/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OOPS_OOP_INLINE_HPP #define SHARE_VM_OOPS_OOP_INLINE_HPP #include "gc_implementation/shared/ageTable.hpp" #include "gc_implementation/shared/markSweep.inline.hpp" #include "gc_interface/collectedHeap.inline.hpp" #include "memory/barrierSet.inline.hpp" #include "memory/cardTableModRefBS.hpp" #include "memory/genCollectedHeap.hpp" #include "memory/generation.hpp" #include "memory/specialized_oop_closures.hpp" #include "oops/arrayKlass.hpp" #include "oops/arrayOop.hpp" #include "oops/klass.hpp" #include "oops/markOop.inline.hpp" #include "oops/oop.hpp" #include "runtime/atomic.hpp" #include "runtime/os.hpp" #include "utilities/macros.hpp" #ifdef TARGET_ARCH_x86 # include "bytes_x86.hpp" #endif #ifdef TARGET_ARCH_sparc # include "bytes_sparc.hpp" #endif #ifdef TARGET_ARCH_zero # include "bytes_zero.hpp" #endif #ifdef TARGET_ARCH_arm # include "bytes_arm.hpp" #endif #ifdef TARGET_ARCH_ppc # include "bytes_ppc.hpp" #endif // Implementation of all inlined member functions defined in oop.hpp // We need a separate file to avoid circular references inline void oopDesc::release_set_mark(markOop m) { OrderAccess::release_store_ptr(&_mark, m); } inline markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) { return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark); } inline Klass* oopDesc::klass() const { if (UseCompressedKlassPointers) { return decode_klass_not_null(_metadata._compressed_klass); } else { return _metadata._klass; } } inline Klass* oopDesc::klass_or_null() const volatile { // can be NULL in CMS if (UseCompressedKlassPointers) { return decode_klass(_metadata._compressed_klass); } else { return _metadata._klass; } } inline int oopDesc::klass_gap_offset_in_bytes() { assert(UseCompressedKlassPointers, "only applicable to compressed klass pointers"); return oopDesc::klass_offset_in_bytes() + sizeof(narrowOop); } inline Klass** oopDesc::klass_addr() { // Only used internally and with CMS and will not work with // UseCompressedOops assert(!UseCompressedKlassPointers, "only supported with uncompressed klass pointers"); return (Klass**) &_metadata._klass; } inline narrowOop* oopDesc::compressed_klass_addr() { assert(UseCompressedKlassPointers, "only called by compressed klass pointers"); return (narrowOop*) &_metadata._compressed_klass; } inline void oopDesc::set_klass(Klass* k) { // since klasses are promoted no store check is needed assert(Universe::is_bootstrapping() || k != NULL, "must be a real Klass*"); assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass*"); if (UseCompressedKlassPointers) { *compressed_klass_addr() = encode_klass_not_null(k); } else { *klass_addr() = k; } } inline int oopDesc::klass_gap() const { return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()); } inline void oopDesc::set_klass_gap(int v) { if (UseCompressedKlassPointers) { *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v; } } inline void oopDesc::set_klass_to_list_ptr(oop k) { // This is only to be used during GC, for from-space objects, so no // barrier is needed. if (UseCompressedKlassPointers) { _metadata._compressed_klass = encode_heap_oop(k); // may be null (parnew overflow handling) } else { _metadata._klass = (Klass*)(address)k; } } inline oop oopDesc::list_ptr_from_klass() { // This is only to be used during GC, for from-space objects. if (UseCompressedKlassPointers) { return decode_heap_oop(_metadata._compressed_klass); } else { // Special case for GC return (oop)(address)_metadata._klass; } } inline void oopDesc::init_mark() { set_mark(markOopDesc::prototype_for_object(this)); } inline bool oopDesc::is_a(Klass* k) const { return klass()->is_subtype_of(k); } inline bool oopDesc::is_instance() const { return klass()->oop_is_instance(); } inline bool oopDesc::is_instanceMirror() const { return klass()->oop_is_instanceMirror(); } inline bool oopDesc::is_instanceRef() const { return klass()->oop_is_instanceRef(); } inline bool oopDesc::is_array() const { return klass()->oop_is_array(); } inline bool oopDesc::is_objArray() const { return klass()->oop_is_objArray(); } inline bool oopDesc::is_typeArray() const { return klass()->oop_is_typeArray(); } inline void* oopDesc::field_base(int offset) const { return (void*)&((char*)this)[offset]; } template inline T* oopDesc::obj_field_addr(int offset) const { return (T*)field_base(offset); } inline Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); } inline jbyte* oopDesc::byte_field_addr(int offset) const { return (jbyte*) field_base(offset); } inline jchar* oopDesc::char_field_addr(int offset) const { return (jchar*) field_base(offset); } inline jboolean* oopDesc::bool_field_addr(int offset) const { return (jboolean*)field_base(offset); } inline jint* oopDesc::int_field_addr(int offset) const { return (jint*) field_base(offset); } inline jshort* oopDesc::short_field_addr(int offset) const { return (jshort*) field_base(offset); } inline jlong* oopDesc::long_field_addr(int offset) const { return (jlong*) field_base(offset); } inline jfloat* oopDesc::float_field_addr(int offset) const { return (jfloat*) field_base(offset); } inline jdouble* oopDesc::double_field_addr(int offset) const { return (jdouble*) field_base(offset); } inline address* oopDesc::address_field_addr(int offset) const { return (address*) field_base(offset); } // Functions for getting and setting oops within instance objects. // If the oops are compressed, the type passed to these overloaded functions // is narrowOop. All functions are overloaded so they can be called by // template functions without conditionals (the compiler instantiates via // the right type and inlines the appopriate code). inline bool oopDesc::is_null(oop obj) { return obj == NULL; } inline bool oopDesc::is_null(Klass* obj) { return obj == NULL; } inline bool oopDesc::is_null(narrowOop obj) { return obj == 0; } // Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit // offset from the heap base. Saving the check for null can save instructions // in inner GC loops so these are separated. inline bool check_obj_alignment(oop obj) { return (intptr_t)obj % MinObjAlignmentInBytes == 0; } inline bool check_klass_alignment(Klass* obj) { return (intptr_t)obj % KlassAlignmentInBytes == 0; } inline narrowOop oopDesc::encode_heap_oop_not_null(oop v) { assert(!is_null(v), "oop value can never be zero"); assert(check_obj_alignment(v), "Address not aligned"); assert(Universe::heap()->is_in_reserved(v), "Address not in heap"); address base = Universe::narrow_oop_base(); int shift = Universe::narrow_oop_shift(); uint64_t pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1)); assert(OopEncodingHeapMax > pd, "change encoding max if new encoding"); uint64_t result = pd >> shift; assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow"); assert(decode_heap_oop(result) == v, "reversibility"); return (narrowOop)result; } inline narrowOop oopDesc::encode_heap_oop(oop v) { return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v); } inline oop oopDesc::decode_heap_oop_not_null(narrowOop v) { assert(!is_null(v), "narrow oop value can never be zero"); address base = Universe::narrow_oop_base(); int shift = Universe::narrow_oop_shift(); oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift)); assert(check_obj_alignment(result), err_msg("address not aligned: " PTR_FORMAT, (void*) result)); return result; } inline oop oopDesc::decode_heap_oop(narrowOop v) { return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v); } inline oop oopDesc::decode_heap_oop_not_null(oop v) { return v; } inline oop oopDesc::decode_heap_oop(oop v) { return v; } // Encoding and decoding for klass field. It is copied code, but someday // might not be the same as oop. inline narrowOop oopDesc::encode_klass_not_null(Klass* v) { assert(!is_null(v), "klass value can never be zero"); assert(check_klass_alignment(v), "Address not aligned"); address base = Universe::narrow_klass_base(); int shift = Universe::narrow_klass_shift(); uint64_t pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1)); assert(KlassEncodingMetaspaceMax > pd, "change encoding max if new encoding"); uint64_t result = pd >> shift; assert((result & CONST64(0xffffffff00000000)) == 0, "narrow klass pointer overflow"); assert(decode_klass(result) == v, "reversibility"); return (narrowOop)result; } inline narrowOop oopDesc::encode_klass(Klass* v) { return (is_null(v)) ? (narrowOop)0 : encode_klass_not_null(v); } inline Klass* oopDesc::decode_klass_not_null(narrowOop v) { assert(!is_null(v), "narrow oop value can never be zero"); address base = Universe::narrow_klass_base(); int shift = Universe::narrow_klass_shift(); Klass* result = (Klass*)(void*)((uintptr_t)base + ((uintptr_t)v << shift)); assert(check_klass_alignment(result), err_msg("address not aligned: " PTR_FORMAT, (void*) result)); return result; } inline Klass* oopDesc::decode_klass(narrowOop v) { return is_null(v) ? (Klass*)NULL : decode_klass_not_null(v); } // Load an oop out of the Java heap as is without decoding. // Called by GC to check for null before decoding. inline oop oopDesc::load_heap_oop(oop* p) { return *p; } inline narrowOop oopDesc::load_heap_oop(narrowOop* p) { return *p; } // Load and decode an oop out of the Java heap into a wide oop. inline oop oopDesc::load_decode_heap_oop_not_null(oop* p) { return *p; } inline oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) { return decode_heap_oop_not_null(*p); } // Load and decode an oop out of the heap accepting null inline oop oopDesc::load_decode_heap_oop(oop* p) { return *p; } inline oop oopDesc::load_decode_heap_oop(narrowOop* p) { return decode_heap_oop(*p); } // Store already encoded heap oop into the heap. inline void oopDesc::store_heap_oop(oop* p, oop v) { *p = v; } inline void oopDesc::store_heap_oop(narrowOop* p, narrowOop v) { *p = v; } // Encode and store a heap oop. inline void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) { *p = encode_heap_oop_not_null(v); } inline void oopDesc::encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; } // Encode and store a heap oop allowing for null. inline void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) { *p = encode_heap_oop(v); } inline void oopDesc::encode_store_heap_oop(oop* p, oop v) { *p = v; } // Store heap oop as is for volatile fields. inline void oopDesc::release_store_heap_oop(volatile oop* p, oop v) { OrderAccess::release_store_ptr(p, v); } inline void oopDesc::release_store_heap_oop(volatile narrowOop* p, narrowOop v) { OrderAccess::release_store(p, v); } inline void oopDesc::release_encode_store_heap_oop_not_null( volatile narrowOop* p, oop v) { // heap oop is not pointer sized. OrderAccess::release_store(p, encode_heap_oop_not_null(v)); } inline void oopDesc::release_encode_store_heap_oop_not_null( volatile oop* p, oop v) { OrderAccess::release_store_ptr(p, v); } inline void oopDesc::release_encode_store_heap_oop(volatile oop* p, oop v) { OrderAccess::release_store_ptr(p, v); } inline void oopDesc::release_encode_store_heap_oop( volatile narrowOop* p, oop v) { OrderAccess::release_store(p, encode_heap_oop(v)); } // These functions are only used to exchange oop fields in instances, // not headers. inline oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) { if (UseCompressedOops) { // encode exchange value from oop to T narrowOop val = encode_heap_oop(exchange_value); narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest); // decode old from T to oop return decode_heap_oop(old); } else { return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest); } } // In order to put or get a field out of an instance, must first check // if the field has been compressed and uncompress it. inline oop oopDesc::obj_field(int offset) const { return UseCompressedOops ? load_decode_heap_oop(obj_field_addr(offset)) : load_decode_heap_oop(obj_field_addr(offset)); } inline volatile oop oopDesc::obj_field_volatile(int offset) const { volatile oop value = obj_field(offset); OrderAccess::acquire(); return value; } inline void oopDesc::obj_field_put(int offset, oop value) { UseCompressedOops ? oop_store(obj_field_addr(offset), value) : oop_store(obj_field_addr(offset), value); } inline Metadata* oopDesc::metadata_field(int offset) const { return *metadata_field_addr(offset); } inline void oopDesc::metadata_field_put(int offset, Metadata* value) { *metadata_field_addr(offset) = value; } inline void oopDesc::obj_field_put_raw(int offset, oop value) { UseCompressedOops ? encode_store_heap_oop(obj_field_addr(offset), value) : encode_store_heap_oop(obj_field_addr(offset), value); } inline void oopDesc::obj_field_put_volatile(int offset, oop value) { OrderAccess::release(); obj_field_put(offset, value); OrderAccess::fence(); } inline jbyte oopDesc::byte_field(int offset) const { return (jbyte) *byte_field_addr(offset); } inline void oopDesc::byte_field_put(int offset, jbyte contents) { *byte_field_addr(offset) = (jint) contents; } inline jboolean oopDesc::bool_field(int offset) const { return (jboolean) *bool_field_addr(offset); } inline void oopDesc::bool_field_put(int offset, jboolean contents) { *bool_field_addr(offset) = (jint) contents; } inline jchar oopDesc::char_field(int offset) const { return (jchar) *char_field_addr(offset); } inline void oopDesc::char_field_put(int offset, jchar contents) { *char_field_addr(offset) = (jint) contents; } inline jint oopDesc::int_field(int offset) const { return *int_field_addr(offset); } inline void oopDesc::int_field_put(int offset, jint contents) { *int_field_addr(offset) = contents; } inline jshort oopDesc::short_field(int offset) const { return (jshort) *short_field_addr(offset); } inline void oopDesc::short_field_put(int offset, jshort contents) { *short_field_addr(offset) = (jint) contents;} inline jlong oopDesc::long_field(int offset) const { return *long_field_addr(offset); } inline void oopDesc::long_field_put(int offset, jlong contents) { *long_field_addr(offset) = contents; } inline jfloat oopDesc::float_field(int offset) const { return *float_field_addr(offset); } inline void oopDesc::float_field_put(int offset, jfloat contents) { *float_field_addr(offset) = contents; } inline jdouble oopDesc::double_field(int offset) const { return *double_field_addr(offset); } inline void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; } inline address oopDesc::address_field(int offset) const { return *address_field_addr(offset); } inline void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; } inline oop oopDesc::obj_field_acquire(int offset) const { return UseCompressedOops ? decode_heap_oop((narrowOop) OrderAccess::load_acquire(obj_field_addr(offset))) : decode_heap_oop((oop) OrderAccess::load_ptr_acquire(obj_field_addr(offset))); } inline void oopDesc::release_obj_field_put(int offset, oop value) { UseCompressedOops ? oop_store((volatile narrowOop*)obj_field_addr(offset), value) : oop_store((volatile oop*) obj_field_addr(offset), value); } inline jbyte oopDesc::byte_field_acquire(int offset) const { return OrderAccess::load_acquire(byte_field_addr(offset)); } inline void oopDesc::release_byte_field_put(int offset, jbyte contents) { OrderAccess::release_store(byte_field_addr(offset), contents); } inline jboolean oopDesc::bool_field_acquire(int offset) const { return OrderAccess::load_acquire(bool_field_addr(offset)); } inline void oopDesc::release_bool_field_put(int offset, jboolean contents) { OrderAccess::release_store(bool_field_addr(offset), contents); } inline jchar oopDesc::char_field_acquire(int offset) const { return OrderAccess::load_acquire(char_field_addr(offset)); } inline void oopDesc::release_char_field_put(int offset, jchar contents) { OrderAccess::release_store(char_field_addr(offset), contents); } inline jint oopDesc::int_field_acquire(int offset) const { return OrderAccess::load_acquire(int_field_addr(offset)); } inline void oopDesc::release_int_field_put(int offset, jint contents) { OrderAccess::release_store(int_field_addr(offset), contents); } inline jshort oopDesc::short_field_acquire(int offset) const { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); } inline void oopDesc::release_short_field_put(int offset, jshort contents) { OrderAccess::release_store(short_field_addr(offset), contents); } inline jlong oopDesc::long_field_acquire(int offset) const { return OrderAccess::load_acquire(long_field_addr(offset)); } inline void oopDesc::release_long_field_put(int offset, jlong contents) { OrderAccess::release_store(long_field_addr(offset), contents); } inline jfloat oopDesc::float_field_acquire(int offset) const { return OrderAccess::load_acquire(float_field_addr(offset)); } inline void oopDesc::release_float_field_put(int offset, jfloat contents) { OrderAccess::release_store(float_field_addr(offset), contents); } inline jdouble oopDesc::double_field_acquire(int offset) const { return OrderAccess::load_acquire(double_field_addr(offset)); } inline void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); } inline address oopDesc::address_field_acquire(int offset) const { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); } inline void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); } inline int oopDesc::size_given_klass(Klass* klass) { int lh = klass->layout_helper(); int s; // lh is now a value computed at class initialization that may hint // at the size. For instances, this is positive and equal to the // size. For arrays, this is negative and provides log2 of the // array element size. For other oops, it is zero and thus requires // a virtual call. // // We go to all this trouble because the size computation is at the // heart of phase 2 of mark-compaction, and called for every object, // alive or dead. So the speed here is equal in importance to the // speed of allocation. if (lh > Klass::_lh_neutral_value) { if (!Klass::layout_helper_needs_slow_path(lh)) { s = lh >> LogHeapWordSize; // deliver size scaled by wordSize } else { s = klass->oop_size(this); } } else if (lh <= Klass::_lh_neutral_value) { // The most common case is instances; fall through if so. if (lh < Klass::_lh_neutral_value) { // Second most common case is arrays. We have to fetch the // length of the array, shift (multiply) it appropriately, // up to wordSize, add the header, and align to object size. size_t size_in_bytes; #ifdef _M_IA64 // The Windows Itanium Aug 2002 SDK hoists this load above // the check for s < 0. An oop at the end of the heap will // cause an access violation if this load is performed on a non // array oop. Making the reference volatile prohibits this. // (%%% please explain by what magic the length is actually fetched!) volatile int *array_length; array_length = (volatile int *)( (intptr_t)this + arrayOopDesc::length_offset_in_bytes() ); assert(array_length > 0, "Integer arithmetic problem somewhere"); // Put into size_t to avoid overflow. size_in_bytes = (size_t) array_length; size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh); #else size_t array_length = (size_t) ((arrayOop)this)->length(); size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh); #endif size_in_bytes += Klass::layout_helper_header_size(lh); // This code could be simplified, but by keeping array_header_in_bytes // in units of bytes and doing it this way we can round up just once, // skipping the intermediate round to HeapWordSize. Cast the result // of round_to to size_t to guarantee unsigned division == right shift. s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) / HeapWordSize); // UseParNewGC, UseParallelGC and UseG1GC can change the length field // of an "old copy" of an object array in the young gen so it indicates // the grey portion of an already copied array. This will cause the first // disjunct below to fail if the two comparands are computed across such // a concurrent change. // UseParNewGC also runs with promotion labs (which look like int // filler arrays) which are subject to changing their declared size // when finally retiring a PLAB; this also can cause the first disjunct // to fail for another worker thread that is concurrently walking the block // offset table. Both these invariant failures are benign for their // current uses; we relax the assertion checking to cover these two cases below: // is_objArray() && is_forwarded() // covers first scenario above // || is_typeArray() // covers second scenario above // If and when UseParallelGC uses the same obj array oop stealing/chunking // technique, we will need to suitably modify the assertion. assert((s == klass->oop_size(this)) || (Universe::heap()->is_gc_active() && ((is_typeArray() && UseParNewGC) || (is_objArray() && is_forwarded() && (UseParNewGC || UseParallelGC || UseG1GC)))), "wrong array object size"); } else { // Must be zero, so bite the bullet and take the virtual call. s = klass->oop_size(this); } } assert(s % MinObjAlignment == 0, "alignment check"); assert(s > 0, "Bad size calculated"); return s; } inline int oopDesc::size() { return size_given_klass(klass()); } inline void update_barrier_set(void* p, oop v) { assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!"); oopDesc::bs()->write_ref_field(p, v); } template inline void update_barrier_set_pre(T* p, oop v) { oopDesc::bs()->write_ref_field_pre(p, v); } template inline void oop_store(T* p, oop v) { if (always_do_update_barrier) { oop_store((volatile T*)p, v); } else { update_barrier_set_pre(p, v); oopDesc::encode_store_heap_oop(p, v); update_barrier_set((void*)p, v); // cast away type } } template inline void oop_store(volatile T* p, oop v) { update_barrier_set_pre((T*)p, v); // cast away volatile // Used by release_obj_field_put, so use release_store_ptr. oopDesc::release_encode_store_heap_oop(p, v); update_barrier_set((void*)p, v); // cast away type } // Should replace *addr = oop assignments where addr type depends on UseCompressedOops // (without having to remember the function name this calls). inline void oop_store_raw(HeapWord* addr, oop value) { if (UseCompressedOops) { oopDesc::encode_store_heap_oop((narrowOop*)addr, value); } else { oopDesc::encode_store_heap_oop((oop*)addr, value); } } inline oop oopDesc::atomic_compare_exchange_oop(oop exchange_value, volatile HeapWord *dest, oop compare_value, bool prebarrier) { if (UseCompressedOops) { if (prebarrier) { update_barrier_set_pre((narrowOop*)dest, exchange_value); } // encode exchange and compare value from oop to T narrowOop val = encode_heap_oop(exchange_value); narrowOop cmp = encode_heap_oop(compare_value); narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp); // decode old from T to oop return decode_heap_oop(old); } else { if (prebarrier) { update_barrier_set_pre((oop*)dest, exchange_value); } return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value); } } // Used only for markSweep, scavenging inline bool oopDesc::is_gc_marked() const { return mark()->is_marked(); } inline bool oopDesc::is_locked() const { return mark()->is_locked(); } inline bool oopDesc::is_unlocked() const { return mark()->is_unlocked(); } inline bool oopDesc::has_bias_pattern() const { return mark()->has_bias_pattern(); } // used only for asserts inline bool oopDesc::is_oop(bool ignore_mark_word) const { oop obj = (oop) this; if (!check_obj_alignment(obj)) return false; if (!Universe::heap()->is_in_reserved(obj)) return false; // obj is aligned and accessible in heap if (Universe::heap()->is_in_reserved(obj->klass_or_null())) return false; // Header verification: the mark is typically non-NULL. If we're // at a safepoint, it must not be null. // Outside of a safepoint, the header could be changing (for example, // another thread could be inflating a lock on this object). if (ignore_mark_word) { return true; } if (mark() != NULL) { return true; } return !SafepointSynchronize::is_at_safepoint(); } // used only for asserts inline bool oopDesc::is_oop_or_null(bool ignore_mark_word) const { return this == NULL ? true : is_oop(ignore_mark_word); } #ifndef PRODUCT // used only for asserts inline bool oopDesc::is_unlocked_oop() const { if (!Universe::heap()->is_in_reserved(this)) return false; return mark()->is_unlocked(); } #endif // PRODUCT inline void oopDesc::follow_contents(void) { assert (is_gc_marked(), "should be marked"); klass()->oop_follow_contents(this); } // Used by scavengers inline bool oopDesc::is_forwarded() const { // The extra heap check is needed since the obj might be locked, in which case the // mark would point to a stack location and have the sentinel bit cleared return mark()->is_marked(); } // Used by scavengers inline void oopDesc::forward_to(oop p) { assert(check_obj_alignment(p), "forwarding to something not aligned"); assert(Universe::heap()->is_in_reserved(p), "forwarding to something not in heap"); markOop m = markOopDesc::encode_pointer_as_mark(p); assert(m->decode_pointer() == p, "encoding must be reversable"); set_mark(m); } // Used by parallel scavengers inline bool oopDesc::cas_forward_to(oop p, markOop compare) { assert(check_obj_alignment(p), "forwarding to something not aligned"); assert(Universe::heap()->is_in_reserved(p), "forwarding to something not in heap"); markOop m = markOopDesc::encode_pointer_as_mark(p); assert(m->decode_pointer() == p, "encoding must be reversable"); return cas_set_mark(m, compare) == compare; } // Note that the forwardee is not the same thing as the displaced_mark. // The forwardee is used when copying during scavenge and mark-sweep. // It does need to clear the low two locking- and GC-related bits. inline oop oopDesc::forwardee() const { return (oop) mark()->decode_pointer(); } inline bool oopDesc::has_displaced_mark() const { return mark()->has_displaced_mark_helper(); } inline markOop oopDesc::displaced_mark() const { return mark()->displaced_mark_helper(); } inline void oopDesc::set_displaced_mark(markOop m) { mark()->set_displaced_mark_helper(m); } // The following method needs to be MT safe. inline uint oopDesc::age() const { assert(!is_forwarded(), "Attempt to read age from forwarded mark"); if (has_displaced_mark()) { return displaced_mark()->age(); } else { return mark()->age(); } } inline void oopDesc::incr_age() { assert(!is_forwarded(), "Attempt to increment age of forwarded mark"); if (has_displaced_mark()) { set_displaced_mark(displaced_mark()->incr_age()); } else { set_mark(mark()->incr_age()); } } inline intptr_t oopDesc::identity_hash() { // Fast case; if the object is unlocked and the hash value is set, no locking is needed // Note: The mark must be read into local variable to avoid concurrent updates. markOop mrk = mark(); if (mrk->is_unlocked() && !mrk->has_no_hash()) { return mrk->hash(); } else if (mrk->is_marked()) { return mrk->hash(); } else { return slow_identity_hash(); } } inline int oopDesc::adjust_pointers() { debug_only(int check_size = size()); int s = klass()->oop_adjust_pointers(this); assert(s == check_size, "should be the same"); return s; } #define OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \ \ inline int oopDesc::oop_iterate(OopClosureType* blk) { \ SpecializationStats::record_call(); \ return klass()->oop_oop_iterate##nv_suffix(this, blk); \ } \ \ inline int oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) { \ SpecializationStats::record_call(); \ return klass()->oop_oop_iterate##nv_suffix##_m(this, blk, mr); \ } inline int oopDesc::oop_iterate_no_header(OopClosure* blk) { // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all // the do_oop calls, but turns off all other features in ExtendedOopClosure. NoHeaderExtendedOopClosure cl(blk); return oop_iterate(&cl); } inline int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) { NoHeaderExtendedOopClosure cl(blk); return oop_iterate(&cl, mr); } ALL_OOP_OOP_ITERATE_CLOSURES_1(OOP_ITERATE_DEFN) ALL_OOP_OOP_ITERATE_CLOSURES_2(OOP_ITERATE_DEFN) #if INCLUDE_ALL_GCS #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix) \ \ inline int oopDesc::oop_iterate_backwards(OopClosureType* blk) { \ SpecializationStats::record_call(); \ return klass()->oop_oop_iterate_backwards##nv_suffix(this, blk); \ } ALL_OOP_OOP_ITERATE_CLOSURES_1(OOP_ITERATE_BACKWARDS_DEFN) ALL_OOP_OOP_ITERATE_CLOSURES_2(OOP_ITERATE_BACKWARDS_DEFN) #endif // INCLUDE_ALL_GCS #endif // SHARE_VM_OOPS_OOP_INLINE_HPP