/* * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" #include "gc_implementation/g1/g1GCPhaseTimes.hpp" #include "gc_implementation/g1/g1Log.hpp" // Helper class for avoiding interleaved logging class LineBuffer: public StackObj { private: static const int BUFFER_LEN = 1024; static const int INDENT_CHARS = 3; char _buffer[BUFFER_LEN]; int _indent_level; int _cur; void vappend(const char* format, va_list ap) { int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap); if (res != -1) { _cur += res; } else { DEBUG_ONLY(warning("buffer too small in LineBuffer");) _buffer[BUFFER_LEN -1] = 0; _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again } } public: explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) { for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) { _buffer[_cur] = ' '; } } #ifndef PRODUCT ~LineBuffer() { assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?"); } #endif void append(const char* format, ...) { va_list ap; va_start(ap, format); vappend(format, ap); va_end(ap); } void append_and_print_cr(const char* format, ...) { va_list ap; va_start(ap, format); vappend(format, ap); va_end(ap); gclog_or_tty->print_cr("%s", _buffer); _cur = _indent_level * INDENT_CHARS; } }; template void WorkerDataArray::print(int level, const char* title) { if (_length == 1) { // No need for min, max, average and sum for only one worker LineBuffer buf(level); buf.append("[%s: ", title); buf.append(_print_format, _data[0]); buf.append_and_print_cr("]"); return; } T min = _data[0]; T max = _data[0]; T sum = 0; LineBuffer buf(level); buf.append("[%s:", title); for (uint i = 0; i < _length; ++i) { T val = _data[i]; min = MIN2(val, min); max = MAX2(val, max); sum += val; if (G1Log::finest()) { buf.append(" "); buf.append(_print_format, val); } } if (G1Log::finest()) { buf.append_and_print_cr(""); } double avg = (double)sum / (double)_length; buf.append(" Min: "); buf.append(_print_format, min); buf.append(", Avg: "); buf.append("%.1lf", avg); // Always print average as a double buf.append(", Max: "); buf.append(_print_format, max); buf.append(", Diff: "); buf.append(_print_format, max - min); if (_print_sum) { // for things like the start and end times the sum is not // that relevant buf.append(", Sum: "); buf.append(_print_format, sum); } buf.append_and_print_cr("]"); } #ifdef ASSERT template void WorkerDataArray::reset() { for (uint i = 0; i < _length; i++) { _data[i] = (T)-1; } } template void WorkerDataArray::verify() { for (uint i = 0; i < _length; i++) { assert(_data[i] >= (T)0, err_msg("Invalid data for worker %d", i)); } } #endif G1GCPhaseTimes::G1GCPhaseTimes(uint max_gc_threads) : _max_gc_threads(max_gc_threads), _min_clear_cc_time_ms(-1.0), _max_clear_cc_time_ms(-1.0), _cur_clear_cc_time_ms(0.0), _cum_clear_cc_time_ms(0.0), _num_cc_clears(0L), _last_gc_worker_start_times_ms(_max_gc_threads, "%.1lf", false), _last_ext_root_scan_times_ms(_max_gc_threads, "%.1lf"), _last_satb_filtering_times_ms(_max_gc_threads, "%.1lf"), _last_update_rs_times_ms(_max_gc_threads, "%.1lf"), _last_update_rs_processed_buffers(_max_gc_threads, "%d"), _last_scan_rs_times_ms(_max_gc_threads, "%.1lf"), _last_obj_copy_times_ms(_max_gc_threads, "%.1lf"), _last_termination_times_ms(_max_gc_threads, "%.1lf"), _last_termination_attempts(_max_gc_threads, SIZE_FORMAT), _last_gc_worker_end_times_ms(_max_gc_threads, "%.1lf", false), _last_gc_worker_times_ms(_max_gc_threads, "%.1lf"), _last_gc_worker_other_times_ms(_max_gc_threads, "%.1lf") { assert(max_gc_threads > 0, "Must have some GC threads"); } void G1GCPhaseTimes::note_gc_start(uint active_gc_threads) { assert(active_gc_threads > 0, "The number of threads must be > 0"); assert(active_gc_threads <= _max_gc_threads, "The number of active threads must be <= the max nubmer of threads"); _active_gc_threads = active_gc_threads; _last_gc_worker_start_times_ms.reset(); _last_ext_root_scan_times_ms.reset(); _last_satb_filtering_times_ms.reset(); _last_update_rs_times_ms.reset(); _last_update_rs_processed_buffers.reset(); _last_scan_rs_times_ms.reset(); _last_obj_copy_times_ms.reset(); _last_termination_times_ms.reset(); _last_termination_attempts.reset(); _last_gc_worker_end_times_ms.reset(); _last_gc_worker_times_ms.reset(); _last_gc_worker_other_times_ms.reset(); } void G1GCPhaseTimes::note_gc_end() { _last_gc_worker_start_times_ms.verify(); _last_ext_root_scan_times_ms.verify(); _last_satb_filtering_times_ms.verify(); _last_update_rs_times_ms.verify(); _last_update_rs_processed_buffers.verify(); _last_scan_rs_times_ms.verify(); _last_obj_copy_times_ms.verify(); _last_termination_times_ms.verify(); _last_termination_attempts.verify(); _last_gc_worker_end_times_ms.verify(); for (uint i = 0; i < _active_gc_threads; i++) { double worker_time = _last_gc_worker_end_times_ms.get(i) - _last_gc_worker_start_times_ms.get(i); _last_gc_worker_times_ms.set(i, worker_time); double worker_known_time = _last_ext_root_scan_times_ms.get(i) + _last_satb_filtering_times_ms.get(i) + _last_update_rs_times_ms.get(i) + _last_scan_rs_times_ms.get(i) + _last_obj_copy_times_ms.get(i) + _last_termination_times_ms.get(i); double worker_other_time = worker_time - worker_known_time; _last_gc_worker_other_times_ms.set(i, worker_other_time); } _last_gc_worker_times_ms.verify(); _last_gc_worker_other_times_ms.verify(); } void G1GCPhaseTimes::print_stats(int level, const char* str, double value) { LineBuffer(level).append_and_print_cr("[%s: %.1lf ms]", str, value); } void G1GCPhaseTimes::print_stats(int level, const char* str, double value, int workers) { LineBuffer(level).append_and_print_cr("[%s: %.1lf ms, GC Workers: %d]", str, value, workers); } double G1GCPhaseTimes::accounted_time_ms() { // Subtract the root region scanning wait time. It's initialized to // zero at the start of the pause. double misc_time_ms = _root_region_scan_wait_time_ms; misc_time_ms += _cur_collection_par_time_ms; // Now subtract the time taken to fix up roots in generated code misc_time_ms += _cur_collection_code_root_fixup_time_ms; // Subtract the time taken to clean the card table from the // current value of "other time" misc_time_ms += _cur_clear_ct_time_ms; return misc_time_ms; } void G1GCPhaseTimes::print(double pause_time_sec) { if (_root_region_scan_wait_time_ms > 0.0) { print_stats(1, "Root Region Scan Waiting", _root_region_scan_wait_time_ms); } if (G1CollectedHeap::use_parallel_gc_threads()) { print_stats(1, "Parallel Time", _cur_collection_par_time_ms, _active_gc_threads); _last_gc_worker_start_times_ms.print(2, "GC Worker Start (ms)"); _last_ext_root_scan_times_ms.print(2, "Ext Root Scanning (ms)"); if (_last_satb_filtering_times_ms.sum() > 0.0) { _last_satb_filtering_times_ms.print(2, "SATB Filtering (ms)"); } _last_update_rs_times_ms.print(2, "Update RS (ms)"); _last_update_rs_processed_buffers.print(3, "Processed Buffers"); _last_scan_rs_times_ms.print(2, "Scan RS (ms)"); _last_obj_copy_times_ms.print(2, "Object Copy (ms)"); _last_termination_times_ms.print(2, "Termination (ms)"); if (G1Log::finest()) { _last_termination_attempts.print(3, "Termination Attempts"); } _last_gc_worker_other_times_ms.print(2, "GC Worker Other (ms)"); _last_gc_worker_times_ms.print(2, "GC Worker Total (ms)"); _last_gc_worker_end_times_ms.print(2, "GC Worker End (ms)"); } else { _last_ext_root_scan_times_ms.print(1, "Ext Root Scanning (ms)"); if (_last_satb_filtering_times_ms.sum() > 0.0) { _last_satb_filtering_times_ms.print(1, "SATB Filtering (ms)"); } _last_update_rs_times_ms.print(1, "Update RS (ms)"); _last_update_rs_processed_buffers.print(2, "Processed Buffers"); _last_scan_rs_times_ms.print(1, "Scan RS (ms)"); _last_obj_copy_times_ms.print(1, "Object Copy (ms)"); } print_stats(1, "Code Root Fixup", _cur_collection_code_root_fixup_time_ms); print_stats(1, "Clear CT", _cur_clear_ct_time_ms); if (Verbose && G1Log::finest()) { print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms); print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms); print_stats(1, "Min Clear CC", _min_clear_cc_time_ms); print_stats(1, "Max Clear CC", _max_clear_cc_time_ms); if (_num_cc_clears > 0) { print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears)); } } double misc_time_ms = pause_time_sec * MILLIUNITS - accounted_time_ms(); print_stats(1, "Other", misc_time_ms); if (_cur_verify_before_time_ms > 0.0) { print_stats(2, "Verify Before", _cur_verify_before_time_ms); } print_stats(2, "Choose CSet", (_recorded_young_cset_choice_time_ms + _recorded_non_young_cset_choice_time_ms)); print_stats(2, "Ref Proc", _cur_ref_proc_time_ms); print_stats(2, "Ref Enq", _cur_ref_enq_time_ms); print_stats(2, "Free CSet", (_recorded_young_free_cset_time_ms + _recorded_non_young_free_cset_time_ms)); if (_cur_verify_after_time_ms > 0.0) { print_stats(2, "Verify After", _cur_verify_after_time_ms); } } void G1GCPhaseTimes::record_cc_clear_time_ms(double ms) { if (!(Verbose && G1Log::finest())) { return; } if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms) { _min_clear_cc_time_ms = ms; } if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms) { _max_clear_cc_time_ms = ms; } _cur_clear_cc_time_ms = ms; _cum_clear_cc_time_ms += ms; _num_cc_clears++; }