/* * Copyright (c) 2012, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package vm.compiler.optimizations.partialpeel; import nsk.share.GoldChecker; import vm.compiler.share.CompilerTest; import vm.compiler.share.CompilerTestLauncher; import vm.compiler.share.Random; import java.util.Arrays; import java.util.List; public class Do { public static void main(String[] args) { GoldChecker goldChecker = new GoldChecker("Do"); for(CompilerTest test: doTests) { goldChecker.println(test + " = " + CompilerTestLauncher.launch(test)); } goldChecker.check(); } private final static int N = 1000; private final static int x0 = 232; private final static int x1 = 562; private final static int x2 = 526; private final static int x3 = 774; public static final List> doTests = Arrays.asList( new CompilerTest("do1") { @Override public Integer execute(Random random) { int s = random.nextInt(1000); int i = 0; do { if (s * i > x0) { break; } s++; i++; } while (i < N); return s + i; } }, //do + break on sum of inductive vars new CompilerTest("do2") { @Override public Integer execute(Random random) { int s = random.nextInt(1000); int i = 0; do { if (s + i > x0) { break; } s++; i++; } while (i < N); return s + i; } }, //do + break on shifted inductive vars new CompilerTest("do3") { @Override public Integer execute(Random random) { int s = random.nextInt(1000); int i = 0; do { if (x3 + s < x0) { break; } s += i; i++; } while (i < N); return s + i; } }, //do + break on shifted inductive vars + invariant condition new CompilerTest("do4") { @Override public Integer execute(Random random) { int i = x0 + random.nextInt(1000); int j = x1; int k = x2; do { if (x3 + k < x0) { break; } i++; k++; if (x2 > x1) { j += i; k += j; } } while (i < N); return k + i; } }, //do + break on shifted inductive vars + invariant condition new CompilerTest("do5") { @Override public Integer execute(Random random) { int i = x0 + random.nextInt(1000); int j = x1; int k = x2; do { if (k < x0) { break; } i++; if (x2 > x1) { j += i; k += j; } } while (i < N); return k + i; } }, //do + break on hidden inductive vars + invariant condition new CompilerTest("do6") { @Override public Integer execute(Random random) { int i = x0; int j = x1 + random.nextInt(1000); int k = x2; do { if (k < x0) { break; } i++; k++; if (k > x1) { j += i; k += j + i; } } while (i < N); return k + i; } } ); }