/* * Copyright (c) 2022, 2023, Arm Limited. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @summary Vectorization test on basic double operations * @library /test/lib / * * @build jdk.test.whitebox.WhiteBox * compiler.vectorization.runner.VectorizationTestRunner * * @run driver jdk.test.lib.helpers.ClassFileInstaller jdk.test.whitebox.WhiteBox * @run main/othervm -Xbootclasspath/a:. * -XX:+UnlockDiagnosticVMOptions * -XX:+WhiteBoxAPI * compiler.vectorization.runner.BasicDoubleOpTest * * @requires (os.simpleArch == "x64") | (os.simpleArch == "aarch64") * @requires vm.compiler2.enabled & vm.flagless */ package compiler.vectorization.runner; import compiler.lib.ir_framework.*; public class BasicDoubleOpTest extends VectorizationTestRunner { private static final int SIZE = 543; private double[] a; private double[] b; private double[] c; public BasicDoubleOpTest() { a = new double[SIZE]; b = new double[SIZE]; c = new double[SIZE]; for (int i = 0; i < SIZE; i++) { a[i] = 850.0 * i + 22222.22; b[i] = -12345.678; c[i] = -1.23456e7; } } // ---------------- Arithmetic ---------------- @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.NEG_V, ">0"}) public double[] vectorNeg() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = -a[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.ABS_V, ">0"}) public double[] vectorAbs() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.abs(a[i]); } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"}, counts = {IRNode.SQRT_V, ">0"}) public double[] vectorSqrt() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.sqrt(a[i]); } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"}, counts = {IRNode.ROUND_DOUBLE_MODE_V, ">0"}) public double[] vectorCeil() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.ceil(a[i]); } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"}, counts = {IRNode.ROUND_DOUBLE_MODE_V, ">0"}) public double[] vectorFloor() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.floor(a[i]); } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"}, counts = {IRNode.ROUND_DOUBLE_MODE_V, ">0"}) public double[] vectorRint() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.rint(a[i]); } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.ADD_V, ">0"}) public double[] vectorAdd() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] + b[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.SUB_V, ">0"}) public double[] vectorSub() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] - b[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.MUL_V, ">0"}) public double[] vectorMul() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] * b[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.DIV_V, ">0"}) public double[] vectorDiv() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] / b[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"}, counts = {IRNode.MAX_V, ">0"}) public double[] vectorMax() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.max(a[i], b[i]); } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"}, counts = {IRNode.MIN_V, ">0"}) public double[] vectorMin() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.min(a[i], b[i]); } return res; } @Test @IR(applyIfCPUFeature = {"asimd", "true"}, counts = {IRNode.FMA_V, ">0"}) @IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"}, counts = {IRNode.FMA_V, ">0"}) public double[] vectorMulAdd() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.fma(a[i], b[i], c[i]); } return res; } @Test @IR(applyIfCPUFeature = {"asimd", "true"}, counts = {IRNode.FMA_V, ">0"}) @IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"}, counts = {IRNode.FMA_V, ">0"}) public double[] vectorMulSub1() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.fma(-a[i], b[i], c[i]); } return res; } @Test @IR(applyIfCPUFeature = {"asimd", "true"}, counts = {IRNode.FMA_V, ">0"}) @IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"}, counts = {IRNode.FMA_V, ">0"}) public double[] vectorMulSub2() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.fma(a[i], -b[i], c[i]); } return res; } @Test @IR(applyIfCPUFeature = {"asimd", "true"}, counts = {IRNode.FMA_V, ">0"}) @IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"}, counts = {IRNode.FMA_V, ">0"}) public double[] vectorNegateMulAdd1() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.fma(-a[i], b[i], -c[i]); } return res; } @Test @IR(applyIfCPUFeature = {"asimd", "true"}, counts = {IRNode.FMA_V, ">0"}) @IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"}, counts = {IRNode.FMA_V, ">0"}) public double[] vectorNegateMulAdd2() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.fma(a[i], -b[i], -c[i]); } return res; } @Test @IR(applyIfCPUFeature = {"asimd", "true"}, counts = {IRNode.FMA_V, ">0"}) @IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"}, counts = {IRNode.FMA_V, ">0"}) public double[] vectorNegateMulSub() { double[] res = new double[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.fma(a[i], b[i], -c[i]); } return res; } // ---------------- Reduction ---------------- @Test public double reductionAdd() { double res = 0.0; for (int i = 0; i < SIZE; i++) { res += a[i]; } return res; } @Test public double reductionMax() { double res = Double.MIN_VALUE; for (int i = 0; i < SIZE; i++) { res = Math.max(res, a[i]); } return res; } @Test public double reductionMin() { double res = Double.MAX_VALUE; for (int i = 0; i < SIZE; i++) { res = Math.min(res, a[i]); } return res; } }