2); } else { mov(c_rarg2, arg2); mov(c_rarg1, arg1); } } else { mov(c_rarg1, arg1); mov(c_rarg2, arg2); } #else push(arg2); push(arg1); #endif // _LP64 return call_RT(oop_result1, oop_result2, entry, 2); } int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2, Register arg3) { #ifdef _LP64 // if there is any conflict use the stack if (arg1 == c_rarg2 || arg1 == c_rarg3 || arg2 == c_rarg1 || arg1 == c_rarg3 || arg3 == c_rarg1 || arg1 == c_rarg2) { push(arg3); push(arg2); push(arg1); pop(c_rarg1); pop(c_rarg2); pop(c_rarg3); } else { mov(c_rarg1, arg1); mov(c_rarg2, arg2); mov(c_rarg3, arg3); } #else push(arg3); push(arg2); push(arg1); #endif // _LP64 return call_RT(oop_result1, oop_result2, entry, 3); } // Implementation of StubFrame class StubFrame: public StackObj { private: StubAssembler* _sasm; public: StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments); void load_argument(int offset_in_words, Register reg); ~StubFrame(); }; #define __ _sasm-> StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) { _sasm = sasm; __ set_info(name, must_gc_arguments); __ enter(); } // load parameters that were stored with LIR_Assembler::store_parameter // Note: offsets for store_parameter and load_argument must match void StubFrame::load_argument(int offset_in_words, Register reg) { // rbp, + 0: link // + 1: return address // + 2: argument with offset 0 // + 3: argument with offset 1 // + 4: ... __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord)); } StubFrame::~StubFrame() { __ leave(); __ ret(0); } #undef __ // Implementation of Runtime1 #define __ sasm-> const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2; const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2; // Stack layout for saving/restoring all the registers needed during a runtime // call (this includes deoptimization) // Note: note that users of this frame may well have arguments to some runtime // while these values are on the stack. These positions neglect those arguments // but the code in save_live_registers will take the argument count into // account. // #ifdef _LP64 #define SLOT2(x) x, #define SLOT_PER_WORD 2 #else #define SLOT2(x) #define SLOT_PER_WORD 1 #endif // _LP64 enum reg_save_layout { // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that // happen and will assert if the stack size we create is misaligned #ifdef _LP64 align_dummy_0, align_dummy_1, #endif // _LP64 dummy1, SLOT2(dummy1H) // 0, 4 dummy2, SLOT2(dummy2H) // 8, 12 // Two temps to be used as needed by users of save/restore callee registers temp_2_off, SLOT2(temp_2H_off) // 16, 20 temp_1_off, SLOT2(temp_1H_off) // 24, 28 xmm_regs_as_doubles_off, // 32 float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots, // 160 fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots, // 224 // fpu_state_end_off is exclusive fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD), // 352 marker = fpu_state_end_off, SLOT2(markerH) // 352, 356 extra_space_offset, // 360 #ifdef _LP64 r15_off = extra_space_offset, r15H_off, // 360, 364 r14_off, r14H_off, // 368, 372 r13_off, r13H_off, // 376, 380 r12_off, r12H_off, // 384, 388 r11_off, r11H_off, // 392, 396 r10_off, r10H_off, // 400, 404 r9_off, r9H_off, // 408, 412 r8_off, r8H_off, // 416, 420 rdi_off, rdiH_off, // 424, 428 #else rdi_off = extra_space_offset, #endif // _LP64 rsi_off, SLOT2(rsiH_off) // 432, 436 rbp_off, SLOT2(rbpH_off) // 440, 444 rsp_off, SLOT2(rspH_off) // 448, 452 rbx_off, SLOT2(rbxH_off) // 456, 460 rdx_off, SLOT2(rdxH_off) // 464, 468 rcx_off, SLOT2(rcxH_off) // 472, 476 rax_off, SLOT2(raxH_off) // 480, 484 saved_rbp_off, SLOT2(saved_rbpH_off) // 488, 492 return_off, SLOT2(returnH_off) // 496, 500 reg_save_frame_size, // As noted: neglects any parameters to runtime // 504 #ifdef _WIN64 c_rarg0_off = rcx_off, #else c_rarg0_off = rdi_off, #endif // WIN64 // equates // illegal instruction handler continue_dest_off = temp_1_off, // deoptimization equates fp0_off = float_regs_as_doubles_off, // slot for java float/double return value xmm0_off = xmm_regs_as_doubles_off, // slot for java float/double return value deopt_type = temp_2_off, // slot for type of deopt in progress ret_type = temp_1_off // slot for return type }; // Save off registers which might be killed by calls into the runtime. // Tries to smart of about FP registers. In particular we separate // saving and describing the FPU registers for deoptimization since we // have to save the FPU registers twice if we describe them and on P4 // saving FPU registers which don't contain anything appears // expensive. The deopt blob is the only thing which needs to // describe FPU registers. In all other cases it should be sufficient // to simply save their current value. static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args, bool save_fpu_registers = true) { // In 64bit all the args are in regs so there are no additional stack slots LP64_ONLY(num_rt_args = 0); LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");) int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word ); // record saved value locations in an OopMap // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread OopMap* map = new OopMap(frame_size_in_slots, 0); map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg()); map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg()); map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg()); map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg()); map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg()); map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg()); #ifdef _LP64 map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args), r8->as_VMReg()); map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args), r9->as_VMReg()); map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg()); map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg()); map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg()); map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg()); map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg()); map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg()); // This is stupid but needed. map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args), r8->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args), r9->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next()); #endif // _LP64 if (save_fpu_registers) { if (UseSSE < 2) { int fpu_off = float_regs_as_doubles_off; for (int n = 0; n < FrameMap::nof_fpu_regs; n++) { VMReg fpu_name_0 = FrameMap::fpu_regname(n); map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + num_rt_args), fpu_name_0); // %%% This is really a waste but we'll keep things as they were for now if (true) { map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next()); } fpu_off += 2; } assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots"); } if (UseSSE >= 2) { int xmm_off = xmm_regs_as_doubles_off; for (int n = 0; n < FrameMap::nof_xmm_regs; n++) { VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg(); map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0); // %%% This is really a waste but we'll keep things as they were for now if (true) { map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next()); } xmm_off += 2; } assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers"); } else if (UseSSE == 1) { int xmm_off = xmm_regs_as_doubles_off; for (int n = 0; n < FrameMap::nof_xmm_regs; n++) { VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg(); map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0); xmm_off += 2; } assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers"); } } return map; } static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args, bool save_fpu_registers = true) { __ block_comment("save_live_registers"); // 64bit passes the args in regs to the c++ runtime int frame_size_in_slots = reg_save_frame_size NOT_LP64(+ num_rt_args); // args + thread // frame_size = round_to(frame_size, 4); sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word ); __ pusha(); // integer registers // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset"); // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset"); __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size); #ifdef ASSERT __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef); #endif if (save_fpu_registers) { if (UseSSE < 2) { // save FPU stack __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size)); __ fwait(); #ifdef ASSERT Label ok; __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std()); __ jccb(Assembler::equal, ok); __ stop("corrupted control word detected"); __ bind(ok); #endif // Reset the control word to guard against exceptions being unmasked // since fstp_d can cause FPU stack underflow exceptions. Write it // into the on stack copy and then reload that to make sure that the // current and future values are correct. __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std()); __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size)); // Save the FPU registers in de-opt-able form __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0)); __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8)); __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16)); __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24)); __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32)); __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40)); __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48)); __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56)); } if (UseSSE >= 2) { // save XMM registers // XMM registers can contain float or double values, but this is not known here, // so always save them as doubles. // note that float values are _not_ converted automatically, so for float values // the second word contains only garbage data. __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0), xmm0); __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8), xmm1); __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2); __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3); __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4); __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5); __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6); __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7); #ifdef _LP64 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8); __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9); __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10); __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11); __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12); __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13); __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14); __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15); #endif // _LP64 } else if (UseSSE == 1) { // save XMM registers as float because double not supported without SSE2 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0), xmm0); __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8), xmm1); __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2); __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3); __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4); __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5); __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6); __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7); } } // FPU stack must be empty now __ verify_FPU(0, "save_live_registers"); return generate_oop_map(sasm, num_rt_args, save_fpu_registers); } static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) { if (restore_fpu_registers) { if (UseSSE >= 2) { // restore XMM registers __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0)); __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8)); __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16)); __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24)); __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32)); __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40)); __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48)); __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56)); #ifdef _LP64 __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64)); __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72)); __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80)); __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88)); __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96)); __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104)); __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112)); __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120)); #endif // _LP64 } else if (UseSSE == 1) { // restore XMM registers __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0)); __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8)); __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16)); __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24)); __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32)); __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40)); __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48)); __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56)); } if (UseSSE < 2) { __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size)); } else { // check that FPU stack is really empty __ verify_FPU(0, "restore_live_registers"); } } else { // check that FPU stack is really empty __ verify_FPU(0, "restore_live_registers"); } #ifdef ASSERT { Label ok; __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef); __ jcc(Assembler::equal, ok); __ stop("bad offsets in frame"); __ bind(ok); } #endif // ASSERT __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size); } static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) { __ block_comment("restore_live_registers"); restore_fpu(sasm, restore_fpu_registers); __ popa(); } static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) { __ block_comment("restore_live_registers_except_rax"); restore_fpu(sasm, restore_fpu_registers); #ifdef _LP64 __ movptr(r15, Address(rsp, 0)); __ movptr(r14, Address(rsp, wordSize)); __ movptr(r13, Address(rsp, 2 * wordSize)); __ movptr(r12, Address(rsp, 3 * wordSize)); __ movptr(r11, Address(rsp, 4 * wordSize)); __ movptr(r10, Address(rsp, 5 * wordSize)); __ movptr(r9, Address(rsp, 6 * wordSize)); __ movptr(r8, Address(rsp, 7 * wordSize)); __ movptr(rdi, Address(rsp, 8 * wordSize)); __ movptr(rsi, Address(rsp, 9 * wordSize)); __ movptr(rbp, Address(rsp, 10 * wordSize)); // skip rsp __ movptr(rbx, Address(rsp, 12 * wordSize)); __ movptr(rdx, Address(rsp, 13 * wordSize)); __ movptr(rcx, Address(rsp, 14 * wordSize)); __ addptr(rsp, 16 * wordSize); #else __ pop(rdi); __ pop(rsi); __ pop(rbp); __ pop(rbx); // skip this value __ pop(rbx); __ pop(rdx); __ pop(rcx); __ addptr(rsp, BytesPerWord); #endif // _LP64 } void Runtime1::initialize_pd() { // nothing to do } // target: the entry point of the method that creates and posts the exception oop // has_argument: true if the exception needs an argument (passed on stack because registers must be preserved) OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) { // preserve all registers int num_rt_args = has_argument ? 2 : 1; OopMap* oop_map = save_live_registers(sasm, num_rt_args); // now all registers are saved and can be used freely // verify that no old value is used accidentally __ invalidate_registers(true, true, true, true, true, true); // registers used by this stub const Register temp_reg = rbx; // load argument for exception that is passed as an argument into the stub if (has_argument) { #ifdef _LP64 __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord)); #else __ movptr(temp_reg, Address(rbp, 2*BytesPerWord)); __ push(temp_reg); #endif // _LP64 } int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1); OopMapSet* oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); __ stop("should not reach here"); return oop_maps; } void Runtime1::generate_handle_exception(StubAssembler *sasm, OopMapSet* oop_maps, OopMap* oop_map, bool save_fpu_registers) { // incoming parameters const Register exception_oop = rax; const Register exception_pc = rdx; // other registers used in this stub const Register real_return_addr = rbx; const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); __ block_comment("generate_handle_exception"); #ifdef TIERED // C2 can leave the fpu stack dirty if (UseSSE < 2 ) { __ empty_FPU_stack(); } #endif // TIERED // verify that only rax, and rdx is valid at this time __ invalidate_registers(false, true, true, false, true, true); // verify that rax, contains a valid exception __ verify_not_null_oop(exception_oop); // load address of JavaThread object for thread-local data NOT_LP64(__ get_thread(thread);) #ifdef ASSERT // check that fields in JavaThread for exception oop and issuing pc are // empty before writing to them Label oop_empty; __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD); __ jcc(Assembler::equal, oop_empty); __ stop("exception oop already set"); __ bind(oop_empty); Label pc_empty; __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0); __ jcc(Assembler::equal, pc_empty); __ stop("exception pc already set"); __ bind(pc_empty); #endif // save exception oop and issuing pc into JavaThread // (exception handler will load it from here) __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop); __ movptr(Address(thread, JavaThread::exception_pc_offset()), exception_pc); // save real return address (pc that called this stub) __ movptr(real_return_addr, Address(rbp, 1*BytesPerWord)); __ movptr(Address(rsp, temp_1_off * VMRegImpl::stack_slot_size), real_return_addr); // patch throwing pc into return address (has bci & oop map) __ movptr(Address(rbp, 1*BytesPerWord), exception_pc); // compute the exception handler. // the exception oop and the throwing pc are read from the fields in JavaThread int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc)); oop_maps->add_gc_map(call_offset, oop_map); // rax,: handler address or NULL if no handler exists // will be the deopt blob if nmethod was deoptimized while we looked up // handler regardless of whether handler existed in the nmethod. // only rax, is valid at this time, all other registers have been destroyed by the runtime call __ invalidate_registers(false, true, true, true, true, true); // Do we have an exception handler in the nmethod? Label no_handler; Label done; __ testptr(rax, rax); __ jcc(Assembler::zero, no_handler); // exception handler found // patch the return address -> the stub will directly return to the exception handler __ movptr(Address(rbp, 1*BytesPerWord), rax); // restore registers restore_live_registers(sasm, save_fpu_registers); // return to exception handler __ leave(); __ ret(0); __ bind(no_handler); // no exception handler found in this method, so the exception is // forwarded to the caller (using the unwind code of the nmethod) // there is no need to restore the registers // restore the real return address that was saved before the RT-call __ movptr(real_return_addr, Address(rsp, temp_1_off * VMRegImpl::stack_slot_size)); __ movptr(Address(rbp, 1*BytesPerWord), real_return_addr); // load address of JavaThread object for thread-local data NOT_LP64(__ get_thread(thread);) // restore exception oop into rax, (convention for unwind code) __ movptr(exception_oop, Address(thread, JavaThread::exception_oop_offset())); // clear exception fields in JavaThread because they are no longer needed // (fields must be cleared because they are processed by GC otherwise) __ movptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD); __ movptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD); // pop the stub frame off __ leave(); generate_unwind_exception(sasm); __ stop("should not reach here"); } void Runtime1::generate_unwind_exception(StubAssembler *sasm) { // incoming parameters const Register exception_oop = rax; // other registers used in this stub const Register exception_pc = rdx; const Register handler_addr = rbx; const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // verify that only rax, is valid at this time __ invalidate_registers(false, true, true, true, true, true); #ifdef ASSERT // check that fields in JavaThread for exception oop and issuing pc are empty NOT_LP64(__ get_thread(thread);) Label oop_empty; __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0); __ jcc(Assembler::equal, oop_empty); __ stop("exception oop must be empty"); __ bind(oop_empty); Label pc_empty; __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0); __ jcc(Assembler::equal, pc_empty); __ stop("exception pc must be empty"); __ bind(pc_empty); #endif // clear the FPU stack in case any FPU results are left behind __ empty_FPU_stack(); // leave activation of nmethod __ leave(); // store return address (is on top of stack after leave) __ movptr(exception_pc, Address(rsp, 0)); __ verify_oop(exception_oop); // save exception oop from rax, to stack before call __ push(exception_oop); // search the exception handler address of the caller (using the return address) __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), exception_pc); // rax,: exception handler address of the caller // only rax, is valid at this time, all other registers have been destroyed by the call __ invalidate_registers(false, true, true, true, true, true); // move result of call into correct register __ movptr(handler_addr, rax); // restore exception oop in rax, (required convention of exception handler) __ pop(exception_oop); __ verify_oop(exception_oop); // get throwing pc (= return address). // rdx has been destroyed by the call, so it must be set again // the pop is also necessary to simulate the effect of a ret(0) __ pop(exception_pc); // verify that that there is really a valid exception in rax, __ verify_not_null_oop(exception_oop); // continue at exception handler (return address removed) // note: do *not* remove arguments when unwinding the // activation since the caller assumes having // all arguments on the stack when entering the // runtime to determine the exception handler // (GC happens at call site with arguments!) // rax,: exception oop // rdx: throwing pc // rbx,: exception handler __ jmp(handler_addr); } OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) { // use the maximum number of runtime-arguments here because it is difficult to // distinguish each RT-Call. // Note: This number affects also the RT-Call in generate_handle_exception because // the oop-map is shared for all calls. const int num_rt_args = 2; // thread + dummy DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); assert(deopt_blob != NULL, "deoptimization blob must have been created"); OopMap* oop_map = save_live_registers(sasm, num_rt_args); #ifdef _LP64 const Register thread = r15_thread; // No need to worry about dummy __ mov(c_rarg0, thread); #else __ push(rax); // push dummy const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions) // push java thread (becomes first argument of C function) __ get_thread(thread); __ push(thread); #endif // _LP64 __ set_last_Java_frame(thread, noreg, rbp, NULL); // do the call __ call(RuntimeAddress(target)); OopMapSet* oop_maps = new OopMapSet(); oop_maps->add_gc_map(__ offset(), oop_map); // verify callee-saved register #ifdef ASSERT guarantee(thread != rax, "change this code"); __ push(rax); { Label L; __ get_thread(rax); __ cmpptr(thread, rax); __ jcc(Assembler::equal, L); __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?"); __ bind(L); } __ pop(rax); #endif __ reset_last_Java_frame(thread, true, false); #ifndef _LP64 __ pop(rcx); // discard thread arg __ pop(rcx); // discard dummy #endif // _LP64 // check for pending exceptions { Label L; __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); __ jcc(Assembler::equal, L); // exception pending => remove activation and forward to exception handler __ testptr(rax, rax); // have we deoptimized? __ jump_cc(Assembler::equal, RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id))); // the deopt blob expects exceptions in the special fields of // JavaThread, so copy and clear pending exception. // load and clear pending exception __ movptr(rax, Address(thread, Thread::pending_exception_offset())); __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); // check that there is really a valid exception __ verify_not_null_oop(rax); // load throwing pc: this is the return address of the stub __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size)); #ifdef ASSERT // check that fields in JavaThread for exception oop and issuing pc are empty Label oop_empty; __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD); __ jcc(Assembler::equal, oop_empty); __ stop("exception oop must be empty"); __ bind(oop_empty); Label pc_empty; __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD); __ jcc(Assembler::equal, pc_empty); __ stop("exception pc must be empty"); __ bind(pc_empty); #endif // store exception oop and throwing pc to JavaThread __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax); __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx); restore_live_registers(sasm); __ leave(); __ addptr(rsp, BytesPerWord); // remove return address from stack // Forward the exception directly to deopt blob. We can blow no // registers and must leave throwing pc on the stack. A patch may // have values live in registers so the entry point with the // exception in tls. __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls())); __ bind(L); } // Runtime will return true if the nmethod has been deoptimized during // the patching process. In that case we must do a deopt reexecute instead. Label reexecuteEntry, cont; __ testptr(rax, rax); // have we deoptimized? __ jcc(Assembler::equal, cont); // no // Will reexecute. Proper return address is already on the stack we just restore // registers, pop all of our frame but the return address and jump to the deopt blob restore_live_registers(sasm); __ leave(); __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution())); __ bind(cont); restore_live_registers(sasm); __ leave(); __ ret(0); return oop_maps; } OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) { // for better readability const bool must_gc_arguments = true; const bool dont_gc_arguments = false; // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu bool save_fpu_registers = true; // stub code & info for the different stubs OopMapSet* oop_maps = NULL; switch (id) { case forward_exception_id: { // we're handling an exception in the context of a compiled // frame. The registers have been saved in the standard // places. Perform an exception lookup in the caller and // dispatch to the handler if found. Otherwise unwind and // dispatch to the callers exception handler. const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); const Register exception_oop = rax; const Register exception_pc = rdx; // load pending exception oop into rax, __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset())); // clear pending exception __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); // load issuing PC (the return address for this stub) into rdx __ movptr(exception_pc, Address(rbp, 1*BytesPerWord)); // make sure that the vm_results are cleared (may be unnecessary) __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD); __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD); // verify that that there is really a valid exception in rax, __ verify_not_null_oop(exception_oop); oop_maps = new OopMapSet(); OopMap* oop_map = generate_oop_map(sasm, 1); generate_handle_exception(sasm, oop_maps, oop_map); __ stop("should not reach here"); } break; case new_instance_id: case fast_new_instance_id: case fast_new_instance_init_check_id: { Register klass = rdx; // Incoming Register obj = rax; // Result if (id == new_instance_id) { __ set_info("new_instance", dont_gc_arguments); } else if (id == fast_new_instance_id) { __ set_info("fast new_instance", dont_gc_arguments); } else { assert(id == fast_new_instance_init_check_id, "bad StubID"); __ set_info("fast new_instance init check", dont_gc_arguments); } if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) && UseTLAB && FastTLABRefill) { Label slow_path; Register obj_size = rcx; Register t1 = rbx; Register t2 = rsi; assert_different_registers(klass, obj, obj_size, t1, t2); __ push(rdi); __ push(rbx); if (id == fast_new_instance_init_check_id) { // make sure the klass is initialized __ cmpl(Address(klass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized); __ jcc(Assembler::notEqual, slow_path); } #ifdef ASSERT // assert object can be fast path allocated { Label ok, not_ok; __ movl(obj_size, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc))); __ cmpl(obj_size, 0); // make sure it's an instance (LH > 0) __ jcc(Assembler::lessEqual, not_ok); __ testl(obj_size, Klass::_lh_instance_slow_path_bit); __ jcc(Assembler::zero, ok); __ bind(not_ok); __ stop("assert(can be fast path allocated)"); __ should_not_reach_here(); __ bind(ok); } #endif // ASSERT // if we got here then the TLAB allocation failed, so try // refilling the TLAB or allocating directly from eden. Label retry_tlab, try_eden; __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass) __ bind(retry_tlab); // get the instance size (size is postive so movl is fine for 64bit) __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes())); __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path); __ initialize_object(obj, klass, obj_size, 0, t1, t2); __ verify_oop(obj); __ pop(rbx); __ pop(rdi); __ ret(0); __ bind(try_eden); // get the instance size (size is postive so movl is fine for 64bit) __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes())); __ eden_allocate(obj, obj_size, 0, t1, slow_path); __ initialize_object(obj, klass, obj_size, 0, t1, t2); __ verify_oop(obj); __ pop(rbx); __ pop(rdi); __ ret(0); __ bind(slow_path); __ pop(rbx); __ pop(rdi); } __ enter(); OopMap* map = save_live_registers(sasm, 2); int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, map); restore_live_registers_except_rax(sasm); __ verify_oop(obj); __ leave(); __ ret(0); // rax,: new instance } break; #ifdef TIERED case counter_overflow_id: { Register bci = rax; __ enter(); OopMap* map = save_live_registers(sasm, 2); // Retrieve bci __ movl(bci, Address(rbp, 2*BytesPerWord)); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, map); restore_live_registers(sasm); __ leave(); __ ret(0); } break; #endif // TIERED case new_type_array_id: case new_object_array_id: { Register length = rbx; // Incoming Register klass = rdx; // Incoming Register obj = rax; // Result if (id == new_type_array_id) { __ set_info("new_type_array", dont_gc_arguments); } else { __ set_info("new_object_array", dont_gc_arguments); } #ifdef ASSERT // assert object type is really an array of the proper kind { Label ok; Register t0 = obj; __ movl(t0, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc))); __ sarl(t0, Klass::_lh_array_tag_shift); int tag = ((id == new_type_array_id) ? Klass::_lh_array_tag_type_value : Klass::_lh_array_tag_obj_value); __ cmpl(t0, tag); __ jcc(Assembler::equal, ok); __ stop("assert(is an array klass)"); __ should_not_reach_here(); __ bind(ok); } #endif // ASSERT if (UseTLAB && FastTLABRefill) { Register arr_size = rsi; Register t1 = rcx; // must be rcx for use as shift count Register t2 = rdi; Label slow_path; assert_different_registers(length, klass, obj, arr_size, t1, t2); // check that array length is small enough for fast path. __ cmpl(length, C1_MacroAssembler::max_array_allocation_length); __ jcc(Assembler::above, slow_path); // if we got here then the TLAB allocation failed, so try // refilling the TLAB or allocating directly from eden. Label retry_tlab, try_eden; __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx, & rdx __ bind(retry_tlab); // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F)) // since size is postive movl does right thing on 64bit __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes())); // since size is postive movl does right thing on 64bit __ movl(arr_size, length); assert(t1 == rcx, "fixed register usage"); __ shlptr(arr_size /* by t1=rcx, mod 32 */); __ shrptr(t1, Klass::_lh_header_size_shift); __ andptr(t1, Klass::_lh_header_size_mask); __ addptr(arr_size, t1); __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up __ andptr(arr_size, ~MinObjAlignmentInBytesMask); __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path); // preserves arr_size __ initialize_header(obj, klass, length, t1, t2); __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte))); assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise"); assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise"); __ andptr(t1, Klass::_lh_header_size_mask); __ subptr(arr_size, t1); // body length __ addptr(t1, obj); // body start __ initialize_body(t1, arr_size, 0, t2); __ verify_oop(obj); __ ret(0); __ bind(try_eden); // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F)) // since size is postive movl does right thing on 64bit __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes())); // since size is postive movl does right thing on 64bit __ movl(arr_size, length); assert(t1 == rcx, "fixed register usage"); __ shlptr(arr_size /* by t1=rcx, mod 32 */); __ shrptr(t1, Klass::_lh_header_size_shift); __ andptr(t1, Klass::_lh_header_size_mask); __ addptr(arr_size, t1); __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up __ andptr(arr_size, ~MinObjAlignmentInBytesMask); __ eden_allocate(obj, arr_size, 0, t1, slow_path); // preserves arr_size __ initialize_header(obj, klass, length, t1, t2); __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte))); assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise"); assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise"); __ andptr(t1, Klass::_lh_header_size_mask); __ subptr(arr_size, t1); // body length __ addptr(t1, obj); // body start __ initialize_body(t1, arr_size, 0, t2); __ verify_oop(obj); __ ret(0); __ bind(slow_path); } __ enter(); OopMap* map = save_live_registers(sasm, 3); int call_offset; if (id == new_type_array_id) { call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length); } else { call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length); } oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, map); restore_live_registers_except_rax(sasm); __ verify_oop(obj); __ leave(); __ ret(0); // rax,: new array } break; case new_multi_array_id: { StubFrame f(sasm, "new_multi_array", dont_gc_arguments); // rax,: klass // rbx,: rank // rcx: address of 1st dimension OopMap* map = save_live_registers(sasm, 4); int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, map); restore_live_registers_except_rax(sasm); // rax,: new multi array __ verify_oop(rax); } break; case register_finalizer_id: { __ set_info("register_finalizer", dont_gc_arguments); // This is called via call_runtime so the arguments // will be place in C abi locations #ifdef _LP64 __ verify_oop(c_rarg0); __ mov(rax, c_rarg0); #else // The object is passed on the stack and we haven't pushed a // frame yet so it's one work away from top of stack. __ movptr(rax, Address(rsp, 1 * BytesPerWord)); __ verify_oop(rax); #endif // _LP64 // load the klass and check the has finalizer flag Label register_finalizer; Register t = rsi; __ movptr(t, Address(rax, oopDesc::klass_offset_in_bytes())); __ movl(t, Address(t, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc))); __ testl(t, JVM_ACC_HAS_FINALIZER); __ jcc(Assembler::notZero, register_finalizer); __ ret(0); __ bind(register_finalizer); __ enter(); OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); // Now restore all the live registers restore_live_registers(sasm); __ leave(); __ ret(0); } break; case throw_range_check_failed_id: { StubFrame f(sasm, "range_check_failed", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true); } break; case throw_index_exception_id: { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true); } break; case throw_div0_exception_id: { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false); } break; case throw_null_pointer_exception_id: { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false); } break; case handle_exception_nofpu_id: save_fpu_registers = false; // fall through case handle_exception_id: { StubFrame f(sasm, "handle_exception", dont_gc_arguments); oop_maps = new OopMapSet(); OopMap* oop_map = save_live_registers(sasm, 1, save_fpu_registers); generate_handle_exception(sasm, oop_maps, oop_map, save_fpu_registers); } break; case unwind_exception_id: { __ set_info("unwind_exception", dont_gc_arguments); // note: no stubframe since we are about to leave the current // activation and we are calling a leaf VM function only. generate_unwind_exception(sasm); } break; case throw_array_store_exception_id: { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments); // tos + 0: link // + 1: return address oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), false); } break; case throw_class_cast_exception_id: { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true); } break; case throw_incompatible_class_change_error_id: { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false); } break; case slow_subtype_check_id: { // Typical calling sequence: // __ push(klass_RInfo); // object klass or other subclass // __ push(sup_k_RInfo); // array element klass or other superclass // __ call(slow_subtype_check); // Note that the subclass is pushed first, and is therefore deepest. // Previous versions of this code reversed the names 'sub' and 'super'. // This was operationally harmless but made the code unreadable. enum layout { rax_off, SLOT2(raxH_off) rcx_off, SLOT2(rcxH_off) rsi_off, SLOT2(rsiH_off) rdi_off, SLOT2(rdiH_off) // saved_rbp_off, SLOT2(saved_rbpH_off) return_off, SLOT2(returnH_off) sup_k_off, SLOT2(sup_kH_off) klass_off, SLOT2(superH_off) framesize, result_off = klass_off // deepest argument is also the return value }; __ set_info("slow_subtype_check", dont_gc_arguments); __ push(rdi); __ push(rsi); __ push(rcx); __ push(rax); // This is called by pushing args and not with C abi __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass Label miss; __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss); // fallthrough on success: __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result __ pop(rax); __ pop(rcx); __ pop(rsi); __ pop(rdi); __ ret(0); __ bind(miss); __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result __ pop(rax); __ pop(rcx); __ pop(rsi); __ pop(rdi); __ ret(0); } break; case monitorenter_nofpu_id: save_fpu_registers = false; // fall through case monitorenter_id: { StubFrame f(sasm, "monitorenter", dont_gc_arguments); OopMap* map = save_live_registers(sasm, 3, save_fpu_registers); // Called with store_parameter and not C abi f.load_argument(1, rax); // rax,: object f.load_argument(0, rbx); // rbx,: lock address int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, map); restore_live_registers(sasm, save_fpu_registers); } break; case monitorexit_nofpu_id: save_fpu_registers = false; // fall through case monitorexit_id: { StubFrame f(sasm, "monitorexit", dont_gc_arguments); OopMap* map = save_live_registers(sasm, 2, save_fpu_registers); // Called with store_parameter and not C abi f.load_argument(0, rax); // rax,: lock address // note: really a leaf routine but must setup last java sp // => use call_RT for now (speed can be improved by // doing last java sp setup manually) int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, map); restore_live_registers(sasm, save_fpu_registers); } break; case access_field_patching_id: { StubFrame f(sasm, "access_field_patching", dont_gc_arguments); // we should set up register map oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching)); } break; case load_klass_patching_id: { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments); // we should set up register map oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching)); } break; case jvmti_exception_throw_id: { // rax,: exception oop StubFrame f(sasm, "jvmti_exception_throw", dont_gc_arguments); // Preserve all registers across this potentially blocking call const int num_rt_args = 2; // thread, exception oop OopMap* map = save_live_registers(sasm, num_rt_args); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, Runtime1::post_jvmti_exception_throw), rax); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, map); restore_live_registers(sasm); } break; case dtrace_object_alloc_id: { // rax,: object StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments); // we can't gc here so skip the oopmap but make sure that all // the live registers get saved. save_live_registers(sasm, 1); __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax)); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc))); NOT_LP64(__ pop(rax)); restore_live_registers(sasm); } break; case fpu2long_stub_id: { // rax, and rdx are destroyed, but should be free since the result is returned there // preserve rsi,ecx __ push(rsi); __ push(rcx); LP64_ONLY(__ push(rdx);) // check for NaN Label return0, do_return, return_min_jlong, do_convert; Address value_high_word(rsp, wordSize + 4); Address value_low_word(rsp, wordSize); Address result_high_word(rsp, 3*wordSize + 4); Address result_low_word(rsp, 3*wordSize); __ subptr(rsp, 32); // more than enough on 32bit __ fst_d(value_low_word); __ movl(rax, value_high_word); __ andl(rax, 0x7ff00000); __ cmpl(rax, 0x7ff00000); __ jcc(Assembler::notEqual, do_convert); __ movl(rax, value_high_word); __ andl(rax, 0xfffff); __ orl(rax, value_low_word); __ jcc(Assembler::notZero, return0); __ bind(do_convert); __ fnstcw(Address(rsp, 0)); __ movzwl(rax, Address(rsp, 0)); __ orl(rax, 0xc00); __ movw(Address(rsp, 2), rax); __ fldcw(Address(rsp, 2)); __ fwait(); __ fistp_d(result_low_word); __ fldcw(Address(rsp, 0)); __ fwait(); // This gets the entire long in rax on 64bit __ movptr(rax, result_low_word); // testing of high bits __ movl(rdx, result_high_word); __ mov(rcx, rax); // What the heck is the point of the next instruction??? __ xorl(rcx, 0x0); __ movl(rsi, 0x80000000); __ xorl(rsi, rdx); __ orl(rcx, rsi); __ jcc(Assembler::notEqual, do_return); __ fldz(); __ fcomp_d(value_low_word); __ fnstsw_ax(); #ifdef _LP64 __ testl(rax, 0x4100); // ZF & CF == 0 __ jcc(Assembler::equal, return_min_jlong); #else __ sahf(); __ jcc(Assembler::above, return_min_jlong); #endif // _LP64 // return max_jlong #ifndef _LP64 __ movl(rdx, 0x7fffffff); __ movl(rax, 0xffffffff); #else __ mov64(rax, CONST64(0x7fffffffffffffff)); #endif // _LP64 __ jmp(do_return); __ bind(return_min_jlong); #ifndef _LP64 __ movl(rdx, 0x80000000); __ xorl(rax, rax); #else __ mov64(rax, CONST64(0x8000000000000000)); #endif // _LP64 __ jmp(do_return); __ bind(return0); __ fpop(); #ifndef _LP64 __ xorptr(rdx,rdx); __ xorptr(rax,rax); #else __ xorptr(rax, rax); #endif // _LP64 __ bind(do_return); __ addptr(rsp, 32); LP64_ONLY(__ pop(rdx);) __ pop(rcx); __ pop(rsi); __ ret(0); } break; #ifndef SERIALGC case g1_pre_barrier_slow_id: { StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments); // arg0 : previous value of memory BarrierSet* bs = Universe::heap()->barrier_set(); if (bs->kind() != BarrierSet::G1SATBCTLogging) { __ movptr(rax, (int)id); __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax); __ should_not_reach_here(); break; } __ push(rax); __ push(rdx); const Register pre_val = rax; const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread); const Register tmp = rdx; NOT_LP64(__ get_thread(thread);) Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active())); Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_index())); Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_buf())); Label done; Label runtime; // Can we store original value in the thread's buffer? LP64_ONLY(__ movslq(tmp, queue_index);) #ifdef _LP64 __ cmpq(tmp, 0); #else __ cmpl(queue_index, 0); #endif __ jcc(Assembler::equal, runtime); #ifdef _LP64 __ subq(tmp, wordSize); __ movl(queue_index, tmp); __ addq(tmp, buffer); #else __ subl(queue_index, wordSize); __ movl(tmp, buffer); __ addl(tmp, queue_index); #endif // prev_val (rax) f.load_argument(0, pre_val); __ movptr(Address(tmp, 0), pre_val); __ jmp(done); __ bind(runtime); // load the pre-value __ push(rcx); f.load_argument(0, rcx); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread); __ pop(rcx); __ bind(done); __ pop(rdx); __ pop(rax); } break; case g1_post_barrier_slow_id: { StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments); // arg0: store_address Address store_addr(rbp, 2*BytesPerWord); BarrierSet* bs = Universe::heap()->barrier_set(); CardTableModRefBS* ct = (CardTableModRefBS*)bs; Label done; Label runtime; // At this point we know new_value is non-NULL and the new_value crosses regsion. // Must check to see if card is already dirty const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread); Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_index())); Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_buf())); __ push(rax); __ push(rdx); NOT_LP64(__ get_thread(thread);) ExternalAddress cardtable((address)ct->byte_map_base); assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); const Register card_addr = rdx; #ifdef _LP64 const Register tmp = rscratch1; f.load_argument(0, card_addr); __ shrq(card_addr, CardTableModRefBS::card_shift); __ lea(tmp, cardtable); // get the address of the card __ addq(card_addr, tmp); #else const Register card_index = rdx; f.load_argument(0, card_index); __ shrl(card_index, CardTableModRefBS::card_shift); Address index(noreg, card_index, Address::times_1); __ leal(card_addr, __ as_Address(ArrayAddress(cardtable, index))); #endif __ cmpb(Address(card_addr, 0), 0); __ jcc(Assembler::equal, done); // storing region crossing non-NULL, card is clean. // dirty card and log. __ movb(Address(card_addr, 0), 0); __ cmpl(queue_index, 0); __ jcc(Assembler::equal, runtime); __ subl(queue_index, wordSize); const Register buffer_addr = rbx; __ push(rbx); __ movptr(buffer_addr, buffer); #ifdef _LP64 __ movslq(rscratch1, queue_index); __ addptr(buffer_addr, rscratch1); #else __ addptr(buffer_addr, queue_index); #endif __ movptr(Address(buffer_addr, 0), card_addr); __ pop(rbx); __ jmp(done); __ bind(runtime); NOT_LP64(__ push(rcx);) __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread); NOT_LP64(__ pop(rcx);) __ bind(done); __ pop(rdx); __ pop(rax); } break; #endif // !SERIALGC default: { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments); __ movptr(rax, (int)id); __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax); __ should_not_reach_here(); } break; } return oop_maps; } #undef __