/* * Copyright (c) 2019, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @requires ((os.arch == "amd64" | os.arch == "x86_64") & sun.arch.data.model == "64") | os.arch == "aarch64" * @run testng/othervm -Xmx4G -XX:MaxDirectMemorySize=1M TestSegments */ import jdk.incubator.foreign.MemoryAccess; import jdk.incubator.foreign.MemoryLayout; import jdk.incubator.foreign.MemoryLayouts; import jdk.incubator.foreign.MemorySegment; import jdk.incubator.foreign.ResourceScope; import org.testng.annotations.DataProvider; import org.testng.annotations.Test; import java.lang.invoke.VarHandle; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.util.List; import java.util.concurrent.atomic.AtomicReference; import java.util.function.IntFunction; import java.util.function.LongFunction; import java.util.function.Supplier; import static org.testng.Assert.*; public class TestSegments { @Test(dataProvider = "badSizeAndAlignments", expectedExceptions = IllegalArgumentException.class) public void testBadAllocateAlign(long size, long align) { MemorySegment.allocateNative(size, align, ResourceScope.newImplicitScope()); } @Test(dataProvider = "badLayouts", expectedExceptions = UnsupportedOperationException.class) public void testBadAllocateLayout(MemoryLayout layout) { MemorySegment.allocateNative(layout, ResourceScope.newImplicitScope()); } @Test(expectedExceptions = { OutOfMemoryError.class, IllegalArgumentException.class }) public void testAllocateTooBig() { MemorySegment.allocateNative(Long.MAX_VALUE, ResourceScope.newImplicitScope()); } @Test(expectedExceptions = OutOfMemoryError.class) public void testNativeAllocationTooBig() { MemorySegment segment = MemorySegment.allocateNative(1024 * 1024 * 8 * 2, ResourceScope.newImplicitScope()); // 2M } @Test public void testNativeSegmentIsZeroed() { VarHandle byteHandle = MemoryLayout.sequenceLayout(MemoryLayouts.JAVA_BYTE) .varHandle(byte.class, MemoryLayout.PathElement.sequenceElement()); try (ResourceScope scope = ResourceScope.newConfinedScope()) { MemorySegment segment = MemorySegment.allocateNative(1000, 1, scope); for (long i = 0 ; i < segment.byteSize() ; i++) { assertEquals(0, (byte)byteHandle.get(segment, i)); } } } @Test public void testSlices() { VarHandle byteHandle = MemoryLayout.sequenceLayout(MemoryLayouts.JAVA_BYTE) .varHandle(byte.class, MemoryLayout.PathElement.sequenceElement()); try (ResourceScope scope = ResourceScope.newConfinedScope()) { MemorySegment segment = MemorySegment.allocateNative(10, 1, scope); //init for (byte i = 0 ; i < segment.byteSize() ; i++) { byteHandle.set(segment, (long)i, i); } for (int offset = 0 ; offset < 10 ; offset++) { MemorySegment slice = segment.asSlice(offset); for (long i = offset ; i < 10 ; i++) { assertEquals( byteHandle.get(segment, i), byteHandle.get(slice, i - offset) ); } } } } @Test(expectedExceptions = IndexOutOfBoundsException.class) public void testSmallSegmentMax() { long offset = (long)Integer.MAX_VALUE + (long)Integer.MAX_VALUE + 2L + 6L; // overflows to 6 when casted to int MemorySegment memorySegment = MemorySegment.allocateNative(10, ResourceScope.newImplicitScope()); MemoryAccess.getIntAtOffset(memorySegment, offset); } @Test(expectedExceptions = IndexOutOfBoundsException.class) public void testSmallSegmentMin() { long offset = ((long)Integer.MIN_VALUE * 2L) + 6L; // underflows to 6 when casted to int MemorySegment memorySegment = MemorySegment.allocateNative(10, ResourceScope.newImplicitScope()); MemoryAccess.getIntAtOffset(memorySegment, offset); } @Test(dataProvider = "segmentFactories") public void testAccessModesOfFactories(Supplier memorySegmentSupplier) { MemorySegment segment = memorySegmentSupplier.get(); assertFalse(segment.isReadOnly()); tryClose(segment); } static void tryClose(MemorySegment segment) { if (!segment.scope().isImplicit()) { segment.scope().close(); } } @DataProvider(name = "segmentFactories") public Object[][] segmentFactories() { List> l = List.of( () -> MemorySegment.ofArray(new byte[] { 0x00, 0x01, 0x02, 0x03 }), () -> MemorySegment.ofArray(new char[] {'a', 'b', 'c', 'd' }), () -> MemorySegment.ofArray(new double[] { 1d, 2d, 3d, 4d} ), () -> MemorySegment.ofArray(new float[] { 1.0f, 2.0f, 3.0f, 4.0f }), () -> MemorySegment.ofArray(new int[] { 1, 2, 3, 4 }), () -> MemorySegment.ofArray(new long[] { 1l, 2l, 3l, 4l } ), () -> MemorySegment.ofArray(new short[] { 1, 2, 3, 4 } ), () -> MemorySegment.allocateNative(4, ResourceScope.newImplicitScope()), () -> MemorySegment.allocateNative(4, 8, ResourceScope.newImplicitScope()), () -> MemorySegment.allocateNative(MemoryLayout.valueLayout(32, ByteOrder.nativeOrder()), ResourceScope.newImplicitScope()), () -> MemorySegment.allocateNative(4, ResourceScope.newConfinedScope()), () -> MemorySegment.allocateNative(4, 8, ResourceScope.newConfinedScope()), () -> MemorySegment.allocateNative(MemoryLayout.valueLayout(32, ByteOrder.nativeOrder()), ResourceScope.newConfinedScope()) ); return l.stream().map(s -> new Object[] { s }).toArray(Object[][]::new); } @Test(dataProvider = "segmentFactories") public void testFill(Supplier memorySegmentSupplier) { VarHandle byteHandle = MemoryLayout.sequenceLayout(MemoryLayouts.JAVA_BYTE) .varHandle(byte.class, MemoryLayout.PathElement.sequenceElement()); for (byte value : new byte[] {(byte) 0xFF, (byte) 0x00, (byte) 0x45}) { MemorySegment segment = memorySegmentSupplier.get(); segment.fill(value); for (long l = 0; l < segment.byteSize(); l++) { assertEquals((byte) byteHandle.get(segment, l), value); } // fill a slice var sliceSegment = segment.asSlice(1, segment.byteSize() - 2).fill((byte) ~value); for (long l = 0; l < sliceSegment.byteSize(); l++) { assertEquals((byte) byteHandle.get(sliceSegment, l), ~value); } // assert enclosing slice assertEquals((byte) byteHandle.get(segment, 0L), value); for (long l = 1; l < segment.byteSize() - 2; l++) { assertEquals((byte) byteHandle.get(segment, l), (byte) ~value); } assertEquals((byte) byteHandle.get(segment, segment.byteSize() - 1L), value); tryClose(segment); } } @Test(dataProvider = "segmentFactories") public void testFillClosed(Supplier memorySegmentSupplier) { MemorySegment segment = memorySegmentSupplier.get(); tryClose(segment); if (!segment.scope().isAlive()) { try { segment.fill((byte) 0xFF); fail(); } catch (IllegalStateException ex) { assertTrue(true); } } } @Test(dataProvider = "segmentFactories") public void testNativeSegments(Supplier memorySegmentSupplier) throws Exception { MemorySegment segment = memorySegmentSupplier.get(); try { segment.address().toRawLongValue(); assertTrue(segment.isNative()); assertTrue(segment.address().isNative()); } catch (UnsupportedOperationException exception) { assertFalse(segment.isNative()); assertFalse(segment.address().isNative()); } tryClose(segment); } @Test(dataProvider = "segmentFactories", expectedExceptions = UnsupportedOperationException.class) public void testFillIllegalAccessMode(Supplier memorySegmentSupplier) { MemorySegment segment = memorySegmentSupplier.get(); segment.asReadOnly().fill((byte) 0xFF); tryClose(segment); } @Test(dataProvider = "segmentFactories") public void testFillThread(Supplier memorySegmentSupplier) throws Exception { MemorySegment segment = memorySegmentSupplier.get(); AtomicReference exception = new AtomicReference<>(); Runnable action = () -> { try { segment.fill((byte) 0xBA); } catch (RuntimeException e) { exception.set(e); } }; Thread thread = new Thread(action); thread.start(); thread.join(); if (segment.scope().ownerThread() != null) { RuntimeException e = exception.get(); if (!(e instanceof IllegalStateException)) { throw e; } } else { assertNull(exception.get()); } tryClose(segment); } @Test public void testFillEmpty() { MemorySegment.ofArray(new byte[] { }).fill((byte) 0xFF); MemorySegment.ofArray(new byte[2]).asSlice(0, 0).fill((byte) 0xFF); MemorySegment.ofByteBuffer(ByteBuffer.allocateDirect(0)).fill((byte) 0xFF); } @Test(dataProvider = "heapFactories") public void testBigHeapSegments(IntFunction heapSegmentFactory, int factor) { int bigSize = (Integer.MAX_VALUE / factor) + 1; MemorySegment segment = heapSegmentFactory.apply(bigSize); assertTrue(segment.byteSize() > 0); } @DataProvider(name = "badSizeAndAlignments") public Object[][] sizesAndAlignments() { return new Object[][] { { -1, 8 }, { 1, 15 }, { 1, -15 } }; } @DataProvider(name = "badLayouts") public Object[][] layouts() { SizedLayoutFactory[] layoutFactories = SizedLayoutFactory.values(); Object[][] values = new Object[layoutFactories.length * 2][2]; for (int i = 0; i < layoutFactories.length ; i++) { values[i * 2] = new Object[] { MemoryLayout.structLayout(layoutFactories[i].make(7), MemoryLayout.paddingLayout(9)) }; // good size, bad align values[(i * 2) + 1] = new Object[] { layoutFactories[i].make(15).withBitAlignment(16) }; // bad size, good align } return values; } enum SizedLayoutFactory { VALUE_BE(size -> MemoryLayout.valueLayout(size, ByteOrder.BIG_ENDIAN)), VALUE_LE(size -> MemoryLayout.valueLayout(size, ByteOrder.LITTLE_ENDIAN)), PADDING(MemoryLayout::paddingLayout); private final LongFunction factory; SizedLayoutFactory(LongFunction factory) { this.factory = factory; } MemoryLayout make(long size) { return factory.apply(size); } } @DataProvider(name = "heapFactories") public Object[][] heapFactories() { return new Object[][] { { (IntFunction) size -> MemorySegment.ofArray(new char[size]), 2 }, { (IntFunction) size -> MemorySegment.ofArray(new short[size]), 2 }, { (IntFunction) size -> MemorySegment.ofArray(new int[size]), 4 }, { (IntFunction) size -> MemorySegment.ofArray(new float[size]), 4 }, { (IntFunction) size -> MemorySegment.ofArray(new long[size]), 8 }, { (IntFunction) size -> MemorySegment.ofArray(new double[size]), 8 } }; } }