/* * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "runtime/interfaceSupport.hpp" #include "classfile/symbolTable.hpp" #include "unittest.hpp" TEST(SymbolTable, temp_new_symbol) { // Assert messages assume these symbols are unique, and the refcounts start at // one, but code does not rely on this. JavaThread* THREAD = JavaThread::current(); // the thread should be in vm to use locks ThreadInVMfromNative ThreadInVMfromNative(THREAD); Symbol* abc = SymbolTable::new_symbol("abc", CATCH); int abccount = abc->refcount(); TempNewSymbol ss = abc; ASSERT_EQ(ss->refcount(), abccount) << "only one abc"; ASSERT_EQ(ss->refcount(), abc->refcount()) << "should match TempNewSymbol"; Symbol* efg = SymbolTable::new_symbol("efg", CATCH); Symbol* hij = SymbolTable::new_symbol("hij", CATCH); int efgcount = efg->refcount(); int hijcount = hij->refcount(); TempNewSymbol s1 = efg; TempNewSymbol s2 = hij; ASSERT_EQ(s1->refcount(), efgcount) << "one efg"; ASSERT_EQ(s2->refcount(), hijcount) << "one hij"; // Assignment operator s1 = s2; ASSERT_EQ(hij->refcount(), hijcount + 1) << "should be two hij"; ASSERT_EQ(efg->refcount(), efgcount - 1) << "should be no efg"; s1 = ss; // s1 is abc ASSERT_EQ(s1->refcount(), abccount + 1) << "should be two abc (s1 and ss)"; ASSERT_EQ(hij->refcount(), hijcount) << "should only have one hij now (s2)"; s1 = s1; // self assignment ASSERT_EQ(s1->refcount(), abccount + 1) << "should still be two abc (s1 and ss)"; TempNewSymbol s3; Symbol* klm = SymbolTable::new_symbol("klm", CATCH); int klmcount = klm->refcount(); s3 = klm; // assignment ASSERT_EQ(s3->refcount(), klmcount) << "only one klm now"; Symbol* xyz = SymbolTable::new_symbol("xyz", CATCH); int xyzcount = xyz->refcount(); { // inner scope TempNewSymbol s_inner = xyz; } ASSERT_EQ(xyz->refcount(), xyzcount - 1) << "Should have been decremented by dtor in inner scope"; }