/* * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "code/nmethod.hpp" #include "gc/g1/g1BlockOffsetTable.inline.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1HeapRegionTraceType.hpp" #include "gc/g1/g1OopClosures.inline.hpp" #include "gc/g1/heapRegion.inline.hpp" #include "gc/g1/heapRegionBounds.inline.hpp" #include "gc/g1/heapRegionManager.inline.hpp" #include "gc/g1/heapRegionRemSet.hpp" #include "gc/g1/heapRegionTracer.hpp" #include "gc/shared/genOopClosures.inline.hpp" #include "gc/shared/liveRange.hpp" #include "gc/shared/space.inline.hpp" #include "logging/log.hpp" #include "memory/iterator.hpp" #include "oops/oop.inline.hpp" #include "runtime/atomic.inline.hpp" #include "runtime/orderAccess.inline.hpp" int HeapRegion::LogOfHRGrainBytes = 0; int HeapRegion::LogOfHRGrainWords = 0; size_t HeapRegion::GrainBytes = 0; size_t HeapRegion::GrainWords = 0; size_t HeapRegion::CardsPerRegion = 0; HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1, HeapRegion* hr, G1ParPushHeapRSClosure* cl, CardTableModRefBS::PrecisionStyle precision) : DirtyCardToOopClosure(hr, cl, precision, NULL), _hr(hr), _rs_scan(cl), _g1(g1) { } FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r, OopClosure* oc) : _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { } void HeapRegionDCTOC::walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) { G1CollectedHeap* g1h = _g1; size_t oop_size; HeapWord* cur = bottom; // Start filtering what we add to the remembered set. If the object is // not considered dead, either because it is marked (in the mark bitmap) // or it was allocated after marking finished, then we add it. Otherwise // we can safely ignore the object. if (!g1h->is_obj_dead(oop(cur))) { oop_size = oop(cur)->oop_iterate_size(_rs_scan, mr); } else { oop_size = _hr->block_size(cur); } cur += oop_size; if (cur < top) { oop cur_oop = oop(cur); oop_size = _hr->block_size(cur); HeapWord* next_obj = cur + oop_size; while (next_obj < top) { // Keep filtering the remembered set. if (!g1h->is_obj_dead(cur_oop)) { // Bottom lies entirely below top, so we can call the // non-memRegion version of oop_iterate below. cur_oop->oop_iterate(_rs_scan); } cur = next_obj; cur_oop = oop(cur); oop_size = _hr->block_size(cur); next_obj = cur + oop_size; } // Last object. Need to do dead-obj filtering here too. if (!g1h->is_obj_dead(oop(cur))) { oop(cur)->oop_iterate(_rs_scan, mr); } } } size_t HeapRegion::max_region_size() { return HeapRegionBounds::max_size(); } size_t HeapRegion::min_region_size_in_words() { return HeapRegionBounds::min_size() >> LogHeapWordSize; } void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) { size_t region_size = G1HeapRegionSize; if (FLAG_IS_DEFAULT(G1HeapRegionSize)) { size_t average_heap_size = (initial_heap_size + max_heap_size) / 2; region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(), HeapRegionBounds::min_size()); } int region_size_log = log2_long((jlong) region_size); // Recalculate the region size to make sure it's a power of // 2. This means that region_size is the largest power of 2 that's // <= what we've calculated so far. region_size = ((size_t)1 << region_size_log); // Now make sure that we don't go over or under our limits. if (region_size < HeapRegionBounds::min_size()) { region_size = HeapRegionBounds::min_size(); } else if (region_size > HeapRegionBounds::max_size()) { region_size = HeapRegionBounds::max_size(); } // And recalculate the log. region_size_log = log2_long((jlong) region_size); // Now, set up the globals. guarantee(LogOfHRGrainBytes == 0, "we should only set it once"); LogOfHRGrainBytes = region_size_log; guarantee(LogOfHRGrainWords == 0, "we should only set it once"); LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize; guarantee(GrainBytes == 0, "we should only set it once"); // The cast to int is safe, given that we've bounded region_size by // MIN_REGION_SIZE and MAX_REGION_SIZE. GrainBytes = region_size; log_info(gc, heap)("Heap region size: " SIZE_FORMAT "M", GrainBytes / M); guarantee(GrainWords == 0, "we should only set it once"); GrainWords = GrainBytes >> LogHeapWordSize; guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity"); guarantee(CardsPerRegion == 0, "we should only set it once"); CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift; } void HeapRegion::reset_after_compaction() { G1ContiguousSpace::reset_after_compaction(); // After a compaction the mark bitmap is invalid, so we must // treat all objects as being inside the unmarked area. zero_marked_bytes(); init_top_at_mark_start(); } void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) { assert(_humongous_start_region == NULL, "we should have already filtered out humongous regions"); assert(!in_collection_set(), "Should not clear heap region %u in the collection set", hrm_index()); set_allocation_context(AllocationContext::system()); set_young_index_in_cset(-1); uninstall_surv_rate_group(); set_free(); reset_pre_dummy_top(); if (!par) { // If this is parallel, this will be done later. HeapRegionRemSet* hrrs = rem_set(); if (locked) { hrrs->clear_locked(); } else { hrrs->clear(); } } zero_marked_bytes(); init_top_at_mark_start(); if (clear_space) clear(SpaceDecorator::Mangle); } void HeapRegion::par_clear() { assert(used() == 0, "the region should have been already cleared"); assert(capacity() == HeapRegion::GrainBytes, "should be back to normal"); HeapRegionRemSet* hrrs = rem_set(); hrrs->clear(); CardTableModRefBS* ct_bs = barrier_set_cast(G1CollectedHeap::heap()->barrier_set()); ct_bs->clear(MemRegion(bottom(), end())); } void HeapRegion::calc_gc_efficiency() { // GC efficiency is the ratio of how much space would be // reclaimed over how long we predict it would take to reclaim it. G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1CollectorPolicy* g1p = g1h->g1_policy(); // Retrieve a prediction of the elapsed time for this region for // a mixed gc because the region will only be evacuated during a // mixed gc. double region_elapsed_time_ms = g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */); _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms; } void HeapRegion::set_free() { report_region_type_change(G1HeapRegionTraceType::Free); _type.set_free(); } void HeapRegion::set_eden() { report_region_type_change(G1HeapRegionTraceType::Eden); _type.set_eden(); } void HeapRegion::set_eden_pre_gc() { report_region_type_change(G1HeapRegionTraceType::Eden); _type.set_eden_pre_gc(); } void HeapRegion::set_survivor() { report_region_type_change(G1HeapRegionTraceType::Survivor); _type.set_survivor(); } void HeapRegion::set_old() { report_region_type_change(G1HeapRegionTraceType::Old); _type.set_old(); } void HeapRegion::set_archive() { report_region_type_change(G1HeapRegionTraceType::Archive); _type.set_archive(); } void HeapRegion::set_starts_humongous(HeapWord* obj_top, size_t fill_size) { assert(!is_humongous(), "sanity / pre-condition"); assert(top() == bottom(), "should be empty"); report_region_type_change(G1HeapRegionTraceType::StartsHumongous); _type.set_starts_humongous(); _humongous_start_region = this; _bot_part.set_for_starts_humongous(obj_top, fill_size); } void HeapRegion::set_continues_humongous(HeapRegion* first_hr) { assert(!is_humongous(), "sanity / pre-condition"); assert(top() == bottom(), "should be empty"); assert(first_hr->is_starts_humongous(), "pre-condition"); report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous); _type.set_continues_humongous(); _humongous_start_region = first_hr; } void HeapRegion::clear_humongous() { assert(is_humongous(), "pre-condition"); assert(capacity() == HeapRegion::GrainBytes, "pre-condition"); _humongous_start_region = NULL; } HeapRegion::HeapRegion(uint hrm_index, G1BlockOffsetTable* bot, MemRegion mr) : G1ContiguousSpace(bot), _hrm_index(hrm_index), _allocation_context(AllocationContext::system()), _humongous_start_region(NULL), _next_in_special_set(NULL), _evacuation_failed(false), _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0), _next_young_region(NULL), _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL), #ifdef ASSERT _containing_set(NULL), #endif // ASSERT _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1), _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0), _predicted_bytes_to_copy(0) { _rem_set = new HeapRegionRemSet(bot, this); initialize(mr); } void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) { assert(_rem_set->is_empty(), "Remembered set must be empty"); G1ContiguousSpace::initialize(mr, clear_space, mangle_space); hr_clear(false /*par*/, false /*clear_space*/); set_top(bottom()); record_timestamp(); } void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) { HeapRegionTracer::send_region_type_change(_hrm_index, get_trace_type(), to, (uintptr_t)bottom(), used(), (uint)allocation_context()); } CompactibleSpace* HeapRegion::next_compaction_space() const { return G1CollectedHeap::heap()->next_compaction_region(this); } void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark, bool during_conc_mark) { // We always recreate the prev marking info and we'll explicitly // mark all objects we find to be self-forwarded on the prev // bitmap. So all objects need to be below PTAMS. _prev_marked_bytes = 0; if (during_initial_mark) { // During initial-mark, we'll also explicitly mark all objects // we find to be self-forwarded on the next bitmap. So all // objects need to be below NTAMS. _next_top_at_mark_start = top(); _next_marked_bytes = 0; } else if (during_conc_mark) { // During concurrent mark, all objects in the CSet (including // the ones we find to be self-forwarded) are implicitly live. // So all objects need to be above NTAMS. _next_top_at_mark_start = bottom(); _next_marked_bytes = 0; } } void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark, bool during_conc_mark, size_t marked_bytes) { assert(marked_bytes <= used(), "marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used()); _prev_top_at_mark_start = top(); _prev_marked_bytes = marked_bytes; } HeapWord* HeapRegion::object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl) { G1CollectedHeap* g1h = G1CollectedHeap::heap(); // We used to use "block_start_careful" here. But we're actually happy // to update the BOT while we do this... HeapWord* cur = block_start(mr.start()); mr = mr.intersection(used_region()); if (mr.is_empty()) return NULL; // Otherwise, find the obj that extends onto mr.start(). assert(cur <= mr.start() && (oop(cur)->klass_or_null() == NULL || cur + oop(cur)->size() > mr.start()), "postcondition of block_start"); oop obj; while (cur < mr.end()) { obj = oop(cur); if (obj->klass_or_null() == NULL) { // Ran into an unparseable point. return cur; } else if (!g1h->is_obj_dead(obj)) { cl->do_object(obj); } cur += block_size(cur); } return NULL; } HeapWord* HeapRegion:: oops_on_card_seq_iterate_careful(MemRegion mr, FilterOutOfRegionClosure* cl, bool filter_young, jbyte* card_ptr) { // Currently, we should only have to clean the card if filter_young // is true and vice versa. if (filter_young) { assert(card_ptr != NULL, "pre-condition"); } else { assert(card_ptr == NULL, "pre-condition"); } G1CollectedHeap* g1h = G1CollectedHeap::heap(); // If we're within a stop-world GC, then we might look at a card in a // GC alloc region that extends onto a GC LAB, which may not be // parseable. Stop such at the "scan_top" of the region. if (g1h->is_gc_active()) { mr = mr.intersection(MemRegion(bottom(), scan_top())); } else { mr = mr.intersection(used_region()); } if (mr.is_empty()) return NULL; // Otherwise, find the obj that extends onto mr.start(). // The intersection of the incoming mr (for the card) and the // allocated part of the region is non-empty. This implies that // we have actually allocated into this region. The code in // G1CollectedHeap.cpp that allocates a new region sets the // is_young tag on the region before allocating. Thus we // safely know if this region is young. if (is_young() && filter_young) { return NULL; } assert(!is_young(), "check value of filter_young"); // We can only clean the card here, after we make the decision that // the card is not young. And we only clean the card if we have been // asked to (i.e., card_ptr != NULL). if (card_ptr != NULL) { *card_ptr = CardTableModRefBS::clean_card_val(); // We must complete this write before we do any of the reads below. OrderAccess::storeload(); } // Cache the boundaries of the memory region in some const locals HeapWord* const start = mr.start(); HeapWord* const end = mr.end(); // We used to use "block_start_careful" here. But we're actually happy // to update the BOT while we do this... HeapWord* cur = block_start(start); assert(cur <= start, "Postcondition"); oop obj; HeapWord* next = cur; do { cur = next; obj = oop(cur); if (obj->klass_or_null() == NULL) { // Ran into an unparseable point. return cur; } // Otherwise... next = cur + block_size(cur); } while (next <= start); // If we finish the above loop...We have a parseable object that // begins on or before the start of the memory region, and ends // inside or spans the entire region. assert(cur <= start, "Loop postcondition"); assert(obj->klass_or_null() != NULL, "Loop postcondition"); do { obj = oop(cur); assert((cur + block_size(cur)) > (HeapWord*)obj, "Loop invariant"); if (obj->klass_or_null() == NULL) { // Ran into an unparseable point. return cur; } // Advance the current pointer. "obj" still points to the object to iterate. cur = cur + block_size(cur); if (!g1h->is_obj_dead(obj)) { // Non-objArrays are sometimes marked imprecise at the object start. We // always need to iterate over them in full. // We only iterate over object arrays in full if they are completely contained // in the memory region. if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) { obj->oop_iterate(cl); } else { obj->oop_iterate(cl, mr); } } } while (cur < end); return NULL; } // Code roots support void HeapRegion::add_strong_code_root(nmethod* nm) { HeapRegionRemSet* hrrs = rem_set(); hrrs->add_strong_code_root(nm); } void HeapRegion::add_strong_code_root_locked(nmethod* nm) { assert_locked_or_safepoint(CodeCache_lock); HeapRegionRemSet* hrrs = rem_set(); hrrs->add_strong_code_root_locked(nm); } void HeapRegion::remove_strong_code_root(nmethod* nm) { HeapRegionRemSet* hrrs = rem_set(); hrrs->remove_strong_code_root(nm); } void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const { HeapRegionRemSet* hrrs = rem_set(); hrrs->strong_code_roots_do(blk); } class VerifyStrongCodeRootOopClosure: public OopClosure { const HeapRegion* _hr; nmethod* _nm; bool _failures; bool _has_oops_in_region; template void do_oop_work(T* p) { T heap_oop = oopDesc::load_heap_oop(p); if (!oopDesc::is_null(heap_oop)) { oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); // Note: not all the oops embedded in the nmethod are in the // current region. We only look at those which are. if (_hr->is_in(obj)) { // Object is in the region. Check that its less than top if (_hr->top() <= (HeapWord*)obj) { // Object is above top log_error(gc, verify)("Object " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ") is above top " PTR_FORMAT, p2i(obj), p2i(_hr->bottom()), p2i(_hr->end()), p2i(_hr->top())); _failures = true; return; } // Nmethod has at least one oop in the current region _has_oops_in_region = true; } } } public: VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm): _hr(hr), _failures(false), _has_oops_in_region(false) {} void do_oop(narrowOop* p) { do_oop_work(p); } void do_oop(oop* p) { do_oop_work(p); } bool failures() { return _failures; } bool has_oops_in_region() { return _has_oops_in_region; } }; class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure { const HeapRegion* _hr; bool _failures; public: VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) : _hr(hr), _failures(false) {} void do_code_blob(CodeBlob* cb) { nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null(); if (nm != NULL) { // Verify that the nemthod is live if (!nm->is_alive()) { log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod " PTR_FORMAT " in its strong code roots", p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm)); _failures = true; } else { VerifyStrongCodeRootOopClosure oop_cl(_hr, nm); nm->oops_do(&oop_cl); if (!oop_cl.has_oops_in_region()) { log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod " PTR_FORMAT " in its strong code roots with no pointers into region", p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm)); _failures = true; } else if (oop_cl.failures()) { log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has other failures for nmethod " PTR_FORMAT, p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm)); _failures = true; } } } } bool failures() { return _failures; } }; void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const { if (!G1VerifyHeapRegionCodeRoots) { // We're not verifying code roots. return; } if (vo == VerifyOption_G1UseMarkWord) { // Marking verification during a full GC is performed after class // unloading, code cache unloading, etc so the strong code roots // attached to each heap region are in an inconsistent state. They won't // be consistent until the strong code roots are rebuilt after the // actual GC. Skip verifying the strong code roots in this particular // time. assert(VerifyDuringGC, "only way to get here"); return; } HeapRegionRemSet* hrrs = rem_set(); size_t strong_code_roots_length = hrrs->strong_code_roots_list_length(); // if this region is empty then there should be no entries // on its strong code root list if (is_empty()) { if (strong_code_roots_length > 0) { log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] is empty but has " SIZE_FORMAT " code root entries", p2i(bottom()), p2i(end()), strong_code_roots_length); *failures = true; } return; } if (is_continues_humongous()) { if (strong_code_roots_length > 0) { log_error(gc, verify)("region " HR_FORMAT " is a continuation of a humongous region but has " SIZE_FORMAT " code root entries", HR_FORMAT_PARAMS(this), strong_code_roots_length); *failures = true; } return; } VerifyStrongCodeRootCodeBlobClosure cb_cl(this); strong_code_roots_do(&cb_cl); if (cb_cl.failures()) { *failures = true; } } void HeapRegion::print() const { print_on(tty); } void HeapRegion::print_on(outputStream* st) const { st->print("|%4u", this->_hrm_index); st->print("|" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT, p2i(bottom()), p2i(top()), p2i(end())); st->print("|%3d%%", (int) ((double) used() * 100 / capacity())); st->print("|%2s", get_short_type_str()); if (in_collection_set()) { st->print("|CS"); } else { st->print("| "); } st->print("|TS%3u", _gc_time_stamp); st->print("|AC%3u", allocation_context()); st->print_cr("|TAMS " PTR_FORMAT ", " PTR_FORMAT "|", p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start())); } class G1VerificationClosure : public OopClosure { protected: G1CollectedHeap* _g1h; CardTableModRefBS* _bs; oop _containing_obj; bool _failures; int _n_failures; VerifyOption _vo; public: // _vo == UsePrevMarking -> use "prev" marking information, // _vo == UseNextMarking -> use "next" marking information, // _vo == UseMarkWord -> use mark word from object header. G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) : _g1h(g1h), _bs(barrier_set_cast(g1h->barrier_set())), _containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo) { } void set_containing_obj(oop obj) { _containing_obj = obj; } bool failures() { return _failures; } int n_failures() { return _n_failures; } void print_object(outputStream* out, oop obj) { #ifdef PRODUCT Klass* k = obj->klass(); const char* class_name = k->external_name(); out->print_cr("class name %s", class_name); #else // PRODUCT obj->print_on(out); #endif // PRODUCT } }; class VerifyLiveClosure : public G1VerificationClosure { public: VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {} virtual void do_oop(narrowOop* p) { do_oop_work(p); } virtual void do_oop(oop* p) { do_oop_work(p); } template void do_oop_work(T* p) { assert(_containing_obj != NULL, "Precondition"); assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo), "Precondition"); verify_liveness(p); } template void verify_liveness(T* p) { T heap_oop = oopDesc::load_heap_oop(p); LogHandle(gc, verify) log; if (!oopDesc::is_null(heap_oop)) { oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); bool failed = false; if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) { MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); if (!_failures) { log.error("----------"); } ResourceMark rm; if (!_g1h->is_in_closed_subset(obj)) { HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")", p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end())); print_object(log.error_stream(), _containing_obj); log.error("points to obj " PTR_FORMAT " not in the heap", p2i(obj)); } else { HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj); log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")", p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end())); print_object(log.error_stream(), _containing_obj); log.error("points to dead obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")", p2i(obj), p2i(to->bottom()), p2i(to->end())); print_object(log.error_stream(), obj); } log.error("----------"); _failures = true; failed = true; _n_failures++; } } } }; class VerifyRemSetClosure : public G1VerificationClosure { public: VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {} virtual void do_oop(narrowOop* p) { do_oop_work(p); } virtual void do_oop(oop* p) { do_oop_work(p); } template void do_oop_work(T* p) { assert(_containing_obj != NULL, "Precondition"); assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo), "Precondition"); verify_remembered_set(p); } template void verify_remembered_set(T* p) { T heap_oop = oopDesc::load_heap_oop(p); LogHandle(gc, verify) log; if (!oopDesc::is_null(heap_oop)) { oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); bool failed = false; HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); HeapRegion* to = _g1h->heap_region_containing(obj); if (from != NULL && to != NULL && from != to && !to->is_pinned()) { jbyte cv_obj = *_bs->byte_for_const(_containing_obj); jbyte cv_field = *_bs->byte_for_const(p); const jbyte dirty = CardTableModRefBS::dirty_card_val(); bool is_bad = !(from->is_young() || to->rem_set()->contains_reference(p) || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed (_containing_obj->is_objArray() ? cv_field == dirty : cv_obj == dirty || cv_field == dirty)); if (is_bad) { MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); if (!_failures) { log.error("----------"); } log.error("Missing rem set entry:"); log.error("Field " PTR_FORMAT " of obj " PTR_FORMAT ", in region " HR_FORMAT, p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from)); ResourceMark rm; _containing_obj->print_on(log.error_stream()); log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT, p2i(obj), HR_FORMAT_PARAMS(to)); if (obj->is_oop()) { obj->print_on(log.error_stream()); } log.error("Obj head CTE = %d, field CTE = %d.", cv_obj, cv_field); log.error("----------"); _failures = true; if (!failed) _n_failures++; } } } } }; // This really ought to be commoned up into OffsetTableContigSpace somehow. // We would need a mechanism to make that code skip dead objects. void HeapRegion::verify(VerifyOption vo, bool* failures) const { G1CollectedHeap* g1 = G1CollectedHeap::heap(); *failures = false; HeapWord* p = bottom(); HeapWord* prev_p = NULL; VerifyLiveClosure vl_cl(g1, vo); VerifyRemSetClosure vr_cl(g1, vo); bool is_region_humongous = is_humongous(); size_t object_num = 0; while (p < top()) { oop obj = oop(p); size_t obj_size = block_size(p); object_num += 1; if (!g1->is_obj_dead_cond(obj, this, vo)) { if (obj->is_oop()) { Klass* klass = obj->klass(); bool is_metaspace_object = Metaspace::contains(klass) || (vo == VerifyOption_G1UsePrevMarking && ClassLoaderDataGraph::unload_list_contains(klass)); if (!is_metaspace_object) { log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " " "not metadata", p2i(klass), p2i(obj)); *failures = true; return; } else if (!klass->is_klass()) { log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " " "not a klass", p2i(klass), p2i(obj)); *failures = true; return; } else { vl_cl.set_containing_obj(obj); if (!g1->collector_state()->full_collection() || G1VerifyRSetsDuringFullGC) { // verify liveness and rem_set vr_cl.set_containing_obj(obj); G1Mux2Closure mux(&vl_cl, &vr_cl); obj->oop_iterate_no_header(&mux); if (vr_cl.failures()) { *failures = true; } if (G1MaxVerifyFailures >= 0 && vr_cl.n_failures() >= G1MaxVerifyFailures) { return; } } else { // verify only liveness obj->oop_iterate_no_header(&vl_cl); } if (vl_cl.failures()) { *failures = true; } if (G1MaxVerifyFailures >= 0 && vl_cl.n_failures() >= G1MaxVerifyFailures) { return; } } } else { log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj)); *failures = true; return; } } prev_p = p; p += obj_size; } if (!is_young() && !is_empty()) { _bot_part.verify(); } if (is_region_humongous) { oop obj = oop(this->humongous_start_region()->bottom()); if ((HeapWord*)obj > bottom() || (HeapWord*)obj + obj->size() < bottom()) { log_error(gc, verify)("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj)); *failures = true; return; } } if (!is_region_humongous && p != top()) { log_error(gc, verify)("end of last object " PTR_FORMAT " " "does not match top " PTR_FORMAT, p2i(p), p2i(top())); *failures = true; return; } HeapWord* the_end = end(); // Do some extra BOT consistency checking for addresses in the // range [top, end). BOT look-ups in this range should yield // top. No point in doing that if top == end (there's nothing there). if (p < the_end) { // Look up top HeapWord* addr_1 = p; HeapWord* b_start_1 = _bot_part.block_start_const(addr_1); if (b_start_1 != p) { log_error(gc, verify)("BOT look up for top: " PTR_FORMAT " " " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, p2i(addr_1), p2i(b_start_1), p2i(p)); *failures = true; return; } // Look up top + 1 HeapWord* addr_2 = p + 1; if (addr_2 < the_end) { HeapWord* b_start_2 = _bot_part.block_start_const(addr_2); if (b_start_2 != p) { log_error(gc, verify)("BOT look up for top + 1: " PTR_FORMAT " " " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, p2i(addr_2), p2i(b_start_2), p2i(p)); *failures = true; return; } } // Look up an address between top and end size_t diff = pointer_delta(the_end, p) / 2; HeapWord* addr_3 = p + diff; if (addr_3 < the_end) { HeapWord* b_start_3 = _bot_part.block_start_const(addr_3); if (b_start_3 != p) { log_error(gc, verify)("BOT look up for top + diff: " PTR_FORMAT " " " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, p2i(addr_3), p2i(b_start_3), p2i(p)); *failures = true; return; } } // Look up end - 1 HeapWord* addr_4 = the_end - 1; HeapWord* b_start_4 = _bot_part.block_start_const(addr_4); if (b_start_4 != p) { log_error(gc, verify)("BOT look up for end - 1: " PTR_FORMAT " " " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, p2i(addr_4), p2i(b_start_4), p2i(p)); *failures = true; return; } } verify_strong_code_roots(vo, failures); } void HeapRegion::verify() const { bool dummy = false; verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy); } void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const { G1CollectedHeap* g1 = G1CollectedHeap::heap(); *failures = false; HeapWord* p = bottom(); HeapWord* prev_p = NULL; VerifyRemSetClosure vr_cl(g1, vo); while (p < top()) { oop obj = oop(p); size_t obj_size = block_size(p); if (!g1->is_obj_dead_cond(obj, this, vo)) { if (obj->is_oop()) { vr_cl.set_containing_obj(obj); obj->oop_iterate_no_header(&vr_cl); if (vr_cl.failures()) { *failures = true; } if (G1MaxVerifyFailures >= 0 && vr_cl.n_failures() >= G1MaxVerifyFailures) { return; } } else { log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj)); *failures = true; return; } } prev_p = p; p += obj_size; } } void HeapRegion::verify_rem_set() const { bool failures = false; verify_rem_set(VerifyOption_G1UsePrevMarking, &failures); guarantee(!failures, "HeapRegion RemSet verification failed"); } void HeapRegion::prepare_for_compaction(CompactPoint* cp) { scan_and_forward(this, cp); } // G1OffsetTableContigSpace code; copied from space.cpp. Hope this can go // away eventually. void G1ContiguousSpace::clear(bool mangle_space) { set_top(bottom()); _scan_top = bottom(); CompactibleSpace::clear(mangle_space); reset_bot(); } #ifndef PRODUCT void G1ContiguousSpace::mangle_unused_area() { mangle_unused_area_complete(); } void G1ContiguousSpace::mangle_unused_area_complete() { SpaceMangler::mangle_region(MemRegion(top(), end())); } #endif void G1ContiguousSpace::print() const { print_short(); tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")", p2i(bottom()), p2i(top()), p2i(_bot_part.threshold()), p2i(end())); } HeapWord* G1ContiguousSpace::initialize_threshold() { return _bot_part.initialize_threshold(); } HeapWord* G1ContiguousSpace::cross_threshold(HeapWord* start, HeapWord* end) { _bot_part.alloc_block(start, end); return _bot_part.threshold(); } HeapWord* G1ContiguousSpace::scan_top() const { G1CollectedHeap* g1h = G1CollectedHeap::heap(); HeapWord* local_top = top(); OrderAccess::loadload(); const unsigned local_time_stamp = _gc_time_stamp; assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant"); if (local_time_stamp < g1h->get_gc_time_stamp()) { return local_top; } else { return _scan_top; } } void G1ContiguousSpace::record_timestamp() { G1CollectedHeap* g1h = G1CollectedHeap::heap(); unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp(); if (_gc_time_stamp < curr_gc_time_stamp) { // Setting the time stamp here tells concurrent readers to look at // scan_top to know the maximum allowed address to look at. // scan_top should be bottom for all regions except for the // retained old alloc region which should have scan_top == top HeapWord* st = _scan_top; guarantee(st == _bottom || st == _top, "invariant"); _gc_time_stamp = curr_gc_time_stamp; } } void G1ContiguousSpace::record_retained_region() { // scan_top is the maximum address where it's safe for the next gc to // scan this region. _scan_top = top(); } void G1ContiguousSpace::safe_object_iterate(ObjectClosure* blk) { object_iterate(blk); } void G1ContiguousSpace::object_iterate(ObjectClosure* blk) { HeapWord* p = bottom(); while (p < top()) { if (block_is_obj(p)) { blk->do_object(oop(p)); } p += block_size(p); } } G1ContiguousSpace::G1ContiguousSpace(G1BlockOffsetTable* bot) : _bot_part(bot, this), _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true), _gc_time_stamp(0) { } void G1ContiguousSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) { CompactibleSpace::initialize(mr, clear_space, mangle_space); _top = bottom(); _scan_top = bottom(); set_saved_mark_word(NULL); reset_bot(); }