/* * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP #define SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP #include "gc/parallel/generationSizer.hpp" #include "gc/parallel/objectStartArray.hpp" #include "gc/parallel/psGCAdaptivePolicyCounters.hpp" #include "gc/parallel/psOldGen.hpp" #include "gc/parallel/psYoungGen.hpp" #include "gc/shared/collectedHeap.hpp" #include "gc/shared/collectorPolicy.hpp" #include "gc/shared/gcPolicyCounters.hpp" #include "gc/shared/gcWhen.hpp" #include "gc/shared/strongRootsScope.hpp" #include "utilities/ostream.hpp" class AdjoiningGenerations; class GCHeapSummary; class GCTaskManager; class PSAdaptiveSizePolicy; class PSHeapSummary; class ParallelScavengeHeap : public CollectedHeap { friend class VMStructs; private: static PSYoungGen* _young_gen; static PSOldGen* _old_gen; // Sizing policy for entire heap static PSAdaptiveSizePolicy* _size_policy; static PSGCAdaptivePolicyCounters* _gc_policy_counters; GenerationSizer* _collector_policy; // Collection of generations that are adjacent in the // space reserved for the heap. AdjoiningGenerations* _gens; unsigned int _death_march_count; // The task manager static GCTaskManager* _gc_task_manager; void trace_heap(GCWhen::Type when, const GCTracer* tracer); protected: static inline size_t total_invocations(); HeapWord* allocate_new_tlab(size_t size); inline bool should_alloc_in_eden(size_t size) const; inline void death_march_check(HeapWord* const result, size_t size); HeapWord* mem_allocate_old_gen(size_t size); public: ParallelScavengeHeap(GenerationSizer* policy) : CollectedHeap(), _collector_policy(policy), _death_march_count(0) { } // For use by VM operations enum CollectionType { Scavenge, MarkSweep }; virtual Name kind() const { return CollectedHeap::ParallelScavengeHeap; } virtual CollectorPolicy* collector_policy() const { return _collector_policy; } static PSYoungGen* young_gen() { return _young_gen; } static PSOldGen* old_gen() { return _old_gen; } virtual PSAdaptiveSizePolicy* size_policy() { return _size_policy; } static PSGCAdaptivePolicyCounters* gc_policy_counters() { return _gc_policy_counters; } static ParallelScavengeHeap* heap(); static GCTaskManager* const gc_task_manager() { return _gc_task_manager; } AdjoiningGenerations* gens() { return _gens; } // Returns JNI_OK on success virtual jint initialize(); void post_initialize(); void update_counters(); // The alignment used for the various areas size_t space_alignment() { return _collector_policy->space_alignment(); } size_t generation_alignment() { return _collector_policy->gen_alignment(); } // Return the (conservative) maximum heap alignment static size_t conservative_max_heap_alignment() { return CollectorPolicy::compute_heap_alignment(); } size_t capacity() const; size_t used() const; // Return "true" if all generations have reached the // maximal committed limit that they can reach, without a garbage // collection. virtual bool is_maximal_no_gc() const; // Return true if the reference points to an object that // can be moved in a partial collection. For currently implemented // generational collectors that means during a collection of // the young gen. virtual bool is_scavengable(const void* addr); size_t max_capacity() const; // Whether p is in the allocated part of the heap bool is_in(const void* p) const; bool is_in_reserved(const void* p) const; bool is_in_young(oop p); // reserved part bool is_in_old(oop p); // reserved part // Memory allocation. "gc_time_limit_was_exceeded" will // be set to true if the adaptive size policy determine that // an excessive amount of time is being spent doing collections // and caused a NULL to be returned. If a NULL is not returned, // "gc_time_limit_was_exceeded" has an undefined meaning. HeapWord* mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded); // Allocation attempt(s) during a safepoint. It should never be called // to allocate a new TLAB as this allocation might be satisfied out // of the old generation. HeapWord* failed_mem_allocate(size_t size); // Support for System.gc() void collect(GCCause::Cause cause); // These also should be called by the vm thread at a safepoint (e.g., from a // VM operation). // // The first collects the young generation only, unless the scavenge fails; it // will then attempt a full gc. The second collects the entire heap; if // maximum_compaction is true, it will compact everything and clear all soft // references. inline void invoke_scavenge(); // Perform a full collection virtual void do_full_collection(bool clear_all_soft_refs); bool supports_inline_contig_alloc() const { return !UseNUMA; } HeapWord** top_addr() const { return !UseNUMA ? young_gen()->top_addr() : (HeapWord**)-1; } HeapWord** end_addr() const { return !UseNUMA ? young_gen()->end_addr() : (HeapWord**)-1; } void ensure_parsability(bool retire_tlabs); void accumulate_statistics_all_tlabs(); void resize_all_tlabs(); bool supports_tlab_allocation() const { return true; } size_t tlab_capacity(Thread* thr) const; size_t tlab_used(Thread* thr) const; size_t unsafe_max_tlab_alloc(Thread* thr) const; // Can a compiler initialize a new object without store barriers? // This permission only extends from the creation of a new object // via a TLAB up to the first subsequent safepoint. virtual bool can_elide_tlab_store_barriers() const { return true; } virtual bool card_mark_must_follow_store() const { return false; } // Return true if we don't we need a store barrier for // initializing stores to an object at this address. virtual bool can_elide_initializing_store_barrier(oop new_obj); void object_iterate(ObjectClosure* cl); void safe_object_iterate(ObjectClosure* cl) { object_iterate(cl); } HeapWord* block_start(const void* addr) const; size_t block_size(const HeapWord* addr) const; bool block_is_obj(const HeapWord* addr) const; jlong millis_since_last_gc(); void prepare_for_verify(); PSHeapSummary create_ps_heap_summary(); virtual void print_on(outputStream* st) const; virtual void print_on_error(outputStream* st) const; virtual void print_gc_threads_on(outputStream* st) const; virtual void gc_threads_do(ThreadClosure* tc) const; virtual void print_tracing_info() const; void verify(bool silent, VerifyOption option /* ignored */); void print_heap_change(size_t prev_used); // Resize the young generation. The reserved space for the // generation may be expanded in preparation for the resize. void resize_young_gen(size_t eden_size, size_t survivor_size); // Resize the old generation. The reserved space for the // generation may be expanded in preparation for the resize. void resize_old_gen(size_t desired_free_space); // Save the tops of the spaces in all generations void record_gen_tops_before_GC() PRODUCT_RETURN; // Mangle the unused parts of all spaces in the heap void gen_mangle_unused_area() PRODUCT_RETURN; // Call these in sequential code around the processing of strong roots. class ParStrongRootsScope : public MarkScope { public: ParStrongRootsScope(); ~ParStrongRootsScope(); }; }; #endif // SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP