/* * Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ // // SunJSSE does not support dynamic system properties, no way to re-use // system properties in samevm/agentvm mode. // /* * @test * @bug 7105780 * @summary Add SSLSocket client/SSLEngine server to templates directory. * @run main/othervm SSLSocketSSLEngineTemplate */ /** * A SSLSocket/SSLEngine interop test case. This is not the way to * code SSLEngine-based servers, but works for what we need to do here, * which is to make sure that SSLEngine/SSLSockets can talk to each other. * SSLEngines can use direct or indirect buffers, and different code * is used to get at the buffer contents internally, so we test that here. * * The test creates one SSLSocket (client) and one SSLEngine (server). * The SSLSocket talks to a raw ServerSocket, and the server code * does the translation between byte [] and ByteBuffers that the SSLEngine * can use. The "transport" layer consists of a Socket Input/OutputStream * and two byte buffers for the SSLEngines: think of them * as directly connected pipes. * * Again, this is a *very* simple example: real code will be much more * involved. For example, different threading and I/O models could be * used, transport mechanisms could close unexpectedly, and so on. * * When this application runs, notice that several messages * (wrap/unwrap) pass before any application data is consumed or * produced. (For more information, please see the SSL/TLS * specifications.) There may several steps for a successful handshake, * so it's typical to see the following series of operations: * * client server message * ====== ====== ======= * write() ... ClientHello * ... unwrap() ClientHello * ... wrap() ServerHello/Certificate * read() ... ServerHello/Certificate * write() ... ClientKeyExchange * write() ... ChangeCipherSpec * write() ... Finished * ... unwrap() ClientKeyExchange * ... unwrap() ChangeCipherSpec * ... unwrap() Finished * ... wrap() ChangeCipherSpec * ... wrap() Finished * read() ... ChangeCipherSpec * read() ... Finished */ import javax.net.ssl.*; import javax.net.ssl.SSLEngineResult.*; import java.io.*; import java.net.*; import java.security.*; import java.nio.*; public class SSLSocketSSLEngineTemplate { /* * Enables logging of the SSL/TLS operations. */ private static boolean logging = true; /* * Enables the JSSE system debugging system property: * * -Djavax.net.debug=all * * This gives a lot of low-level information about operations underway, * including specific handshake messages, and might be best examined * after gaining some familiarity with this application. */ private static boolean debug = false; private SSLContext sslc; private SSLEngine serverEngine; // server-side SSLEngine private SSLSocket sslSocket; // client-side socket private ServerSocket serverSocket; // server-side Socket, generates the... private Socket socket; // server-side socket that will read private final byte[] serverMsg = "Hi there Client, I'm a Server.".getBytes(); private final byte[] clientMsg = "Hello Server, I'm a Client! Pleased to meet you!".getBytes(); private ByteBuffer serverOut; // write side of serverEngine private ByteBuffer serverIn; // read side of serverEngine private volatile Exception clientException; private volatile Exception serverException; /* * For data transport, this example uses local ByteBuffers. */ private ByteBuffer cTOs; // "reliable" transport client->server private ByteBuffer sTOc; // "reliable" transport server->client /* * The following is to set up the keystores/trust material. */ private static final String pathToStores = "../etc"; private static final String keyStoreFile = "keystore"; private static final String trustStoreFile = "truststore"; private static final String passwd = "passphrase"; private static String keyFilename = System.getProperty("test.src", ".") + "/" + pathToStores + "/" + keyStoreFile; private static String trustFilename = System.getProperty("test.src", ".") + "/" + pathToStores + "/" + trustStoreFile; /* * Main entry point for this test. */ public static void main(String args[]) throws Exception { if (debug) { System.setProperty("javax.net.debug", "all"); } String [] protocols = new String [] { "SSLv3", "TLSv1", "TLSv1.1", "TLSv1.2" }; for (String protocol : protocols) { log("Testing " + protocol); /* * Run the tests with direct and indirect buffers. */ SSLSocketSSLEngineTemplate test = new SSLSocketSSLEngineTemplate(protocol); test.runTest(true); test.runTest(false); } System.out.println("Test Passed."); } /* * Create an initialized SSLContext to use for these tests. */ public SSLSocketSSLEngineTemplate(String protocol) throws Exception { KeyStore ks = KeyStore.getInstance("JKS"); KeyStore ts = KeyStore.getInstance("JKS"); char[] passphrase = "passphrase".toCharArray(); ks.load(new FileInputStream(keyFilename), passphrase); ts.load(new FileInputStream(trustFilename), passphrase); KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509"); kmf.init(ks, passphrase); TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509"); tmf.init(ts); SSLContext sslCtx = SSLContext.getInstance(protocol); sslCtx.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null); sslc = sslCtx; } /* * Run the test. * * Sit in a tight loop, with the server engine calling wrap/unwrap * regardless of whether data is available or not. We do this until * we get the application data. Then we shutdown and go to the next one. * * The main loop handles all of the I/O phases of the SSLEngine's * lifetime: * * initial handshaking * application data transfer * engine closing * * One could easily separate these phases into separate * sections of code. */ private void runTest(boolean direct) throws Exception { boolean serverClose = direct; serverSocket = new ServerSocket(); serverSocket.setReuseAddress(false); serverSocket.bind(null); int port = serverSocket.getLocalPort(); Thread thread = createClientThread(port, serverClose); socket = serverSocket.accept(); socket.setSoTimeout(500); serverSocket.close(); createSSLEngine(); createBuffers(direct); try { boolean closed = false; // will try to read one more time in case client message // is fragmented to multiple pieces boolean retry = true; InputStream is = socket.getInputStream(); OutputStream os = socket.getOutputStream(); SSLEngineResult serverResult; // results from last operation /* * Examining the SSLEngineResults could be much more involved, * and may alter the overall flow of the application. * * For example, if we received a BUFFER_OVERFLOW when trying * to write to the output pipe, we could reallocate a larger * pipe, but instead we wait for the peer to drain it. */ byte[] inbound = new byte[8192]; byte[] outbound = new byte[8192]; while (!isEngineClosed(serverEngine)) { int len = 0; // Inbound data log("================"); // Read from the Client side. try { len = is.read(inbound); if (len == -1) { throw new Exception("Unexpected EOF"); } cTOs.put(inbound, 0, len); } catch (SocketTimeoutException ste) { // swallow. Nothing yet, probably waiting on us. } cTOs.flip(); serverResult = serverEngine.unwrap(cTOs, serverIn); log("server unwrap: ", serverResult); runDelegatedTasks(serverResult, serverEngine); cTOs.compact(); // Outbound data log("----"); serverResult = serverEngine.wrap(serverOut, sTOc); log("server wrap: ", serverResult); runDelegatedTasks(serverResult, serverEngine); sTOc.flip(); if ((len = sTOc.remaining()) != 0) { sTOc.get(outbound, 0, len); os.write(outbound, 0, len); // Give the other side a chance to process } sTOc.compact(); if (!closed && (serverOut.remaining() == 0)) { closed = true; /* * We'll alternate initiatating the shutdown. * When the server initiates, it will take one more * loop, but tests the orderly shutdown. */ if (serverClose) { serverEngine.closeOutbound(); } serverIn.flip(); /* * A sanity check to ensure we got what was sent. */ if (serverIn.remaining() != clientMsg.length) { if (retry && serverIn.remaining() < clientMsg.length) { log("Need to read more from client"); retry = false; continue; } else { throw new Exception("Client: Data length error"); } } for (int i = 0; i < clientMsg.length; i++) { if (clientMsg[i] != serverIn.get()) { throw new Exception("Client: Data content error"); } } serverIn.compact(); } } return; } catch (Exception e) { serverException = e; } finally { if (socket != null) { socket.close(); } // Wait for the client to join up with us. if (thread != null) { thread.join(); } if (serverException != null) { if (clientException != null) { serverException.initCause(clientException); } throw serverException; } if (clientException != null) { if (serverException != null) { clientException.initCause(serverException); } throw clientException; } } } /* * Create a client thread which does simple SSLSocket operations. * We'll write and read one data packet. */ private Thread createClientThread(final int port, final boolean serverClose) throws Exception { Thread t = new Thread("ClientThread") { @Override public void run() { try { Thread.sleep(1000); // Give server time to finish setup. sslSocket = (SSLSocket) sslc.getSocketFactory(). createSocket("localhost", port); OutputStream os = sslSocket.getOutputStream(); InputStream is = sslSocket.getInputStream(); // write(byte[]) goes in one shot. os.write(clientMsg); byte[] inbound = new byte[2048]; int pos = 0; int len; done: while ((len = is.read(inbound, pos, 2048 - pos)) != -1) { pos += len; // Let the client do the closing. if ((pos == serverMsg.length) && !serverClose) { sslSocket.close(); break done; } } if (pos != serverMsg.length) { throw new Exception("Client: Data length error"); } for (int i = 0; i < serverMsg.length; i++) { if (inbound[i] != serverMsg[i]) { throw new Exception("Client: Data content error"); } } } catch (Exception e) { clientException = e; } } }; t.start(); return t; } /* * Using the SSLContext created during object creation, * create/configure the SSLEngines we'll use for this test. */ private void createSSLEngine() throws Exception { /* * Configure the serverEngine to act as a server in the SSL/TLS * handshake. */ serverEngine = sslc.createSSLEngine(); serverEngine.setUseClientMode(false); serverEngine.getNeedClientAuth(); } /* * Create and size the buffers appropriately. */ private void createBuffers(boolean direct) { SSLSession session = serverEngine.getSession(); int appBufferMax = session.getApplicationBufferSize(); int netBufferMax = session.getPacketBufferSize(); /* * We'll make the input buffers a bit bigger than the max needed * size, so that unwrap()s following a successful data transfer * won't generate BUFFER_OVERFLOWS. * * We'll use a mix of direct and indirect ByteBuffers for * tutorial purposes only. In reality, only use direct * ByteBuffers when they give a clear performance enhancement. */ if (direct) { serverIn = ByteBuffer.allocateDirect(appBufferMax + 50); cTOs = ByteBuffer.allocateDirect(netBufferMax); sTOc = ByteBuffer.allocateDirect(netBufferMax); } else { serverIn = ByteBuffer.allocate(appBufferMax + 50); cTOs = ByteBuffer.allocate(netBufferMax); sTOc = ByteBuffer.allocate(netBufferMax); } serverOut = ByteBuffer.wrap(serverMsg); } /* * If the result indicates that we have outstanding tasks to do, * go ahead and run them in this thread. */ private static void runDelegatedTasks(SSLEngineResult result, SSLEngine engine) throws Exception { if (result.getHandshakeStatus() == HandshakeStatus.NEED_TASK) { Runnable runnable; while ((runnable = engine.getDelegatedTask()) != null) { log("\trunning delegated task..."); runnable.run(); } HandshakeStatus hsStatus = engine.getHandshakeStatus(); if (hsStatus == HandshakeStatus.NEED_TASK) { throw new Exception( "handshake shouldn't need additional tasks"); } log("\tnew HandshakeStatus: " + hsStatus); } } private static boolean isEngineClosed(SSLEngine engine) { return (engine.isOutboundDone() && engine.isInboundDone()); } /* * Logging code */ private static boolean resultOnce = true; private static void log(String str, SSLEngineResult result) { if (!logging) { return; } if (resultOnce) { resultOnce = false; System.out.println("The format of the SSLEngineResult is: \n" + "\t\"getStatus() / getHandshakeStatus()\" +\n" + "\t\"bytesConsumed() / bytesProduced()\"\n"); } HandshakeStatus hsStatus = result.getHandshakeStatus(); log(str + result.getStatus() + "/" + hsStatus + ", " + result.bytesConsumed() + "/" + result.bytesProduced() + " bytes"); if (hsStatus == HandshakeStatus.FINISHED) { log("\t...ready for application data"); } } private static void log(String str) { if (logging) { System.out.println(str); } } }