/* * Copyright (c) 2022, 2023, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @bug 8289551 8302976 * @summary Verify conversion between float and the binary16 format * @requires (vm.cpu.features ~= ".*avx512vl.*" | vm.cpu.features ~= ".*f16c.*") | os.arch=="aarch64" * | (os.arch == "riscv64" & vm.cpu.features ~= ".*zfh,.*") * @requires vm.compiler1.enabled & vm.compiler2.enabled * @requires vm.compMode != "Xcomp" * @comment default run * @run main Binary16Conversion * @comment C1 JIT compilation only: * @run main/othervm -Xcomp -XX:TieredStopAtLevel=1 -XX:CompileCommand=compileonly,Binary16Conversion::test* Binary16Conversion * @comment C2 JIT compilation only: * @run main/othervm -Xcomp -XX:-TieredCompilation -XX:CompileCommand=compileonly,Binary16Conversion::test* Binary16Conversion */ public class Binary16Conversion { public static final int FLOAT_SIGNIFICAND_WIDTH = 24; public static void main(String... argv) { System.out.println("Start ..."); short s = Float.floatToFloat16(0.0f); // Load Float class int errors = 0; errors += testBinary16RoundTrip(); // Note that helper methods do sign-symmetric testing errors += testBinary16CardinalValues(); errors += testRoundFloatToBinary16(); errors += testRoundFloatToBinary16HalfWayCases(); errors += testRoundFloatToBinary16FullBinade(); errors += testAlternativeImplementation(); if (errors > 0) throw new RuntimeException(errors + " errors"); } /* * Put all 16-bit values through a conversion loop and make sure * the values are preserved (NaN bit patterns notwithstanding). */ private static int testBinary16RoundTrip() { int errors = 0; for (int i = Short.MIN_VALUE; i < Short.MAX_VALUE; i++) { short s = (short)i; float f = Float.float16ToFloat(s); short s2 = Float.floatToFloat16(f); if (!Binary16.equivalent(s, s2)) { errors++; System.out.println("Roundtrip failure on " + Integer.toHexString(0xFFFF & (int)s) + "\t got back " + Integer.toHexString(0xFFFF & (int)s2)); } } return errors; } private static int testBinary16CardinalValues() { int errors = 0; // Encode short value for different binary16 cardinal values as an // integer-valued float. float[][] testCases = { {Binary16.POSITIVE_ZERO, +0.0f}, {Binary16.MIN_VALUE, 0x1.0p-24f}, {Binary16.MAX_SUBNORMAL, 0x1.ff8p-15f}, {Binary16.MIN_NORMAL, 0x1.0p-14f}, {Binary16.ONE, 1.0f}, {Binary16.MAX_VALUE, 65504.0f}, {Binary16.POSITIVE_INFINITY, Float.POSITIVE_INFINITY}, }; // Check conversions in both directions // short -> float for (var testCase : testCases) { errors += compareAndReportError((short)testCase[0], testCase[1]); } // float -> short for (var testCase : testCases) { errors += compareAndReportError(testCase[1], (short)testCase[0]); } return errors; } private static int testRoundFloatToBinary16() { int errors = 0; float[][] testCases = { // Test all combinations of LSB, round, and sticky bit // LSB = 0, test combination of round and sticky {0x1.ff8000p-1f, (short)0x3bfe}, // round = 0, sticky = 0 {0x1.ff8010p-1f, (short)0x3bfe}, // round = 0, sticky = 1 {0x1.ffa000p-1f, (short)0x3bfe}, // round = 1, sticky = 0 {0x1.ffa010p-1f, (short)0x3bff}, // round = 1, sticky = 1 => ++ // LSB = 1, test combination of round and sticky {0x1.ffc000p-1f, Binary16.ONE-1}, // round = 0, sticky = 0 {0x1.ffc010p-1f, Binary16.ONE-1}, // round = 0, sticky = 1 {0x1.ffe000p-1f, Binary16.ONE}, // round = 1, sticky = 0 => ++ {0x1.ffe010p-1f, Binary16.ONE}, // round = 1, sticky = 1 => ++ // Test subnormal rounding // Largest subnormal binary16 0x03ff => 0x1.ff8p-15f; LSB = 1 {0x1.ff8000p-15f, Binary16.MAX_SUBNORMAL}, // round = 0, sticky = 0 {0x1.ff8010p-15f, Binary16.MAX_SUBNORMAL}, // round = 0, sticky = 1 {0x1.ffc000p-15f, Binary16.MIN_NORMAL}, // round = 1, sticky = 0 => ++ {0x1.ffc010p-15f, Binary16.MIN_NORMAL}, // round = 1, sticky = 1 => ++ // Test rounding near binary16 MIN_VALUE // Smallest in magnitude subnormal binary16 value 0x0001 => 0x1.0p-24f // Half-way case,0x1.0p-25f, and smaller should round down to zero {0x1.fffffep-26f, Binary16.POSITIVE_ZERO}, // nextDown in float {0x1.000000p-25f, Binary16.POSITIVE_ZERO}, {0x1.000002p-25f, Binary16.MIN_VALUE}, // nextUp in float {0x1.100000p-25f, Binary16.MIN_VALUE}, // Test rounding near overflow threshold // Largest normal binary16 number 0x7bff => 0x1.ffcp15f; LSB = 1 {0x1.ffc000p15f, Binary16.MAX_VALUE}, // round = 0, sticky = 0 {0x1.ffc010p15f, Binary16.MAX_VALUE}, // round = 0, sticky = 1 {0x1.ffe000p15f, Binary16.POSITIVE_INFINITY}, // round = 1, sticky = 0 => ++ {0x1.ffe010p15f, Binary16.POSITIVE_INFINITY}, // round = 1, sticky = 1 => ++ }; for (var testCase : testCases) { errors += compareAndReportError(testCase[0], (short)testCase[1]); } return errors; } private static int testRoundFloatToBinary16HalfWayCases() { int errors = 0; // Test rounding of exact half-way cases between each pair of // finite exactly-representable binary16 numbers. Also test // rounding of half-way +/- ulp of the *float* value. // Additionally, test +/- float ulp of the endpoints. (Other // tests in this file make sure all short values round-trip so // that doesn't need to be tested here.) for (int i = Binary16.POSITIVE_ZERO; // 0x0000 i <= Binary16.MAX_VALUE; // 0x7bff i += 2) { // Check every even/odd pair once short lower = (short) i; short upper = (short)(i+1); float lowerFloat = Float.float16ToFloat(lower); float upperFloat = Float.float16ToFloat(upper); assert lowerFloat < upperFloat; float midway = (lowerFloat + upperFloat) * 0.5f; // Exact midpoint errors += compareAndReportError(Math.nextUp(lowerFloat), lower); errors += compareAndReportError(Math.nextDown(midway), lower); // Under round to nearest even, the midway point will // round *down* to the (even) lower endpoint. errors += compareAndReportError( midway, lower); errors += compareAndReportError(Math.nextUp( midway), upper); errors += compareAndReportError(Math.nextDown(upperFloat), upper); } // More testing around the overflow threshold // Binary16.ulp(Binary16.MAX_VALUE) == 32.0f; test around Binary16.MAX_VALUE + 1/2 ulp float binary16_MAX_VALUE = Float.float16ToFloat(Binary16.MAX_VALUE); float binary16_MAX_VALUE_halfUlp = binary16_MAX_VALUE + 16.0f; errors += compareAndReportError(Math.nextDown(binary16_MAX_VALUE), Binary16.MAX_VALUE); errors += compareAndReportError( binary16_MAX_VALUE, Binary16.MAX_VALUE); errors += compareAndReportError(Math.nextUp( binary16_MAX_VALUE), Binary16.MAX_VALUE); // Binary16.MAX_VALUE is an "odd" value since its LSB = 1 so // the half-way value greater than Binary16.MAX_VALUE should // round up to the next even value, in this case Binary16.POSITIVE_INFINITY. errors += compareAndReportError(Math.nextDown(binary16_MAX_VALUE_halfUlp), Binary16.MAX_VALUE); errors += compareAndReportError( binary16_MAX_VALUE_halfUlp, Binary16.POSITIVE_INFINITY); errors += compareAndReportError(Math.nextUp( binary16_MAX_VALUE_halfUlp), Binary16.POSITIVE_INFINITY); return errors; } private static int compareAndReportError(float input, short expected) { // Round to nearest even is sign symmetric return compareAndReportError0( input, expected) + compareAndReportError0(-input, Binary16.negate(expected)); } private static int compareAndReportError0(float input, short expected) { short actual = Float.floatToFloat16(input); if (!Binary16.equivalent(actual, expected)) { System.out.println("Unexpected result of converting " + Float.toHexString(input) + " to short. Expected 0x" + Integer.toHexString(0xFFFF & expected) + " got 0x" + Integer.toHexString(0xFFFF & actual)); return 1; } return 0; } private static int compareAndReportError0(short input, float expected) { float actual = Float.float16ToFloat(input); if (Float.compare(actual, expected) != 0) { System.out.println("Unexpected result of converting " + Integer.toHexString(input & 0xFFFF) + " to float. Expected " + Float.toHexString(expected) + " got " + Float.toHexString(actual)); return 1; } return 0; } private static int compareAndReportError(short input, float expected) { // Round to nearest even is sign symmetric return compareAndReportError0( input, expected) + compareAndReportError0(Binary16.negate(input), -expected); } private static int testRoundFloatToBinary16FullBinade() { int errors = 0; // For each float value between 1.0 and less than 2.0 // (i.e. set of float values with an exponent of 0), convert // each value to binary16 and then convert that binary16 value // back to float. // // Any exponent could be used; the maximum exponent for normal // values would not exercise the full set of code paths since // there is an up-front check on values that would overflow, // which correspond to a ripple-carry of the significand that // bumps the exponent. short previous = (short)0; for (int i = Float.floatToIntBits(1.0f); i <= Float.floatToIntBits(Math.nextDown(2.0f)); i++) { // (Could also express the loop control directly in terms // of floating-point operations, incrementing by ulp(1.0), // etc.) float f = Float.intBitsToFloat(i); short f_as_bin16 = Float.floatToFloat16(f); short f_as_bin16_down = (short)(f_as_bin16 - 1); short f_as_bin16_up = (short)(f_as_bin16 + 1); // Across successive float values to convert to binary16, // the binary16 results should be semi-monotonic, // non-decreasing in this case. // Only positive binary16 values so can compare using integer operations if (f_as_bin16 < previous) { errors++; System.out.println("Semi-monotonicity violation observed on loat: " + Float.toHexString(f) + "/" + Integer.toHexString(i) + " " + Integer.toHexString(0xffff & f_as_bin16) + " previous: " + Integer.toHexString(0xffff & previous) + " f_as_bin16: " + Integer.toHexString(0xffff & f_as_bin16)); } // previous = f_as_bin16; // If round-to-nearest was correctly done, when exactly // mapped back to float, f_as_bin16 should be at least as // close as either of its neighbors to the original value // of f. float f_prime_down = Float.float16ToFloat(f_as_bin16_down); float f_prime = Float.float16ToFloat(f_as_bin16); float f_prime_up = Float.float16ToFloat(f_as_bin16_up); previous = f_as_bin16; float f_prime_diff = Math.abs(f - f_prime); if (f_prime_diff == 0.0) { continue; } float f_prime_down_diff = Math.abs(f - f_prime_down); float f_prime_up_diff = Math.abs(f - f_prime_up); if (f_prime_diff > f_prime_down_diff || f_prime_diff > f_prime_up_diff) { errors++; System.out.println("Round-to-nearest violation on converting " + Float.toHexString(f) + "/" + Integer.toHexString(i) + " to binary16 and back: " + Integer.toHexString(0xffff & f_as_bin16) + " f_prime: " + Float.toHexString(f_prime)); } } return errors; } private static int testAlternativeImplementation() { int errors = 0; // For exhaustive test of all float values use // for (long ell = Integer.MIN_VALUE; ell <= Integer.MAX_VALUE; ell++) { for (long ell = Float.floatToIntBits(2.0f); ell <= Float.floatToIntBits(4.0f); ell++) { float f = Float.intBitsToFloat((int)ell); short s1 = Float.floatToFloat16(f); short s2 = testAltFloatToFloat16(f); if (s1 != s2) { errors++; System.out.println("Different conversion of float value (" + f + "/" + Integer.toHexString(Float.floatToRawIntBits(f)) + "): " + Integer.toHexString(s1 & 0xffff) + "(" + s1 + ")" + " != " + Integer.toHexString(s2 & 0xffff) + "(" + s2 + ")"); } } return errors; } /* * Rely on float operations to do rounding in both normal and * subnormal binary16 cases. */ public static short testAltFloatToFloat16(float f) { int doppel = Float.floatToRawIntBits(f); short sign_bit = (short)((doppel & 0x8000_0000) >> 16); if (Float.isNaN(f)) { // Preserve sign and attempt to preserve significand bits return (short)(sign_bit | 0x7c00 // max exponent + 1 // Preserve high order bit of float NaN in the // binary16 result NaN (tenth bit); OR in remaining // bits into lower 9 bits of binary 16 significand. | (doppel & 0x007f_e000) >> 13 // 10 bits | (doppel & 0x0000_1ff0) >> 4 // 9 bits | (doppel & 0x0000_000f)); // 4 bits } float abs_f = Math.abs(f); // The overflow threshold is binary16 MAX_VALUE + 1/2 ulp if (abs_f >= (65504.0f + 16.0f) ) { return (short)(sign_bit | 0x7c00); // Positive or negative infinity } else { // Smallest magnitude nonzero representable binary16 value // is equal to 0x1.0p-24; half-way and smaller rounds to zero. if (abs_f <= 0x1.0p-25f) { // Covers float zeros and subnormals. return sign_bit; // Positive or negative zero } // Dealing with finite values in exponent range of // binary16 (when rounding is done, could still round up) int exp = Math.getExponent(f); assert -25 <= exp && exp <= 15; short signif_bits; if (exp <= -15) { // scale down to float subnormal range to do rounding // Use a float multiply to compute the correct // trailing significand bits for a binary16 subnormal. // // The exponent range of normalized binary16 subnormal // values is [-24, -15]. The exponent range of float // subnormals is [-149, -140]. Multiply abs_f down by // 2^(-125) -- since (-125 = -149 - (-24)) -- so that // the trailing bits of a subnormal float represent // the correct trailing bits of a binary16 subnormal. exp = -15; // Subnormal encoding using -E_max. float f_adjust = abs_f * 0x1.0p-125f; // In case the significand rounds up and has a carry // propagate all the way up, take the bottom 11 bits // rather than bottom 10 bits. Adding this value, // rather than OR'ing htis value, will cause the right // exponent adjustment. signif_bits = (short)(Float.floatToRawIntBits(f_adjust) & 0x07ff); return (short)(sign_bit | ( ((exp + 15) << 10) + signif_bits ) ); } else { // Scale down to subnormal range to round off excess bits int scalingExp = -139 - exp; float scaled = Math.scalb(Math.scalb(f, scalingExp), -scalingExp); exp = Math.getExponent(scaled); doppel = Float.floatToRawIntBits(scaled); signif_bits = (short)((doppel & 0x007f_e000) >> (FLOAT_SIGNIFICAND_WIDTH - 11)); return (short)(sign_bit | ( ((exp + 15) << 10) | signif_bits ) ); } } } public static class Binary16 { public static final short POSITIVE_INFINITY = (short)0x7c00; public static final short MAX_VALUE = 0x7bff; public static final short ONE = 0x3c00; public static final short MIN_NORMAL = 0x0400; public static final short MAX_SUBNORMAL = 0x03ff; public static final short MIN_VALUE = 0x0001; public static final short POSITIVE_ZERO = 0x0000; public static boolean isNaN(short binary16) { return ((binary16 & 0x7c00) == 0x7c00) // Max exponent and... && ((binary16 & 0x03ff) != 0 ); // significand nonzero. } public static short negate(short binary16) { return (short)(binary16 ^ 0x8000 ); // Flip only sign bit. } public static boolean equivalent(short bin16_1, short bin16_2) { return (bin16_1 == bin16_2) || isNaN(bin16_1) && isNaN(bin16_2); } } }