/* * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/allocation.inline.hpp" #include "opto/block.hpp" #include "opto/c2compiler.hpp" #include "opto/callnode.hpp" #include "opto/cfgnode.hpp" #include "opto/machnode.hpp" #include "opto/runtime.hpp" #ifdef TARGET_ARCH_MODEL_x86_32 # include "adfiles/ad_x86_32.hpp" #endif #ifdef TARGET_ARCH_MODEL_x86_64 # include "adfiles/ad_x86_64.hpp" #endif #ifdef TARGET_ARCH_MODEL_sparc # include "adfiles/ad_sparc.hpp" #endif #ifdef TARGET_ARCH_MODEL_zero # include "adfiles/ad_zero.hpp" #endif #ifdef TARGET_ARCH_MODEL_arm # include "adfiles/ad_arm.hpp" #endif // Optimization - Graph Style //------------------------------implicit_null_check---------------------------- // Detect implicit-null-check opportunities. Basically, find NULL checks // with suitable memory ops nearby. Use the memory op to do the NULL check. // I can generate a memory op if there is not one nearby. // The proj is the control projection for the not-null case. // The val is the pointer being checked for nullness or // decodeHeapOop_not_null node if it did not fold into address. void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) { // Assume if null check need for 0 offset then always needed // Intel solaris doesn't support any null checks yet and no // mechanism exists (yet) to set the switches at an os_cpu level if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return; // Make sure the ptr-is-null path appears to be uncommon! float f = end()->as_MachIf()->_prob; if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f; if( f > PROB_UNLIKELY_MAG(4) ) return; uint bidx = 0; // Capture index of value into memop bool was_store; // Memory op is a store op // Get the successor block for if the test ptr is non-null Block* not_null_block; // this one goes with the proj Block* null_block; if (_nodes[_nodes.size()-1] == proj) { null_block = _succs[0]; not_null_block = _succs[1]; } else { assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other"); not_null_block = _succs[0]; null_block = _succs[1]; } while (null_block->is_Empty() == Block::empty_with_goto) { null_block = null_block->_succs[0]; } // Search the exception block for an uncommon trap. // (See Parse::do_if and Parse::do_ifnull for the reason // we need an uncommon trap. Briefly, we need a way to // detect failure of this optimization, as in 6366351.) { bool found_trap = false; for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) { Node* nn = null_block->_nodes[i1]; if (nn->is_MachCall() && nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) { const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type(); if (trtype->isa_int() && trtype->is_int()->is_con()) { jint tr_con = trtype->is_int()->get_con(); Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con); Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con); assert((int)reason < (int)BitsPerInt, "recode bit map"); if (is_set_nth_bit(allowed_reasons, (int) reason) && action != Deoptimization::Action_none) { // This uncommon trap is sure to recompile, eventually. // When that happens, C->too_many_traps will prevent // this transformation from happening again. found_trap = true; } } break; } } if (!found_trap) { // We did not find an uncommon trap. return; } } // Check for decodeHeapOop_not_null node which did not fold into address bool is_decoden = ((intptr_t)val) & 1; val = (Node*)(((intptr_t)val) & ~1); assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() && (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity"); // Search the successor block for a load or store who's base value is also // the tested value. There may be several. Node_List *out = new Node_List(Thread::current()->resource_area()); MachNode *best = NULL; // Best found so far for (DUIterator i = val->outs(); val->has_out(i); i++) { Node *m = val->out(i); if( !m->is_Mach() ) continue; MachNode *mach = m->as_Mach(); was_store = false; int iop = mach->ideal_Opcode(); switch( iop ) { case Op_LoadB: case Op_LoadUS: case Op_LoadD: case Op_LoadF: case Op_LoadI: case Op_LoadL: case Op_LoadP: case Op_LoadN: case Op_LoadS: case Op_LoadKlass: case Op_LoadNKlass: case Op_LoadRange: case Op_LoadD_unaligned: case Op_LoadL_unaligned: assert(mach->in(2) == val, "should be address"); break; case Op_StoreB: case Op_StoreC: case Op_StoreCM: case Op_StoreD: case Op_StoreF: case Op_StoreI: case Op_StoreL: case Op_StoreP: case Op_StoreN: was_store = true; // Memory op is a store op // Stores will have their address in slot 2 (memory in slot 1). // If the value being nul-checked is in another slot, it means we // are storing the checked value, which does NOT check the value! if( mach->in(2) != val ) continue; break; // Found a memory op? case Op_StrComp: case Op_StrEquals: case Op_StrIndexOf: case Op_AryEq: // Not a legit memory op for implicit null check regardless of // embedded loads continue; default: // Also check for embedded loads if( !mach->needs_anti_dependence_check() ) continue; // Not an memory op; skip it if( must_clone[iop] ) { // Do not move nodes which produce flags because // RA will try to clone it to place near branch and // it will cause recompilation, see clone_node(). continue; } { // Check that value is used in memory address in // instructions with embedded load (CmpP val1,(val2+off)). Node* base; Node* index; const MachOper* oper = mach->memory_inputs(base, index); if (oper == NULL || oper == (MachOper*)-1) { continue; // Not an memory op; skip it } if (val == base || val == index && val->bottom_type()->isa_narrowoop()) { break; // Found it } else { continue; // Skip it } } break; } // check if the offset is not too high for implicit exception { intptr_t offset = 0; const TypePtr *adr_type = NULL; // Do not need this return value here const Node* base = mach->get_base_and_disp(offset, adr_type); if (base == NULL || base == NodeSentinel) { // Narrow oop address doesn't have base, only index if( val->bottom_type()->isa_narrowoop() && MacroAssembler::needs_explicit_null_check(offset) ) continue; // Give up if offset is beyond page size // cannot reason about it; is probably not implicit null exception } else { const TypePtr* tptr; if (UseCompressedOops && Universe::narrow_oop_shift() == 0) { // 32-bits narrow oop can be the base of address expressions tptr = base->bottom_type()->make_ptr(); } else { // only regular oops are expected here tptr = base->bottom_type()->is_ptr(); } // Give up if offset is not a compile-time constant if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot ) continue; offset += tptr->_offset; // correct if base is offseted if( MacroAssembler::needs_explicit_null_check(offset) ) continue; // Give up is reference is beyond 4K page size } } // Check ctrl input to see if the null-check dominates the memory op Block *cb = cfg->_bbs[mach->_idx]; cb = cb->_idom; // Always hoist at least 1 block if( !was_store ) { // Stores can be hoisted only one block while( cb->_dom_depth > (_dom_depth + 1)) cb = cb->_idom; // Hoist loads as far as we want // The non-null-block should dominate the memory op, too. Live // range spilling will insert a spill in the non-null-block if it is // needs to spill the memory op for an implicit null check. if (cb->_dom_depth == (_dom_depth + 1)) { if (cb != not_null_block) continue; cb = cb->_idom; } } if( cb != this ) continue; // Found a memory user; see if it can be hoisted to check-block uint vidx = 0; // Capture index of value into memop uint j; for( j = mach->req()-1; j > 0; j-- ) { if( mach->in(j) == val ) { vidx = j; // Ignore DecodeN val which could be hoisted to where needed. if( is_decoden ) continue; } // Block of memory-op input Block *inb = cfg->_bbs[mach->in(j)->_idx]; Block *b = this; // Start from nul check while( b != inb && b->_dom_depth > inb->_dom_depth ) b = b->_idom; // search upwards for input // See if input dominates null check if( b != inb ) break; } if( j > 0 ) continue; Block *mb = cfg->_bbs[mach->_idx]; // Hoisting stores requires more checks for the anti-dependence case. // Give up hoisting if we have to move the store past any load. if( was_store ) { Block *b = mb; // Start searching here for a local load // mach use (faulting) trying to hoist // n might be blocker to hoisting while( b != this ) { uint k; for( k = 1; k < b->_nodes.size(); k++ ) { Node *n = b->_nodes[k]; if( n->needs_anti_dependence_check() && n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) ) break; // Found anti-dependent load } if( k < b->_nodes.size() ) break; // Found anti-dependent load // Make sure control does not do a merge (would have to check allpaths) if( b->num_preds() != 2 ) break; b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block } if( b != this ) continue; } // Make sure this memory op is not already being used for a NullCheck Node *e = mb->end(); if( e->is_MachNullCheck() && e->in(1) == mach ) continue; // Already being used as a NULL check // Found a candidate! Pick one with least dom depth - the highest // in the dom tree should be closest to the null check. if( !best || cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) { best = mach; bidx = vidx; } } // No candidate! if( !best ) return; // ---- Found an implicit null check extern int implicit_null_checks; implicit_null_checks++; if( is_decoden ) { // Check if we need to hoist decodeHeapOop_not_null first. Block *valb = cfg->_bbs[val->_idx]; if( this != valb && this->_dom_depth < valb->_dom_depth ) { // Hoist it up to the end of the test block. valb->find_remove(val); this->add_inst(val); cfg->_bbs.map(val->_idx,this); // DecodeN on x86 may kill flags. Check for flag-killing projections // that also need to be hoisted. for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) { Node* n = val->fast_out(j); if( n->Opcode() == Op_MachProj ) { cfg->_bbs[n->_idx]->find_remove(n); this->add_inst(n); cfg->_bbs.map(n->_idx,this); } } } } // Hoist the memory candidate up to the end of the test block. Block *old_block = cfg->_bbs[best->_idx]; old_block->find_remove(best); add_inst(best); cfg->_bbs.map(best->_idx,this); // Move the control dependence if (best->in(0) && best->in(0) == old_block->_nodes[0]) best->set_req(0, _nodes[0]); // Check for flag-killing projections that also need to be hoisted // Should be DU safe because no edge updates. for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) { Node* n = best->fast_out(j); if( n->Opcode() == Op_MachProj ) { cfg->_bbs[n->_idx]->find_remove(n); add_inst(n); cfg->_bbs.map(n->_idx,this); } } Compile *C = cfg->C; // proj==Op_True --> ne test; proj==Op_False --> eq test. // One of two graph shapes got matched: // (IfTrue (If (Bool NE (CmpP ptr NULL)))) // (IfFalse (If (Bool EQ (CmpP ptr NULL)))) // NULL checks are always branch-if-eq. If we see a IfTrue projection // then we are replacing a 'ne' test with a 'eq' NULL check test. // We need to flip the projections to keep the same semantics. if( proj->Opcode() == Op_IfTrue ) { // Swap order of projections in basic block to swap branch targets Node *tmp1 = _nodes[end_idx()+1]; Node *tmp2 = _nodes[end_idx()+2]; _nodes.map(end_idx()+1, tmp2); _nodes.map(end_idx()+2, tmp1); Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input tmp1->replace_by(tmp); tmp2->replace_by(tmp1); tmp->replace_by(tmp2); tmp->destruct(); } // Remove the existing null check; use a new implicit null check instead. // Since schedule-local needs precise def-use info, we need to correct // it as well. Node *old_tst = proj->in(0); MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx); _nodes.map(end_idx(),nul_chk); cfg->_bbs.map(nul_chk->_idx,this); // Redirect users of old_test to nul_chk for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2) old_tst->last_out(i2)->set_req(0, nul_chk); // Clean-up any dead code for (uint i3 = 0; i3 < old_tst->req(); i3++) old_tst->set_req(i3, NULL); cfg->latency_from_uses(nul_chk); cfg->latency_from_uses(best); } //------------------------------select----------------------------------------- // Select a nice fellow from the worklist to schedule next. If there is only // one choice, then use it. Projections take top priority for correctness // reasons - if I see a projection, then it is next. There are a number of // other special cases, for instructions that consume condition codes, et al. // These are chosen immediately. Some instructions are required to immediately // precede the last instruction in the block, and these are taken last. Of the // remaining cases (most), choose the instruction with the greatest latency // (that is, the most number of pseudo-cycles required to the end of the // routine). If there is a tie, choose the instruction with the most inputs. Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) { // If only a single entry on the stack, use it uint cnt = worklist.size(); if (cnt == 1) { Node *n = worklist[0]; worklist.map(0,worklist.pop()); return n; } uint choice = 0; // Bigger is most important uint latency = 0; // Bigger is scheduled first uint score = 0; // Bigger is better int idx = -1; // Index in worklist for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist // Order in worklist is used to break ties. // See caller for how this is used to delay scheduling // of induction variable increments to after the other // uses of the phi are scheduled. Node *n = worklist[i]; // Get Node on worklist int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0; if( n->is_Proj() || // Projections always win n->Opcode()== Op_Con || // So does constant 'Top' iop == Op_CreateEx || // Create-exception must start block iop == Op_CheckCastPP ) { worklist.map(i,worklist.pop()); return n; } // Final call in a block must be adjacent to 'catch' Node *e = end(); if( e->is_Catch() && e->in(0)->in(0) == n ) continue; // Memory op for an implicit null check has to be at the end of the block if( e->is_MachNullCheck() && e->in(1) == n ) continue; uint n_choice = 2; // See if this instruction is consumed by a branch. If so, then (as the // branch is the last instruction in the basic block) force it to the // end of the basic block if ( must_clone[iop] ) { // See if any use is a branch bool found_machif = false; for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { Node* use = n->fast_out(j); // The use is a conditional branch, make them adjacent if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) { found_machif = true; break; } // More than this instruction pending for successor to be ready, // don't choose this if other opportunities are ready if (ready_cnt[use->_idx] > 1) n_choice = 1; } // loop terminated, prefer not to use this instruction if (found_machif) continue; } // See if this has a predecessor that is "must_clone", i.e. sets the // condition code. If so, choose this first for (uint j = 0; j < n->req() ; j++) { Node *inn = n->in(j); if (inn) { if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) { n_choice = 3; break; } } } // MachTemps should be scheduled last so they are near their uses if (n->is_MachTemp()) { n_choice = 1; } uint n_latency = cfg->_node_latency->at_grow(n->_idx); uint n_score = n->req(); // Many inputs get high score to break ties // Keep best latency found if( choice < n_choice || ( choice == n_choice && ( latency < n_latency || ( latency == n_latency && ( score < n_score ))))) { choice = n_choice; latency = n_latency; score = n_score; idx = i; // Also keep index in worklist } } // End of for all ready nodes in worklist assert(idx >= 0, "index should be set"); Node *n = worklist[(uint)idx]; // Get the winner worklist.map((uint)idx, worklist.pop()); // Compress worklist return n; } //------------------------------set_next_call---------------------------------- void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) { if( next_call.test_set(n->_idx) ) return; for( uint i=0; i<n->len(); i++ ) { Node *m = n->in(i); if( !m ) continue; // must see all nodes in block that precede call if( bbs[m->_idx] == this ) set_next_call( m, next_call, bbs ); } } //------------------------------needed_for_next_call--------------------------- // Set the flag 'next_call' for each Node that is needed for the next call to // be scheduled. This flag lets me bias scheduling so Nodes needed for the // next subroutine call get priority - basically it moves things NOT needed // for the next call till after the call. This prevents me from trying to // carry lots of stuff live across a call. void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) { // Find the next control-defining Node in this block Node* call = NULL; for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) { Node* m = this_call->fast_out(i); if( bbs[m->_idx] == this && // Local-block user m != this_call && // Not self-start node m->is_Call() ) call = m; break; } if (call == NULL) return; // No next call (e.g., block end is near) // Set next-call for all inputs to this call set_next_call(call, next_call, bbs); } //------------------------------sched_call------------------------------------- uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) { RegMask regs; // Schedule all the users of the call right now. All the users are // projection Nodes, so they must be scheduled next to the call. // Collect all the defined registers. for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) { Node* n = mcall->fast_out(i); assert( n->Opcode()==Op_MachProj, "" ); --ready_cnt[n->_idx]; assert( !ready_cnt[n->_idx], "" ); // Schedule next to call _nodes.map(node_cnt++, n); // Collect defined registers regs.OR(n->out_RegMask()); // Check for scheduling the next control-definer if( n->bottom_type() == Type::CONTROL ) // Warm up next pile of heuristic bits needed_for_next_call(n, next_call, bbs); // Children of projections are now all ready for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { Node* m = n->fast_out(j); // Get user if( bbs[m->_idx] != this ) continue; if( m->is_Phi() ) continue; if( !--ready_cnt[m->_idx] ) worklist.push(m); } } // Act as if the call defines the Frame Pointer. // Certainly the FP is alive and well after the call. regs.Insert(matcher.c_frame_pointer()); // Set all registers killed and not already defined by the call. uint r_cnt = mcall->tf()->range()->cnt(); int op = mcall->ideal_Opcode(); MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj ); bbs.map(proj->_idx,this); _nodes.insert(node_cnt++, proj); // Select the right register save policy. const char * save_policy; switch (op) { case Op_CallRuntime: case Op_CallLeaf: case Op_CallLeafNoFP: // Calling C code so use C calling convention save_policy = matcher._c_reg_save_policy; break; case Op_CallStaticJava: case Op_CallDynamicJava: // Calling Java code so use Java calling convention save_policy = matcher._register_save_policy; break; default: ShouldNotReachHere(); } // When using CallRuntime mark SOE registers as killed by the call // so values that could show up in the RegisterMap aren't live in a // callee saved register since the register wouldn't know where to // find them. CallLeaf and CallLeafNoFP are ok because they can't // have debug info on them. Strictly speaking this only needs to be // done for oops since idealreg2debugmask takes care of debug info // references but there no way to handle oops differently than other // pointers as far as the kill mask goes. bool exclude_soe = op == Op_CallRuntime; // If the call is a MethodHandle invoke, we need to exclude the // register which is used to save the SP value over MH invokes from // the mask. Otherwise this register could be used for // deoptimization information. if (op == Op_CallStaticJava) { MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall; if (mcallstaticjava->_method_handle_invoke) proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask()); } // Fill in the kill mask for the call for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) { if( !regs.Member(r) ) { // Not already defined by the call // Save-on-call register? if ((save_policy[r] == 'C') || (save_policy[r] == 'A') || ((save_policy[r] == 'E') && exclude_soe)) { proj->_rout.Insert(r); } } } return node_cnt; } //------------------------------schedule_local--------------------------------- // Topological sort within a block. Someday become a real scheduler. bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) { // Already "sorted" are the block start Node (as the first entry), and // the block-ending Node and any trailing control projections. We leave // these alone. PhiNodes and ParmNodes are made to follow the block start // Node. Everything else gets topo-sorted. #ifndef PRODUCT if (cfg->trace_opto_pipelining()) { tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order); for (uint i = 0;i < _nodes.size();i++) { tty->print("# "); _nodes[i]->fast_dump(); } tty->print_cr("#"); } #endif // RootNode is already sorted if( _nodes.size() == 1 ) return true; // Move PhiNodes and ParmNodes from 1 to cnt up to the start uint node_cnt = end_idx(); uint phi_cnt = 1; uint i; for( i = 1; i<node_cnt; i++ ) { // Scan for Phi Node *n = _nodes[i]; if( n->is_Phi() || // Found a PhiNode or ParmNode (n->is_Proj() && n->in(0) == head()) ) { // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt _nodes.map(i,_nodes[phi_cnt]); _nodes.map(phi_cnt++,n); // swap Phi/Parm up front } else { // All others // Count block-local inputs to 'n' uint cnt = n->len(); // Input count uint local = 0; for( uint j=0; j<cnt; j++ ) { Node *m = n->in(j); if( m && cfg->_bbs[m->_idx] == this && !m->is_top() ) local++; // One more block-local input } ready_cnt[n->_idx] = local; // Count em up #ifdef ASSERT if( UseConcMarkSweepGC || UseG1GC ) { if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) { // Check the precedence edges for (uint prec = n->req(); prec < n->len(); prec++) { Node* oop_store = n->in(prec); if (oop_store != NULL) { assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark"); } } } } #endif // A few node types require changing a required edge to a precedence edge // before allocation. if( n->is_Mach() && n->req() > TypeFunc::Parms && (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire || n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) { // MemBarAcquire could be created without Precedent edge. // del_req() replaces the specified edge with the last input edge // and then removes the last edge. If the specified edge > number of // edges the last edge will be moved outside of the input edges array // and the edge will be lost. This is why this code should be // executed only when Precedent (== TypeFunc::Parms) edge is present. Node *x = n->in(TypeFunc::Parms); n->del_req(TypeFunc::Parms); n->add_prec(x); } } } for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count ready_cnt[_nodes[i2]->_idx] = 0; // All the prescheduled guys do not hold back internal nodes uint i3; for(i3 = 0; i3<phi_cnt; i3++ ) { // For all pre-scheduled Node *n = _nodes[i3]; // Get pre-scheduled for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { Node* m = n->fast_out(j); if( cfg->_bbs[m->_idx] ==this ) // Local-block user ready_cnt[m->_idx]--; // Fix ready count } } Node_List delay; // Make a worklist Node_List worklist; for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist Node *m = _nodes[i4]; if( !ready_cnt[m->_idx] ) { // Zero ready count? if (m->is_iteratively_computed()) { // Push induction variable increments last to allow other uses // of the phi to be scheduled first. The select() method breaks // ties in scheduling by worklist order. delay.push(m); } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) { // Force the CreateEx to the top of the list so it's processed // first and ends up at the start of the block. worklist.insert(0, m); } else { worklist.push(m); // Then on to worklist! } } } while (delay.size()) { Node* d = delay.pop(); worklist.push(d); } // Warm up the 'next_call' heuristic bits needed_for_next_call(_nodes[0], next_call, cfg->_bbs); #ifndef PRODUCT if (cfg->trace_opto_pipelining()) { for (uint j=0; j<_nodes.size(); j++) { Node *n = _nodes[j]; int idx = n->_idx; tty->print("# ready cnt:%3d ", ready_cnt[idx]); tty->print("latency:%3d ", cfg->_node_latency->at_grow(idx)); tty->print("%4d: %s\n", idx, n->Name()); } } #endif // Pull from worklist and schedule while( worklist.size() ) { // Worklist is not ready #ifndef PRODUCT if (cfg->trace_opto_pipelining()) { tty->print("# ready list:"); for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist Node *n = worklist[i]; // Get Node on worklist tty->print(" %d", n->_idx); } tty->cr(); } #endif // Select and pop a ready guy from worklist Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt); _nodes.map(phi_cnt++,n); // Schedule him next #ifndef PRODUCT if (cfg->trace_opto_pipelining()) { tty->print("# select %d: %s", n->_idx, n->Name()); tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx)); n->dump(); if (Verbose) { tty->print("# ready list:"); for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist Node *n = worklist[i]; // Get Node on worklist tty->print(" %d", n->_idx); } tty->cr(); } } #endif if( n->is_MachCall() ) { MachCallNode *mcall = n->as_MachCall(); phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call); continue; } // Children are now all ready for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) { Node* m = n->fast_out(i5); // Get user if( cfg->_bbs[m->_idx] != this ) continue; if( m->is_Phi() ) continue; if( !--ready_cnt[m->_idx] ) worklist.push(m); } } if( phi_cnt != end_idx() ) { // did not schedule all. Retry, Bailout, or Die Compile* C = matcher.C; if (C->subsume_loads() == true && !C->failing()) { // Retry with subsume_loads == false // If this is the first failure, the sentinel string will "stick" // to the Compile object, and the C2Compiler will see it and retry. C->record_failure(C2Compiler::retry_no_subsuming_loads()); } // assert( phi_cnt == end_idx(), "did not schedule all" ); return false; } #ifndef PRODUCT if (cfg->trace_opto_pipelining()) { tty->print_cr("#"); tty->print_cr("# after schedule_local"); for (uint i = 0;i < _nodes.size();i++) { tty->print("# "); _nodes[i]->fast_dump(); } tty->cr(); } #endif return true; } //--------------------------catch_cleanup_fix_all_inputs----------------------- static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) { for (uint l = 0; l < use->len(); l++) { if (use->in(l) == old_def) { if (l < use->req()) { use->set_req(l, new_def); } else { use->rm_prec(l); use->add_prec(new_def); l--; } } } } //------------------------------catch_cleanup_find_cloned_def------------------ static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) { assert( use_blk != def_blk, "Inter-block cleanup only"); // The use is some block below the Catch. Find and return the clone of the def // that dominates the use. If there is no clone in a dominating block, then // create a phi for the def in a dominating block. // Find which successor block dominates this use. The successor // blocks must all be single-entry (from the Catch only; I will have // split blocks to make this so), hence they all dominate. while( use_blk->_dom_depth > def_blk->_dom_depth+1 ) use_blk = use_blk->_idom; // Find the successor Node *fixup = NULL; uint j; for( j = 0; j < def_blk->_num_succs; j++ ) if( use_blk == def_blk->_succs[j] ) break; if( j == def_blk->_num_succs ) { // Block at same level in dom-tree is not a successor. It needs a // PhiNode, the PhiNode uses from the def and IT's uses need fixup. Node_Array inputs = new Node_List(Thread::current()->resource_area()); for(uint k = 1; k < use_blk->num_preds(); k++) { inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx)); } // Check to see if the use_blk already has an identical phi inserted. // If it exists, it will be at the first position since all uses of a // def are processed together. Node *phi = use_blk->_nodes[1]; if( phi->is_Phi() ) { fixup = phi; for (uint k = 1; k < use_blk->num_preds(); k++) { if (phi->in(k) != inputs[k]) { // Not a match fixup = NULL; break; } } } // If an existing PhiNode was not found, make a new one. if (fixup == NULL) { Node *new_phi = PhiNode::make(use_blk->head(), def); use_blk->_nodes.insert(1, new_phi); bbs.map(new_phi->_idx, use_blk); for (uint k = 1; k < use_blk->num_preds(); k++) { new_phi->set_req(k, inputs[k]); } fixup = new_phi; } } else { // Found the use just below the Catch. Make it use the clone. fixup = use_blk->_nodes[n_clone_idx]; } return fixup; } //--------------------------catch_cleanup_intra_block-------------------------- // Fix all input edges in use that reference "def". The use is in the same // block as the def and both have been cloned in each successor block. static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) { // Both the use and def have been cloned. For each successor block, // get the clone of the use, and make its input the clone of the def // found in that block. uint use_idx = blk->find_node(use); uint offset_idx = use_idx - beg; for( uint k = 0; k < blk->_num_succs; k++ ) { // Get clone in each successor block Block *sb = blk->_succs[k]; Node *clone = sb->_nodes[offset_idx+1]; assert( clone->Opcode() == use->Opcode(), "" ); // Make use-clone reference the def-clone catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]); } } //------------------------------catch_cleanup_inter_block--------------------- // Fix all input edges in use that reference "def". The use is in a different // block than the def. static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) { if( !use_blk ) return; // Can happen if the use is a precedence edge Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx); catch_cleanup_fix_all_inputs(use, def, new_def); } //------------------------------call_catch_cleanup----------------------------- // If we inserted any instructions between a Call and his CatchNode, // clone the instructions on all paths below the Catch. void Block::call_catch_cleanup(Block_Array &bbs) { // End of region to clone uint end = end_idx(); if( !_nodes[end]->is_Catch() ) return; // Start of region to clone uint beg = end; while( _nodes[beg-1]->Opcode() != Op_MachProj || !_nodes[beg-1]->in(0)->is_Call() ) { beg--; assert(beg > 0,"Catch cleanup walking beyond block boundary"); } // Range of inserted instructions is [beg, end) if( beg == end ) return; // Clone along all Catch output paths. Clone area between the 'beg' and // 'end' indices. for( uint i = 0; i < _num_succs; i++ ) { Block *sb = _succs[i]; // Clone the entire area; ignoring the edge fixup for now. for( uint j = end; j > beg; j-- ) { // It is safe here to clone a node with anti_dependence // since clones dominate on each path. Node *clone = _nodes[j-1]->clone(); sb->_nodes.insert( 1, clone ); bbs.map(clone->_idx,sb); } } // Fixup edges. Check the def-use info per cloned Node for(uint i2 = beg; i2 < end; i2++ ) { uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block Node *n = _nodes[i2]; // Node that got cloned // Need DU safe iterator because of edge manipulation in calls. Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area()); for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) { out->push(n->fast_out(j1)); } uint max = out->size(); for (uint j = 0; j < max; j++) {// For all users Node *use = out->pop(); Block *buse = bbs[use->_idx]; if( use->is_Phi() ) { for( uint k = 1; k < use->req(); k++ ) if( use->in(k) == n ) { Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx); use->set_req(k, fixup); } } else { if (this == buse) { catch_cleanup_intra_block(use, n, this, beg, n_clone_idx); } else { catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx); } } } // End for all users } // End of for all Nodes in cloned area // Remove the now-dead cloned ops for(uint i3 = beg; i3 < end; i3++ ) { _nodes[beg]->disconnect_inputs(NULL); _nodes.remove(beg); } // If the successor blocks have a CreateEx node, move it back to the top for(uint i4 = 0; i4 < _num_succs; i4++ ) { Block *sb = _succs[i4]; uint new_cnt = end - beg; // Remove any newly created, but dead, nodes. for( uint j = new_cnt; j > 0; j-- ) { Node *n = sb->_nodes[j]; if (n->outcnt() == 0 && (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){ n->disconnect_inputs(NULL); sb->_nodes.remove(j); new_cnt--; } } // If any newly created nodes remain, move the CreateEx node to the top if (new_cnt > 0) { Node *cex = sb->_nodes[1+new_cnt]; if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) { sb->_nodes.remove(1+new_cnt); sb->_nodes.insert(1,cex); } } } }