/* * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/systemDictionary.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/oopMapCache.hpp" #include "jvmtifiles/jvmtiEnv.hpp" #include "logging/log.hpp" #include "logging/logStream.hpp" #include "memory/resourceArea.hpp" #include "oops/instanceKlass.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiAgentThread.hpp" #include "prims/jvmtiEventController.inline.hpp" #include "prims/jvmtiImpl.hpp" #include "prims/jvmtiRedefineClasses.hpp" #include "runtime/atomic.inline.hpp" #include "runtime/deoptimization.hpp" #include "runtime/handles.hpp" #include "runtime/handles.inline.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/javaCalls.hpp" #include "runtime/os.hpp" #include "runtime/serviceThread.hpp" #include "runtime/signature.hpp" #include "runtime/thread.inline.hpp" #include "runtime/vframe.hpp" #include "runtime/vframe_hp.hpp" #include "runtime/vm_operations.hpp" #include "utilities/exceptions.hpp" // // class JvmtiAgentThread // // JavaThread used to wrap a thread started by an agent // using the JVMTI method RunAgentThread. // JvmtiAgentThread::JvmtiAgentThread(JvmtiEnv* env, jvmtiStartFunction start_fn, const void *start_arg) : JavaThread(start_function_wrapper) { _env = env; _start_fn = start_fn; _start_arg = start_arg; } void JvmtiAgentThread::start_function_wrapper(JavaThread *thread, TRAPS) { // It is expected that any Agent threads will be created as // Java Threads. If this is the case, notification of the creation // of the thread is given in JavaThread::thread_main(). assert(thread->is_Java_thread(), "debugger thread should be a Java Thread"); assert(thread == JavaThread::current(), "sanity check"); JvmtiAgentThread *dthread = (JvmtiAgentThread *)thread; dthread->call_start_function(); } void JvmtiAgentThread::call_start_function() { ThreadToNativeFromVM transition(this); _start_fn(_env->jvmti_external(), jni_environment(), (void*)_start_arg); } // // class GrowableCache - private methods // void GrowableCache::recache() { int len = _elements->length(); FREE_C_HEAP_ARRAY(address, _cache); _cache = NEW_C_HEAP_ARRAY(address,len+1, mtInternal); for (int i=0; iat(i)->getCacheValue(); // // The cache entry has gone bad. Without a valid frame pointer // value, the entry is useless so we simply delete it in product // mode. The call to remove() will rebuild the cache again // without the bad entry. // if (_cache[i] == NULL) { assert(false, "cannot recache NULL elements"); remove(i); return; } } _cache[len] = NULL; _listener_fun(_this_obj,_cache); } bool GrowableCache::equals(void* v, GrowableElement *e2) { GrowableElement *e1 = (GrowableElement *) v; assert(e1 != NULL, "e1 != NULL"); assert(e2 != NULL, "e2 != NULL"); return e1->equals(e2); } // // class GrowableCache - public methods // GrowableCache::GrowableCache() { _this_obj = NULL; _listener_fun = NULL; _elements = NULL; _cache = NULL; } GrowableCache::~GrowableCache() { clear(); delete _elements; FREE_C_HEAP_ARRAY(address, _cache); } void GrowableCache::initialize(void *this_obj, void listener_fun(void *, address*) ) { _this_obj = this_obj; _listener_fun = listener_fun; _elements = new (ResourceObj::C_HEAP, mtInternal) GrowableArray(5,true); recache(); } // number of elements in the collection int GrowableCache::length() { return _elements->length(); } // get the value of the index element in the collection GrowableElement* GrowableCache::at(int index) { GrowableElement *e = (GrowableElement *) _elements->at(index); assert(e != NULL, "e != NULL"); return e; } int GrowableCache::find(GrowableElement* e) { return _elements->find(e, GrowableCache::equals); } // append a copy of the element to the end of the collection void GrowableCache::append(GrowableElement* e) { GrowableElement *new_e = e->clone(); _elements->append(new_e); recache(); } // insert a copy of the element using lessthan() void GrowableCache::insert(GrowableElement* e) { GrowableElement *new_e = e->clone(); _elements->append(new_e); int n = length()-2; for (int i=n; i>=0; i--) { GrowableElement *e1 = _elements->at(i); GrowableElement *e2 = _elements->at(i+1); if (e2->lessThan(e1)) { _elements->at_put(i+1, e1); _elements->at_put(i, e2); } } recache(); } // remove the element at index void GrowableCache::remove (int index) { GrowableElement *e = _elements->at(index); assert(e != NULL, "e != NULL"); _elements->remove(e); delete e; recache(); } // clear out all elements, release all heap space and // let our listener know that things have changed. void GrowableCache::clear() { int len = _elements->length(); for (int i=0; iat(i); } _elements->clear(); recache(); } void GrowableCache::oops_do(OopClosure* f) { int len = _elements->length(); for (int i=0; iat(i); e->oops_do(f); } } void GrowableCache::metadata_do(void f(Metadata*)) { int len = _elements->length(); for (int i=0; iat(i); e->metadata_do(f); } } void GrowableCache::gc_epilogue() { int len = _elements->length(); for (int i=0; iat(i)->getCacheValue(); } } // // class JvmtiBreakpoint // JvmtiBreakpoint::JvmtiBreakpoint() { _method = NULL; _bci = 0; _class_holder = NULL; } JvmtiBreakpoint::JvmtiBreakpoint(Method* m_method, jlocation location) { _method = m_method; _class_holder = _method->method_holder()->klass_holder(); #ifdef CHECK_UNHANDLED_OOPS // _class_holder can't be wrapped in a Handle, because JvmtiBreakpoints are // sometimes allocated on the heap. // // The code handling JvmtiBreakpoints allocated on the stack can't be // interrupted by a GC until _class_holder is reachable by the GC via the // oops_do method. Thread::current()->allow_unhandled_oop(&_class_holder); #endif // CHECK_UNHANDLED_OOPS assert(_method != NULL, "_method != NULL"); _bci = (int) location; assert(_bci >= 0, "_bci >= 0"); } void JvmtiBreakpoint::copy(JvmtiBreakpoint& bp) { _method = bp._method; _bci = bp._bci; _class_holder = bp._class_holder; } bool JvmtiBreakpoint::lessThan(JvmtiBreakpoint& bp) { Unimplemented(); return false; } bool JvmtiBreakpoint::equals(JvmtiBreakpoint& bp) { return _method == bp._method && _bci == bp._bci; } bool JvmtiBreakpoint::is_valid() { // class loader can be NULL return _method != NULL && _bci >= 0; } address JvmtiBreakpoint::getBcp() { return _method->bcp_from(_bci); } void JvmtiBreakpoint::each_method_version_do(method_action meth_act) { ((Method*)_method->*meth_act)(_bci); // add/remove breakpoint to/from versions of the method that are EMCP. Thread *thread = Thread::current(); instanceKlassHandle ikh = instanceKlassHandle(thread, _method->method_holder()); Symbol* m_name = _method->name(); Symbol* m_signature = _method->signature(); // search previous versions if they exist for (InstanceKlass* pv_node = ikh->previous_versions(); pv_node != NULL; pv_node = pv_node->previous_versions()) { Array* methods = pv_node->methods(); for (int i = methods->length() - 1; i >= 0; i--) { Method* method = methods->at(i); // Only set breakpoints in running EMCP methods. if (method->is_running_emcp() && method->name() == m_name && method->signature() == m_signature) { RC_TRACE(0x00000800, ("%sing breakpoint in %s(%s)", meth_act == &Method::set_breakpoint ? "sett" : "clear", method->name()->as_C_string(), method->signature()->as_C_string())); (method->*meth_act)(_bci); break; } } } } void JvmtiBreakpoint::set() { each_method_version_do(&Method::set_breakpoint); } void JvmtiBreakpoint::clear() { each_method_version_do(&Method::clear_breakpoint); } void JvmtiBreakpoint::print(outputStream* out) { #ifndef PRODUCT ResourceMark rm; const char *class_name = (_method == NULL) ? "NULL" : _method->klass_name()->as_C_string(); const char *method_name = (_method == NULL) ? "NULL" : _method->name()->as_C_string(); out->print("Breakpoint(%s,%s,%d,%p)", class_name, method_name, _bci, getBcp()); #endif } // // class VM_ChangeBreakpoints // // Modify the Breakpoints data structure at a safepoint // void VM_ChangeBreakpoints::doit() { switch (_operation) { case SET_BREAKPOINT: _breakpoints->set_at_safepoint(*_bp); break; case CLEAR_BREAKPOINT: _breakpoints->clear_at_safepoint(*_bp); break; default: assert(false, "Unknown operation"); } } void VM_ChangeBreakpoints::oops_do(OopClosure* f) { // The JvmtiBreakpoints in _breakpoints will be visited via // JvmtiExport::oops_do. if (_bp != NULL) { _bp->oops_do(f); } } void VM_ChangeBreakpoints::metadata_do(void f(Metadata*)) { // Walk metadata in breakpoints to keep from being deallocated with RedefineClasses if (_bp != NULL) { _bp->metadata_do(f); } } // // class JvmtiBreakpoints // // a JVMTI internal collection of JvmtiBreakpoint // JvmtiBreakpoints::JvmtiBreakpoints(void listener_fun(void *,address *)) { _bps.initialize(this,listener_fun); } JvmtiBreakpoints:: ~JvmtiBreakpoints() {} void JvmtiBreakpoints::oops_do(OopClosure* f) { _bps.oops_do(f); } void JvmtiBreakpoints::metadata_do(void f(Metadata*)) { _bps.metadata_do(f); } void JvmtiBreakpoints::gc_epilogue() { _bps.gc_epilogue(); } void JvmtiBreakpoints::print() { #ifndef PRODUCT LogTarget(Trace, jvmti) log; LogStreamCHeap log_stream(log); int n = _bps.length(); for (int i=0; imethod_holder() == klass) { bp.clear(); _bps.remove(i); // This changed 'i' so we have to start over. changed = true; break; } } } } // // class JvmtiCurrentBreakpoints // JvmtiBreakpoints *JvmtiCurrentBreakpoints::_jvmti_breakpoints = NULL; address * JvmtiCurrentBreakpoints::_breakpoint_list = NULL; JvmtiBreakpoints& JvmtiCurrentBreakpoints::get_jvmti_breakpoints() { if (_jvmti_breakpoints != NULL) return (*_jvmti_breakpoints); _jvmti_breakpoints = new JvmtiBreakpoints(listener_fun); assert(_jvmti_breakpoints != NULL, "_jvmti_breakpoints != NULL"); return (*_jvmti_breakpoints); } void JvmtiCurrentBreakpoints::listener_fun(void *this_obj, address *cache) { JvmtiBreakpoints *this_jvmti = (JvmtiBreakpoints *) this_obj; assert(this_jvmti != NULL, "this_jvmti != NULL"); debug_only(int n = this_jvmti->length();); assert(cache[n] == NULL, "cache must be NULL terminated"); set_breakpoint_list(cache); } void JvmtiCurrentBreakpoints::oops_do(OopClosure* f) { if (_jvmti_breakpoints != NULL) { _jvmti_breakpoints->oops_do(f); } } void JvmtiCurrentBreakpoints::metadata_do(void f(Metadata*)) { if (_jvmti_breakpoints != NULL) { _jvmti_breakpoints->metadata_do(f); } } void JvmtiCurrentBreakpoints::gc_epilogue() { if (_jvmti_breakpoints != NULL) { _jvmti_breakpoints->gc_epilogue(); } } /////////////////////////////////////////////////////////////// // // class VM_GetOrSetLocal // // Constructor for non-object getter VM_GetOrSetLocal::VM_GetOrSetLocal(JavaThread* thread, jint depth, int index, BasicType type) : _thread(thread) , _calling_thread(NULL) , _depth(depth) , _index(index) , _type(type) , _set(false) , _jvf(NULL) , _result(JVMTI_ERROR_NONE) { } // Constructor for object or non-object setter VM_GetOrSetLocal::VM_GetOrSetLocal(JavaThread* thread, jint depth, int index, BasicType type, jvalue value) : _thread(thread) , _calling_thread(NULL) , _depth(depth) , _index(index) , _type(type) , _value(value) , _set(true) , _jvf(NULL) , _result(JVMTI_ERROR_NONE) { } // Constructor for object getter VM_GetOrSetLocal::VM_GetOrSetLocal(JavaThread* thread, JavaThread* calling_thread, jint depth, int index) : _thread(thread) , _calling_thread(calling_thread) , _depth(depth) , _index(index) , _type(T_OBJECT) , _set(false) , _jvf(NULL) , _result(JVMTI_ERROR_NONE) { } vframe *VM_GetOrSetLocal::get_vframe() { if (!_thread->has_last_Java_frame()) { return NULL; } RegisterMap reg_map(_thread); vframe *vf = _thread->last_java_vframe(®_map); int d = 0; while ((vf != NULL) && (d < _depth)) { vf = vf->java_sender(); d++; } return vf; } javaVFrame *VM_GetOrSetLocal::get_java_vframe() { vframe* vf = get_vframe(); if (vf == NULL) { _result = JVMTI_ERROR_NO_MORE_FRAMES; return NULL; } javaVFrame *jvf = (javaVFrame*)vf; if (!vf->is_java_frame()) { _result = JVMTI_ERROR_OPAQUE_FRAME; return NULL; } return jvf; } // Check that the klass is assignable to a type with the given signature. // Another solution could be to use the function Klass::is_subtype_of(type). // But the type class can be forced to load/initialize eagerly in such a case. // This may cause unexpected consequences like CFLH or class-init JVMTI events. // It is better to avoid such a behavior. bool VM_GetOrSetLocal::is_assignable(const char* ty_sign, Klass* klass, Thread* thread) { assert(ty_sign != NULL, "type signature must not be NULL"); assert(thread != NULL, "thread must not be NULL"); assert(klass != NULL, "klass must not be NULL"); int len = (int) strlen(ty_sign); if (ty_sign[0] == 'L' && ty_sign[len-1] == ';') { // Need pure class/interface name ty_sign++; len -= 2; } TempNewSymbol ty_sym = SymbolTable::new_symbol(ty_sign, len, thread); if (klass->name() == ty_sym) { return true; } // Compare primary supers int super_depth = klass->super_depth(); int idx; for (idx = 0; idx < super_depth; idx++) { if (klass->primary_super_of_depth(idx)->name() == ty_sym) { return true; } } // Compare secondary supers Array* sec_supers = klass->secondary_supers(); for (idx = 0; idx < sec_supers->length(); idx++) { if (((Klass*) sec_supers->at(idx))->name() == ty_sym) { return true; } } return false; } // Checks error conditions: // JVMTI_ERROR_INVALID_SLOT // JVMTI_ERROR_TYPE_MISMATCH // Returns: 'true' - everything is Ok, 'false' - error code bool VM_GetOrSetLocal::check_slot_type(javaVFrame* jvf) { Method* method_oop = jvf->method(); if (!method_oop->has_localvariable_table()) { // Just to check index boundaries jint extra_slot = (_type == T_LONG || _type == T_DOUBLE) ? 1 : 0; if (_index < 0 || _index + extra_slot >= method_oop->max_locals()) { _result = JVMTI_ERROR_INVALID_SLOT; return false; } return true; } jint num_entries = method_oop->localvariable_table_length(); if (num_entries == 0) { _result = JVMTI_ERROR_INVALID_SLOT; return false; // There are no slots } int signature_idx = -1; int vf_bci = jvf->bci(); LocalVariableTableElement* table = method_oop->localvariable_table_start(); for (int i = 0; i < num_entries; i++) { int start_bci = table[i].start_bci; int end_bci = start_bci + table[i].length; // Here we assume that locations of LVT entries // with the same slot number cannot be overlapped if (_index == (jint) table[i].slot && start_bci <= vf_bci && vf_bci <= end_bci) { signature_idx = (int) table[i].descriptor_cp_index; break; } } if (signature_idx == -1) { _result = JVMTI_ERROR_INVALID_SLOT; return false; // Incorrect slot index } Symbol* sign_sym = method_oop->constants()->symbol_at(signature_idx); const char* signature = (const char *) sign_sym->as_utf8(); BasicType slot_type = char2type(signature[0]); switch (slot_type) { case T_BYTE: case T_SHORT: case T_CHAR: case T_BOOLEAN: slot_type = T_INT; break; case T_ARRAY: slot_type = T_OBJECT; break; }; if (_type != slot_type) { _result = JVMTI_ERROR_TYPE_MISMATCH; return false; } jobject jobj = _value.l; if (_set && slot_type == T_OBJECT && jobj != NULL) { // NULL reference is allowed // Check that the jobject class matches the return type signature. JavaThread* cur_thread = JavaThread::current(); HandleMark hm(cur_thread); Handle obj = Handle(cur_thread, JNIHandles::resolve_external_guard(jobj)); NULL_CHECK(obj, (_result = JVMTI_ERROR_INVALID_OBJECT, false)); KlassHandle ob_kh = KlassHandle(cur_thread, obj->klass()); NULL_CHECK(ob_kh, (_result = JVMTI_ERROR_INVALID_OBJECT, false)); if (!is_assignable(signature, ob_kh(), cur_thread)) { _result = JVMTI_ERROR_TYPE_MISMATCH; return false; } } return true; } static bool can_be_deoptimized(vframe* vf) { return (vf->is_compiled_frame() && vf->fr().can_be_deoptimized()); } bool VM_GetOrSetLocal::doit_prologue() { _jvf = get_java_vframe(); NULL_CHECK(_jvf, false); if (_jvf->method()->is_native()) { if (getting_receiver() && !_jvf->method()->is_static()) { return true; } else { _result = JVMTI_ERROR_OPAQUE_FRAME; return false; } } if (!check_slot_type(_jvf)) { return false; } return true; } void VM_GetOrSetLocal::doit() { InterpreterOopMap oop_mask; _jvf->method()->mask_for(_jvf->bci(), &oop_mask); if (oop_mask.is_dead(_index)) { // The local can be invalid and uninitialized in the scope of current bci _result = JVMTI_ERROR_INVALID_SLOT; return; } if (_set) { // Force deoptimization of frame if compiled because it's // possible the compiler emitted some locals as constant values, // meaning they are not mutable. if (can_be_deoptimized(_jvf)) { // Schedule deoptimization so that eventually the local // update will be written to an interpreter frame. Deoptimization::deoptimize_frame(_jvf->thread(), _jvf->fr().id()); // Now store a new value for the local which will be applied // once deoptimization occurs. Note however that while this // write is deferred until deoptimization actually happens // can vframe created after this point will have its locals // reflecting this update so as far as anyone can see the // write has already taken place. // If we are updating an oop then get the oop from the handle // since the handle will be long gone by the time the deopt // happens. The oop stored in the deferred local will be // gc'd on its own. if (_type == T_OBJECT) { _value.l = (jobject) (JNIHandles::resolve_external_guard(_value.l)); } // Re-read the vframe so we can see that it is deoptimized // [ Only need because of assert in update_local() ] _jvf = get_java_vframe(); ((compiledVFrame*)_jvf)->update_local(_type, _index, _value); return; } StackValueCollection *locals = _jvf->locals(); HandleMark hm; switch (_type) { case T_INT: locals->set_int_at (_index, _value.i); break; case T_LONG: locals->set_long_at (_index, _value.j); break; case T_FLOAT: locals->set_float_at (_index, _value.f); break; case T_DOUBLE: locals->set_double_at(_index, _value.d); break; case T_OBJECT: { Handle ob_h(JNIHandles::resolve_external_guard(_value.l)); locals->set_obj_at (_index, ob_h); break; } default: ShouldNotReachHere(); } _jvf->set_locals(locals); } else { if (_jvf->method()->is_native() && _jvf->is_compiled_frame()) { assert(getting_receiver(), "Can only get here when getting receiver"); oop receiver = _jvf->fr().get_native_receiver(); _value.l = JNIHandles::make_local(_calling_thread, receiver); } else { StackValueCollection *locals = _jvf->locals(); if (locals->at(_index)->type() == T_CONFLICT) { memset(&_value, 0, sizeof(_value)); _value.l = NULL; return; } switch (_type) { case T_INT: _value.i = locals->int_at (_index); break; case T_LONG: _value.j = locals->long_at (_index); break; case T_FLOAT: _value.f = locals->float_at (_index); break; case T_DOUBLE: _value.d = locals->double_at(_index); break; case T_OBJECT: { // Wrap the oop to be returned in a local JNI handle since // oops_do() no longer applies after doit() is finished. oop obj = locals->obj_at(_index)(); _value.l = JNIHandles::make_local(_calling_thread, obj); break; } default: ShouldNotReachHere(); } } } } bool VM_GetOrSetLocal::allow_nested_vm_operations() const { return true; // May need to deoptimize } VM_GetReceiver::VM_GetReceiver( JavaThread* thread, JavaThread* caller_thread, jint depth) : VM_GetOrSetLocal(thread, caller_thread, depth, 0) {} ///////////////////////////////////////////////////////////////////////////////////////// // // class JvmtiSuspendControl - see comments in jvmtiImpl.hpp // bool JvmtiSuspendControl::suspend(JavaThread *java_thread) { // external suspend should have caught suspending a thread twice // Immediate suspension required for JPDA back-end so JVMTI agent threads do // not deadlock due to later suspension on transitions while holding // raw monitors. Passing true causes the immediate suspension. // java_suspend() will catch threads in the process of exiting // and will ignore them. java_thread->java_suspend(); // It would be nice to have the following assertion in all the time, // but it is possible for a racing resume request to have resumed // this thread right after we suspended it. Temporarily enable this // assertion if you are chasing a different kind of bug. // // assert(java_lang_Thread::thread(java_thread->threadObj()) == NULL || // java_thread->is_being_ext_suspended(), "thread is not suspended"); if (java_lang_Thread::thread(java_thread->threadObj()) == NULL) { // check again because we can get delayed in java_suspend(): // the thread is in process of exiting. return false; } return true; } bool JvmtiSuspendControl::resume(JavaThread *java_thread) { // external suspend should have caught resuming a thread twice assert(java_thread->is_being_ext_suspended(), "thread should be suspended"); // resume thread { // must always grab Threads_lock, see JVM_SuspendThread MutexLocker ml(Threads_lock); java_thread->java_resume(); } return true; } void JvmtiSuspendControl::print() { #ifndef PRODUCT MutexLocker mu(Threads_lock); LogStreamHandle(Trace, jvmti) log_stream; log_stream.print("Suspended Threads: ["); for (JavaThread *thread = Threads::first(); thread != NULL; thread = thread->next()) { #ifdef JVMTI_TRACE const char *name = JvmtiTrace::safe_get_thread_name(thread); #else const char *name = ""; #endif /*JVMTI_TRACE */ log_stream.print("%s(%c ", name, thread->is_being_ext_suspended() ? 'S' : '_'); if (!thread->has_last_Java_frame()) { log_stream.print("no stack"); } log_stream.print(") "); } log_stream.print_cr("]"); #endif } JvmtiDeferredEvent JvmtiDeferredEvent::compiled_method_load_event( nmethod* nm) { JvmtiDeferredEvent event = JvmtiDeferredEvent(TYPE_COMPILED_METHOD_LOAD); event._event_data.compiled_method_load = nm; // Keep the nmethod alive until the ServiceThread can process // this deferred event. nmethodLocker::lock_nmethod(nm); return event; } JvmtiDeferredEvent JvmtiDeferredEvent::compiled_method_unload_event( nmethod* nm, jmethodID id, const void* code) { JvmtiDeferredEvent event = JvmtiDeferredEvent(TYPE_COMPILED_METHOD_UNLOAD); event._event_data.compiled_method_unload.nm = nm; event._event_data.compiled_method_unload.method_id = id; event._event_data.compiled_method_unload.code_begin = code; // Keep the nmethod alive until the ServiceThread can process // this deferred event. This will keep the memory for the // generated code from being reused too early. We pass // zombie_ok == true here so that our nmethod that was just // made into a zombie can be locked. nmethodLocker::lock_nmethod(nm, true /* zombie_ok */); return event; } JvmtiDeferredEvent JvmtiDeferredEvent::dynamic_code_generated_event( const char* name, const void* code_begin, const void* code_end) { JvmtiDeferredEvent event = JvmtiDeferredEvent(TYPE_DYNAMIC_CODE_GENERATED); // Need to make a copy of the name since we don't know how long // the event poster will keep it around after we enqueue the // deferred event and return. strdup() failure is handled in // the post() routine below. event._event_data.dynamic_code_generated.name = os::strdup(name); event._event_data.dynamic_code_generated.code_begin = code_begin; event._event_data.dynamic_code_generated.code_end = code_end; return event; } void JvmtiDeferredEvent::post() { assert(ServiceThread::is_service_thread(Thread::current()), "Service thread must post enqueued events"); switch(_type) { case TYPE_COMPILED_METHOD_LOAD: { nmethod* nm = _event_data.compiled_method_load; JvmtiExport::post_compiled_method_load(nm); // done with the deferred event so unlock the nmethod nmethodLocker::unlock_nmethod(nm); break; } case TYPE_COMPILED_METHOD_UNLOAD: { nmethod* nm = _event_data.compiled_method_unload.nm; JvmtiExport::post_compiled_method_unload( _event_data.compiled_method_unload.method_id, _event_data.compiled_method_unload.code_begin); // done with the deferred event so unlock the nmethod nmethodLocker::unlock_nmethod(nm); break; } case TYPE_DYNAMIC_CODE_GENERATED: { JvmtiExport::post_dynamic_code_generated_internal( // if strdup failed give the event a default name (_event_data.dynamic_code_generated.name == NULL) ? "unknown_code" : _event_data.dynamic_code_generated.name, _event_data.dynamic_code_generated.code_begin, _event_data.dynamic_code_generated.code_end); if (_event_data.dynamic_code_generated.name != NULL) { // release our copy os::free((void *)_event_data.dynamic_code_generated.name); } break; } default: ShouldNotReachHere(); } } JvmtiDeferredEventQueue::QueueNode* JvmtiDeferredEventQueue::_queue_tail = NULL; JvmtiDeferredEventQueue::QueueNode* JvmtiDeferredEventQueue::_queue_head = NULL; volatile JvmtiDeferredEventQueue::QueueNode* JvmtiDeferredEventQueue::_pending_list = NULL; bool JvmtiDeferredEventQueue::has_events() { assert(Service_lock->owned_by_self(), "Must own Service_lock"); return _queue_head != NULL || _pending_list != NULL; } void JvmtiDeferredEventQueue::enqueue(const JvmtiDeferredEvent& event) { assert(Service_lock->owned_by_self(), "Must own Service_lock"); process_pending_events(); // Events get added to the end of the queue (and are pulled off the front). QueueNode* node = new QueueNode(event); if (_queue_tail == NULL) { _queue_tail = _queue_head = node; } else { assert(_queue_tail->next() == NULL, "Must be the last element in the list"); _queue_tail->set_next(node); _queue_tail = node; } Service_lock->notify_all(); assert((_queue_head == NULL) == (_queue_tail == NULL), "Inconsistent queue markers"); } JvmtiDeferredEvent JvmtiDeferredEventQueue::dequeue() { assert(Service_lock->owned_by_self(), "Must own Service_lock"); process_pending_events(); assert(_queue_head != NULL, "Nothing to dequeue"); if (_queue_head == NULL) { // Just in case this happens in product; it shouldn't but let's not crash return JvmtiDeferredEvent(); } QueueNode* node = _queue_head; _queue_head = _queue_head->next(); if (_queue_head == NULL) { _queue_tail = NULL; } assert((_queue_head == NULL) == (_queue_tail == NULL), "Inconsistent queue markers"); JvmtiDeferredEvent event = node->event(); delete node; return event; } void JvmtiDeferredEventQueue::add_pending_event( const JvmtiDeferredEvent& event) { QueueNode* node = new QueueNode(event); bool success = false; QueueNode* prev_value = (QueueNode*)_pending_list; do { node->set_next(prev_value); prev_value = (QueueNode*)Atomic::cmpxchg_ptr( (void*)node, (volatile void*)&_pending_list, (void*)node->next()); } while (prev_value != node->next()); } // This method transfers any events that were added by someone NOT holding // the lock into the mainline queue. void JvmtiDeferredEventQueue::process_pending_events() { assert(Service_lock->owned_by_self(), "Must own Service_lock"); if (_pending_list != NULL) { QueueNode* head = (QueueNode*)Atomic::xchg_ptr(NULL, (volatile void*)&_pending_list); assert((_queue_head == NULL) == (_queue_tail == NULL), "Inconsistent queue markers"); if (head != NULL) { // Since we've treated the pending list as a stack (with newer // events at the beginning), we need to join the bottom of the stack // with the 'tail' of the queue in order to get the events in the // right order. We do this by reversing the pending list and appending // it to the queue. QueueNode* new_tail = head; QueueNode* new_head = NULL; // This reverses the list QueueNode* prev = new_tail; QueueNode* node = new_tail->next(); new_tail->set_next(NULL); while (node != NULL) { QueueNode* next = node->next(); node->set_next(prev); prev = node; node = next; } new_head = prev; // Now append the new list to the queue if (_queue_tail != NULL) { _queue_tail->set_next(new_head); } else { // _queue_head == NULL _queue_head = new_head; } _queue_tail = new_tail; } } }