/* * Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ /* * @test * @bug 8304720 * @summary Test some examples where non-vectorized memops also need to * be reordered during SuperWord::schedule. * @modules java.base/jdk.internal.misc * @library /test/lib / * @run driver compiler.loopopts.superword.TestScheduleReordersScalarMemops */ package compiler.loopopts.superword; import jdk.internal.misc.Unsafe; import jdk.test.lib.Asserts; import compiler.lib.ir_framework.*; public class TestScheduleReordersScalarMemops { static final int RANGE = 1024; static final int ITER = 10_000; static Unsafe unsafe = Unsafe.getUnsafe(); int[] goldI0 = new int[RANGE]; float[] goldF0 = new float[RANGE]; int[] goldI1 = new int[RANGE]; float[] goldF1 = new float[RANGE]; public static void main(String args[]) { TestFramework.runWithFlags("--add-modules", "java.base", "--add-exports", "java.base/jdk.internal.misc=ALL-UNNAMED", "-XX:CompileCommand=compileonly,compiler.loopopts.superword.TestScheduleReordersScalarMemops::test*", "-XX:CompileCommand=compileonly,compiler.loopopts.superword.TestScheduleReordersScalarMemops::verify", "-XX:CompileCommand=compileonly,compiler.loopopts.superword.TestScheduleReordersScalarMemops::init", "-XX:-TieredCompilation", "-Xbatch", "-XX:+IgnoreUnrecognizedVMOptions", "-XX:LoopUnrollLimit=1000"); } TestScheduleReordersScalarMemops() { // compute the gold standard in interpreter mode init(goldI0, goldF0); test0(goldI0, goldI0, goldF0, goldF0); init(goldI1, goldF1); test1(goldI1, goldI1, goldF1, goldF1); } @Run(test = "test0") @Warmup(100) public void runTest0() { int[] dataI = new int[RANGE]; float[] dataF = new float[RANGE]; init(dataI, dataF); test0(dataI, dataI, dataF, dataF); verify("test0", dataI, goldI0); verify("test0", dataF, goldF0); } @Test @IR(counts = {IRNode.MUL_VI, "> 0"}, applyIfCPUFeatureOr = {"avx2", "true", "asimd", "true"}) static void test0(int[] dataIa, int[] dataIb, float[] dataFa, float[] dataFb) { for (int i = 0; i < RANGE; i+=2) { // We have dependency edges: // A -> X // Y -> B // Still, we can vectorize [X,Y]. // We do not vectorize A and B, because they are not isomorphic (add vs mul). // // Imagine this is unrolled at least 2x. // We get order: A0 X0 Y0 B0 A1 X1 Y1 B1 // Vectorized: X0 Y0 X1 Y1 // Scalar: A0 B0 A1 B1 // // However, since the As need to be before, and the Bs after the vector operations, // we need to have all As before all Bs. This means we need to reorder the scalar // operations, and not just the vectorized ones. // // A correct reordering would be: A0 A1 [X0, Y0, X1, Y1] B0 B1 // dataFa[i + 0] = dataIa[i + 0] * 1.3f; // A *1.3 dataIb[i + 0] = (int)dataFb[i + 0] * 11; // X *11 dataIb[i + 1] = (int)dataFb[i + 1] * 11; // Y *11 dataFa[i + 1] = dataIa[i + 1] + 1.2f; // B +1.2 } } @Run(test = "test1") @Warmup(100) public void runTest1() { int[] dataI = new int[RANGE]; float[] dataF = new float[RANGE]; init(dataI, dataF); test1(dataI, dataI, dataF, dataF); verify("test1", dataI, goldI1); verify("test1", dataF, goldF1); } @Test @IR(counts = {IRNode.MUL_VI, "> 0"}, applyIfCPUFeatureOr = {"avx2", "true", "asimd", "true"}) static void test1(int[] dataIa, int[] dataIb, float[] dataFa, float[] dataFb) { for (int i = 0; i < RANGE; i+=2) { // Do the same as test0, but without int-float conversion. // This should reproduce on machines where conversion is not implemented. unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 0, dataIa[i+0] + 1); // A +1 dataIb[i+0] = 11 * unsafe.getInt(dataFb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 0); // X dataIb[i+1] = 11 * unsafe.getInt(dataFb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 4); // Y unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 4, dataIa[i+1] * 11); // B *11 } } static void init(int[] dataI, float[] dataF) { for (int i = 0; i < RANGE; i++) { dataI[i] = i + 1; dataF[i] = i + 0.1f; } } static void verify(String name, int[] data, int[] gold) { for (int i = 0; i < RANGE; i++) { if (data[i] != gold[i]) { throw new RuntimeException(" Invalid " + name + " result: data[" + i + "]: " + data[i] + " != " + gold[i]); } } } static void verify(String name, float[] data, float[] gold) { for (int i = 0; i < RANGE; i++) { int datav = unsafe.getInt(data, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4 * i); int goldv = unsafe.getInt(gold, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4 * i); if (datav != goldv) { throw new RuntimeException(" Invalid " + name + " result: dataF[" + i + "]: " + datav + " != " + goldv); } } } }