/* * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/symbolTable.hpp" #include "classfile/vmSymbols.hpp" #include "code/codeCache.hpp" #include "code/codeCacheExtensions.hpp" #include "compiler/compileBroker.hpp" #include "gc/shared/isGCActiveMark.hpp" #include "logging/log.hpp" #include "memory/heapInspection.hpp" #include "memory/resourceArea.hpp" #include "oops/symbol.hpp" #include "runtime/arguments.hpp" #include "runtime/deoptimization.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/sweeper.hpp" #include "runtime/thread.inline.hpp" #include "runtime/vm_operations.hpp" #include "services/threadService.hpp" #include "trace/tracing.hpp" #define VM_OP_NAME_INITIALIZE(name) #name, const char* VM_Operation::_names[VM_Operation::VMOp_Terminating] = \ { VM_OPS_DO(VM_OP_NAME_INITIALIZE) }; void VM_Operation::set_calling_thread(Thread* thread, ThreadPriority priority) { _calling_thread = thread; assert(MinPriority <= priority && priority <= MaxPriority, "sanity check"); _priority = priority; } void VM_Operation::evaluate() { ResourceMark rm; outputStream* debugstream; bool enabled = log_is_enabled(Debug, vmoperation); if (enabled) { debugstream = Log(vmoperation)::debug_stream(); debugstream->print("begin "); print_on_error(debugstream); debugstream->cr(); } doit(); if (enabled) { debugstream->print("end "); print_on_error(debugstream); debugstream->cr(); } } const char* VM_Operation::mode_to_string(Mode mode) { switch(mode) { case _safepoint : return "safepoint"; case _no_safepoint : return "no safepoint"; case _concurrent : return "concurrent"; case _async_safepoint: return "async safepoint"; default : return "unknown"; } } // Called by fatal error handler. void VM_Operation::print_on_error(outputStream* st) const { st->print("VM_Operation (" PTR_FORMAT "): ", p2i(this)); st->print("%s", name()); const char* mode = mode_to_string(evaluation_mode()); st->print(", mode: %s", mode); if (calling_thread()) { st->print(", requested by thread " PTR_FORMAT, p2i(calling_thread())); } } void VM_ThreadStop::doit() { assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); JavaThread* target = java_lang_Thread::thread(target_thread()); // Note that this now allows multiple ThreadDeath exceptions to be // thrown at a thread. if (target != NULL) { // the thread has run and is not already in the process of exiting target->send_thread_stop(throwable()); } } void VM_ClearICs::doit() { if (_preserve_static_stubs) { CodeCache::cleanup_inline_caches(); } else { CodeCache::clear_inline_caches(); } } void VM_Deoptimize::doit() { // We do not want any GCs to happen while we are in the middle of this VM operation ResourceMark rm; DeoptimizationMarker dm; // Deoptimize all activations depending on marked nmethods Deoptimization::deoptimize_dependents(); // Make the dependent methods not entrant CodeCache::make_marked_nmethods_not_entrant(); } void VM_MarkActiveNMethods::doit() { NMethodSweeper::mark_active_nmethods(); } VM_DeoptimizeFrame::VM_DeoptimizeFrame(JavaThread* thread, intptr_t* id, int reason) { _thread = thread; _id = id; _reason = reason; } void VM_DeoptimizeFrame::doit() { assert(_reason > Deoptimization::Reason_none && _reason < Deoptimization::Reason_LIMIT, "invalid deopt reason"); Deoptimization::deoptimize_frame_internal(_thread, _id, (Deoptimization::DeoptReason)_reason); } #ifndef PRODUCT void VM_DeoptimizeAll::doit() { DeoptimizationMarker dm; // deoptimize all java threads in the system if (DeoptimizeALot) { for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) { if (thread->has_last_Java_frame()) { thread->deoptimize(); } } } else if (DeoptimizeRandom) { // Deoptimize some selected threads and frames int tnum = os::random() & 0x3; int fnum = os::random() & 0x3; int tcount = 0; for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) { if (thread->has_last_Java_frame()) { if (tcount++ == tnum) { tcount = 0; int fcount = 0; // Deoptimize some selected frames. // Biased llocking wants a updated register map for(StackFrameStream fst(thread, UseBiasedLocking); !fst.is_done(); fst.next()) { if (fst.current()->can_be_deoptimized()) { if (fcount++ == fnum) { fcount = 0; Deoptimization::deoptimize(thread, *fst.current(), fst.register_map()); } } } } } } } } void VM_ZombieAll::doit() { JavaThread *thread = (JavaThread *)calling_thread(); assert(thread->is_Java_thread(), "must be a Java thread"); thread->make_zombies(); } #endif // !PRODUCT void VM_UnlinkSymbols::doit() { JavaThread *thread = (JavaThread *)calling_thread(); assert(thread->is_Java_thread(), "must be a Java thread"); SymbolTable::unlink(); } void VM_Verify::doit() { Universe::heap()->prepare_for_verify(); Universe::verify(); } bool VM_PrintThreads::doit_prologue() { // Make sure AbstractOwnableSynchronizer is loaded JavaThread* jt = JavaThread::current(); java_util_concurrent_locks_AbstractOwnableSynchronizer::initialize(jt); if (jt->has_pending_exception()) { return false; } // Get Heap_lock if concurrent locks will be dumped if (_print_concurrent_locks) { Heap_lock->lock(); } return true; } void VM_PrintThreads::doit() { Threads::print_on(_out, true, false, _print_concurrent_locks); } void VM_PrintThreads::doit_epilogue() { if (_print_concurrent_locks) { // Release Heap_lock Heap_lock->unlock(); } } void VM_PrintJNI::doit() { JNIHandles::print_on(_out); } VM_FindDeadlocks::~VM_FindDeadlocks() { if (_deadlocks != NULL) { DeadlockCycle* cycle = _deadlocks; while (cycle != NULL) { DeadlockCycle* d = cycle; cycle = cycle->next(); delete d; } } } bool VM_FindDeadlocks::doit_prologue() { if (_concurrent_locks) { // Make sure AbstractOwnableSynchronizer is loaded JavaThread* jt = JavaThread::current(); java_util_concurrent_locks_AbstractOwnableSynchronizer::initialize(jt); if (jt->has_pending_exception()) { return false; } } return true; } void VM_FindDeadlocks::doit() { _deadlocks = ThreadService::find_deadlocks_at_safepoint(_concurrent_locks); if (_out != NULL) { int num_deadlocks = 0; for (DeadlockCycle* cycle = _deadlocks; cycle != NULL; cycle = cycle->next()) { num_deadlocks++; cycle->print_on(_out); } if (num_deadlocks == 1) { _out->print_cr("\nFound 1 deadlock.\n"); _out->flush(); } else if (num_deadlocks > 1) { _out->print_cr("\nFound %d deadlocks.\n", num_deadlocks); _out->flush(); } } } VM_ThreadDump::VM_ThreadDump(ThreadDumpResult* result, int max_depth, bool with_locked_monitors, bool with_locked_synchronizers) { _result = result; _num_threads = 0; // 0 indicates all threads _threads = NULL; _result = result; _max_depth = max_depth; _with_locked_monitors = with_locked_monitors; _with_locked_synchronizers = with_locked_synchronizers; } VM_ThreadDump::VM_ThreadDump(ThreadDumpResult* result, GrowableArray* threads, int num_threads, int max_depth, bool with_locked_monitors, bool with_locked_synchronizers) { _result = result; _num_threads = num_threads; _threads = threads; _result = result; _max_depth = max_depth; _with_locked_monitors = with_locked_monitors; _with_locked_synchronizers = with_locked_synchronizers; } bool VM_ThreadDump::doit_prologue() { // Make sure AbstractOwnableSynchronizer is loaded JavaThread* jt = JavaThread::current(); java_util_concurrent_locks_AbstractOwnableSynchronizer::initialize(jt); if (jt->has_pending_exception()) { return false; } if (_with_locked_synchronizers) { // Acquire Heap_lock to dump concurrent locks Heap_lock->lock(); } return true; } void VM_ThreadDump::doit_epilogue() { if (_with_locked_synchronizers) { // Release Heap_lock Heap_lock->unlock(); } } void VM_ThreadDump::doit() { ResourceMark rm; ConcurrentLocksDump concurrent_locks(true); if (_with_locked_synchronizers) { concurrent_locks.dump_at_safepoint(); } if (_num_threads == 0) { // Snapshot all live threads for (JavaThread* jt = Threads::first(); jt != NULL; jt = jt->next()) { if (jt->is_exiting() || jt->is_hidden_from_external_view()) { // skip terminating threads and hidden threads continue; } ThreadConcurrentLocks* tcl = NULL; if (_with_locked_synchronizers) { tcl = concurrent_locks.thread_concurrent_locks(jt); } ThreadSnapshot* ts = snapshot_thread(jt, tcl); _result->add_thread_snapshot(ts); } } else { // Snapshot threads in the given _threads array // A dummy snapshot is created if a thread doesn't exist for (int i = 0; i < _num_threads; i++) { instanceHandle th = _threads->at(i); if (th() == NULL) { // skip if the thread doesn't exist // Add a dummy snapshot _result->add_thread_snapshot(new ThreadSnapshot()); continue; } // Dump thread stack only if the thread is alive and not exiting // and not VM internal thread. JavaThread* jt = java_lang_Thread::thread(th()); if (jt == NULL || /* thread not alive */ jt->is_exiting() || jt->is_hidden_from_external_view()) { // add a NULL snapshot if skipped _result->add_thread_snapshot(new ThreadSnapshot()); continue; } ThreadConcurrentLocks* tcl = NULL; if (_with_locked_synchronizers) { tcl = concurrent_locks.thread_concurrent_locks(jt); } ThreadSnapshot* ts = snapshot_thread(jt, tcl); _result->add_thread_snapshot(ts); } } } ThreadSnapshot* VM_ThreadDump::snapshot_thread(JavaThread* java_thread, ThreadConcurrentLocks* tcl) { ThreadSnapshot* snapshot = new ThreadSnapshot(java_thread); snapshot->dump_stack_at_safepoint(_max_depth, _with_locked_monitors); snapshot->set_concurrent_locks(tcl); return snapshot; } volatile bool VM_Exit::_vm_exited = false; Thread * VM_Exit::_shutdown_thread = NULL; int VM_Exit::set_vm_exited() { CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::LastStep); Thread * thr_cur = Thread::current(); assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint already"); int num_active = 0; _shutdown_thread = thr_cur; _vm_exited = true; // global flag for(JavaThread *thr = Threads::first(); thr != NULL; thr = thr->next()) if (thr!=thr_cur && thr->thread_state() == _thread_in_native) { ++num_active; thr->set_terminated(JavaThread::_vm_exited); // per-thread flag } return num_active; } int VM_Exit::wait_for_threads_in_native_to_block() { // VM exits at safepoint. This function must be called at the final safepoint // to wait for threads in _thread_in_native state to be quiescent. assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint already"); Thread * thr_cur = Thread::current(); Monitor timer(Mutex::leaf, "VM_Exit timer", true, Monitor::_safepoint_check_never); // Compiler threads need longer wait because they can access VM data directly // while in native. If they are active and some structures being used are // deleted by the shutdown sequence, they will crash. On the other hand, user // threads must go through native=>Java/VM transitions first to access VM // data, and they will be stopped during state transition. In theory, we // don't have to wait for user threads to be quiescent, but it's always // better to terminate VM when current thread is the only active thread, so // wait for user threads too. Numbers are in 10 milliseconds. int max_wait_user_thread = 30; // at least 300 milliseconds int max_wait_compiler_thread = 1000; // at least 10 seconds int max_wait = max_wait_compiler_thread; int attempts = 0; while (true) { int num_active = 0; int num_active_compiler_thread = 0; for(JavaThread *thr = Threads::first(); thr != NULL; thr = thr->next()) { if (thr!=thr_cur && thr->thread_state() == _thread_in_native) { num_active++; if (thr->is_Compiler_thread()) { num_active_compiler_thread++; } } } if (num_active == 0) { return 0; } else if (attempts > max_wait) { return num_active; } else if (num_active_compiler_thread == 0 && attempts > max_wait_user_thread) { return num_active; } attempts++; MutexLockerEx ml(&timer, Mutex::_no_safepoint_check_flag); timer.wait(Mutex::_no_safepoint_check_flag, 10); } } void VM_Exit::doit() { CompileBroker::set_should_block(); // Wait for a short period for threads in native to block. Any thread // still executing native code after the wait will be stopped at // native==>Java/VM barriers. // Among 16276 JCK tests, 94% of them come here without any threads still // running in native; the other 6% are quiescent within 250ms (Ultra 80). wait_for_threads_in_native_to_block(); set_vm_exited(); // cleanup globals resources before exiting. exit_globals() currently // cleans up outputStream resources and PerfMemory resources. exit_globals(); // Check for exit hook exit_hook_t exit_hook = Arguments::exit_hook(); if (exit_hook != NULL) { // exit hook should exit. exit_hook(_exit_code); // ... but if it didn't, we must do it here vm_direct_exit(_exit_code); } else { vm_direct_exit(_exit_code); } } void VM_Exit::wait_if_vm_exited() { if (_vm_exited && Thread::current_or_null() != _shutdown_thread) { // _vm_exited is set at safepoint, and the Threads_lock is never released // we will block here until the process dies Threads_lock->lock_without_safepoint_check(); ShouldNotReachHere(); } } void VM_PrintCompileQueue::doit() { CompileBroker::print_compile_queues(_out); } #if INCLUDE_SERVICES void VM_PrintClassHierarchy::doit() { KlassHierarchy::print_class_hierarchy(_out, _print_interfaces, _print_subclasses, _classname); } #endif