/* * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ import java.net.*; import java.io.*; import java.nio.*; import java.nio.channels.*; import sun.net.www.MessageHeader; import java.util.*; /** * This class implements a simple HTTP server. It uses multiple threads to * handle connections in parallel, and also multiple connections/requests * can be handled per thread. *

* It must be instantiated with a {@link HttpCallback} object to which * requests are given and must be handled. *

* Simple synchronization between the client(s) and server can be done * using the {@link #waitForCondition(String)}, {@link #setCondition(String)} and * {@link #rendezvous(String,int)} methods. * * NOTE NOTE NOTE NOTE NOTE NOTE NOTE * * If changes are made here, please sure they are propagated to * the HTTPS equivalent in the JSSE regression test suite. * * NOTE NOTE NOTE NOTE NOTE NOTE NOTE */ public class HttpServer { ServerSocketChannel schan; int threads; int cperthread; HttpCallback cb; Server[] servers; /** * Create a HttpServer instance with the specified callback object * for handling requests. One thread is created to handle requests, * and up to ten TCP connections will be handled simultaneously. * @param cb the callback object which is invoked to handle each * incoming request */ public HttpServer (HttpCallback cb) throws IOException { this (cb, 1, 10, 0); } /** * Create a HttpServer instance with the specified number of * threads and maximum number of connections per thread. This functions * the same as the 4 arg constructor, where the port argument is set to zero. * @param cb the callback object which is invoked to handle each * incoming request * @param threads the number of threads to create to handle requests * in parallel * @param cperthread the number of simultaneous TCP connections to * handle per thread */ public HttpServer (HttpCallback cb, int threads, int cperthread) throws IOException { this (cb, threads, cperthread, 0); } /** * Create a HttpServer instance with the specified number * of threads and maximum number of connections per thread and running on * the specified port. The specified number of threads are created to * handle incoming requests, and each thread is allowed * to handle a number of simultaneous TCP connections. * @param cb the callback object which is invoked to handle * each incoming request * @param threads the number of threads to create to handle * requests in parallel * @param cperthread the number of simultaneous TCP connections * to handle per thread * @param port the port number to bind the server to. Zero * means choose any free port. */ public HttpServer (HttpCallback cb, int threads, int cperthread, int port) throws IOException { schan = ServerSocketChannel.open (); InetSocketAddress addr = new InetSocketAddress (port); schan.socket().bind (addr); this.threads = threads; this.cb = cb; this.cperthread = cperthread; servers = new Server [threads]; for (int i=0; i 0 && ((c=is.read (buf, off, remain))>0)) { remain -= c; off += c; } return buf; } private void readCRLF(InputStream is) throws IOException { int cr = is.read(); int lf = is.read(); if (((cr & 0xff) != 0x0d) || ((lf & 0xff) != 0x0a)) { throw new IOException( "Expected : got '" + cr + "/" + lf + "'"); } } byte[] readChunkedData (InputStream is) throws IOException { LinkedList l = new LinkedList (); int total = 0; for (int len=readChunkLen(is); len!=0; len=readChunkLen(is)) { l.add (readNormalData(is, len)); total += len; readCRLF(is); // CRLF at end of chunk } readCRLF(is); // CRLF at end of Chunked Stream. byte[] buf = new byte [total]; Iterator i = l.iterator(); int x = 0; while (i.hasNext()) { byte[] b = (byte[])i.next(); System.arraycopy (b, 0, buf, x, b.length); x += b.length; } return buf; } private int readChunkLen (InputStream is) throws IOException { int c, len=0; boolean done=false, readCR=false; while (!done) { c = is.read (); if (c == '\n' && readCR) { done = true; } else { if (c == '\r' && !readCR) { readCR = true; } else { int x=0; if (c >= 'a' && c <= 'f') { x = c - 'a' + 10; } else if (c >= 'A' && c <= 'F') { x = c - 'A' + 10; } else if (c >= '0' && c <= '9') { x = c - '0'; } len = len * 16 + x; } } } return len; } private String readLine (InputStream is) throws IOException { boolean done=false, readCR=false; byte[] b = new byte [512]; int c, l = 0; while (!done) { c = is.read (); if (c == '\n' && readCR) { done = true; } else { if (c == '\r' && !readCR) { readCR = true; } else { b[l++] = (byte)c; } } } return new String (b); } /** close the channel associated with the current key by: * 1. shutdownOutput (send a FIN) * 2. mark the key so that incoming data is to be consumed and discarded * 3. After a period, close the socket */ synchronized void orderlyCloseChannel (SelectionKey key) throws IOException { SocketChannel ch = (SocketChannel)key.channel (); System.out.println("SERVER: orderlyCloseChannel chan[" + ch + "]"); ch.socket().shutdownOutput(); key.attach (this); clist.add (key); } synchronized void abortiveCloseChannel (SelectionKey key) throws IOException { SocketChannel ch = (SocketChannel)key.channel (); System.out.println("SERVER: abortiveCloseChannel chan[" + ch + "]"); Socket s = ch.socket (); s.setSoLinger (true, 0); ch.close(); } } /** * Implements blocking reading semantics on top of a non-blocking channel */ static class NioInputStream extends InputStream { SocketChannel channel; Selector selector; ByteBuffer chanbuf; SelectionKey key; int available; byte[] one; boolean closed; ByteBuffer markBuf; /* reads may be satisifed from this buffer */ boolean marked; boolean reset; int readlimit; public NioInputStream (SocketChannel chan) throws IOException { this.channel = chan; selector = Selector.open(); chanbuf = ByteBuffer.allocate (1024); key = chan.register (selector, SelectionKey.OP_READ); available = 0; one = new byte[1]; closed = marked = reset = false; } public synchronized int read (byte[] b) throws IOException { return read (b, 0, b.length); } public synchronized int read () throws IOException { return read (one, 0, 1); } public synchronized int read (byte[] b, int off, int srclen) throws IOException { int canreturn, willreturn; if (closed) return -1; if (reset) { /* satisfy from markBuf */ canreturn = markBuf.remaining (); willreturn = canreturn>srclen ? srclen : canreturn; markBuf.get(b, off, willreturn); if (canreturn == willreturn) { reset = false; } } else { /* satisfy from channel */ canreturn = available(); if (canreturn == 0) { block (); canreturn = available(); } willreturn = canreturn>srclen ? srclen : canreturn; chanbuf.get(b, off, willreturn); available -= willreturn; if (marked) { /* copy into markBuf */ try { markBuf.put (b, off, willreturn); } catch (BufferOverflowException e) { marked = false; } } } return willreturn; } public synchronized int available () throws IOException { if (closed) throw new IOException ("Stream is closed"); if (reset) return markBuf.remaining(); if (available > 0) return available; chanbuf.clear (); available = channel.read (chanbuf); if (available > 0) chanbuf.flip(); else if (available == -1) throw new IOException ("Stream is closed"); return available; } /** * block() only called when available==0 and buf is empty */ private synchronized void block () throws IOException { //assert available == 0; int n = selector.select (); //assert n == 1; selector.selectedKeys().clear(); available (); } public void close () throws IOException { if (closed) return; channel.close (); closed = true; } public synchronized void mark (int readlimit) { if (closed) return; this.readlimit = readlimit; markBuf = ByteBuffer.allocate (readlimit); marked = true; reset = false; } public synchronized void reset () throws IOException { if (closed ) return; if (!marked) throw new IOException ("Stream not marked"); marked = false; reset = true; markBuf.flip (); } } static class NioOutputStream extends OutputStream { SocketChannel channel; ByteBuffer buf; SelectionKey key; Selector selector; boolean closed; byte[] one; public NioOutputStream (SocketChannel channel) throws IOException { this.channel = channel; selector = Selector.open (); key = channel.register (selector, SelectionKey.OP_WRITE); closed = false; one = new byte [1]; } public synchronized void write (int b) throws IOException { one[0] = (byte)b; write (one, 0, 1); } public synchronized void write (byte[] b) throws IOException { write (b, 0, b.length); } public synchronized void write (byte[] b, int off, int len) throws IOException { if (closed) throw new IOException ("stream is closed"); buf = ByteBuffer.allocate (len); buf.put (b, off, len); buf.flip (); int n; while ((n = channel.write (buf)) < len) { len -= n; if (len == 0) return; selector.select (); selector.selectedKeys().clear (); } } public void close () throws IOException { if (closed) return; channel.close (); closed = true; } } /** * Utilities for synchronization. A condition is * identified by a string name, and is initialized * upon first use (ie. setCondition() or waitForCondition()). Threads * are blocked until some thread calls (or has called) setCondition() for the same * condition. *

* A rendezvous built on a condition is also provided for synchronizing * N threads. */ private static HashMap conditions = new HashMap(); /* * Modifiable boolean object */ private static class BValue { boolean v; } /* * Modifiable int object */ private static class IValue { int v; IValue (int i) { v =i; } } private static BValue getCond (String condition) { synchronized (conditions) { BValue cond = (BValue) conditions.get (condition); if (cond == null) { cond = new BValue(); conditions.put (condition, cond); } return cond; } } /** * Set the condition to true. Any threads that are currently blocked * waiting on the condition, will be unblocked and allowed to continue. * Threads that subsequently call waitForCondition() will not block. * If the named condition did not exist prior to the call, then it is created * first. */ public static void setCondition (String condition) { BValue cond = getCond (condition); synchronized (cond) { if (cond.v) { return; } cond.v = true; cond.notifyAll(); } } /** * If the named condition does not exist, then it is created and initialized * to false. If the condition exists or has just been created and its value * is false, then the thread blocks until another thread sets the condition. * If the condition exists and is already set to true, then this call returns * immediately without blocking. */ public static void waitForCondition (String condition) { BValue cond = getCond (condition); synchronized (cond) { if (!cond.v) { try { cond.wait(); } catch (InterruptedException e) {} } } } /* conditions must be locked when accessing this */ static HashMap rv = new HashMap(); /** * Force N threads to rendezvous (ie. wait for each other) before proceeding. * The first thread(s) to call are blocked until the last * thread makes the call. Then all threads continue. *

* All threads that call with the same condition name, must use the same value * for N (or the results may be not be as expected). *

* Obviously, if fewer than N threads make the rendezvous then the result * will be a hang. */ public static void rendezvous (String condition, int N) { BValue cond; IValue iv; String name = "RV_"+condition; /* get the condition */ synchronized (conditions) { cond = (BValue)conditions.get (name); if (cond == null) { /* we are first caller */ if (N < 2) { throw new RuntimeException ("rendezvous must be called with N >= 2"); } cond = new BValue (); conditions.put (name, cond); iv = new IValue (N-1); rv.put (name, iv); } else { /* already initialised, just decrement the counter */ iv = (IValue) rv.get (name); iv.v --; } } if (iv.v > 0) { waitForCondition (name); } else { setCondition (name); synchronized (conditions) { clearCondition (name); rv.remove (name); } } } /** * If the named condition exists and is set then remove it, so it can * be re-initialized and used again. If the condition does not exist, or * exists but is not set, then the call returns without doing anything. * Note, some higher level synchronization * may be needed between clear and the other operations. */ public static void clearCondition(String condition) { BValue cond; synchronized (conditions) { cond = (BValue) conditions.get (condition); if (cond == null) { return; } synchronized (cond) { if (cond.v) { conditions.remove (condition); } } } } }