/* * Copyright (c) 2008, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_ARM_NATIVEINST_ARM_32_HPP #define CPU_ARM_NATIVEINST_ARM_32_HPP #include "asm/macroAssembler.hpp" #include "code/codeCache.hpp" #include "runtime/icache.hpp" #include "runtime/orderAccess.hpp" #include "runtime/os.hpp" #include "runtime/thread.hpp" #include "register_arm.hpp" // ------------------------------------------------------------------- // Some experimental projects extend the ARM back-end by implementing // what the front-end usually assumes is a single native instruction // with a sequence of instructions. // // The 'Raw' variants are the low level initial code (usually one // instruction wide but some of them were already composed // instructions). They should be used only by the back-end. // // The non-raw classes are the front-end entry point, hiding potential // back-end extensions or the actual instructions size. class NativeInstruction; class NativeCall; class RawNativeInstruction { public: enum ARM_specific { instruction_size = Assembler::InstructionSize }; enum InstructionKind { instr_ldr_str = 0x50, instr_ldrh_strh = 0x10, instr_fld_fst = 0xd0 }; // illegal instruction used by NativeJump::patch_verified_entry // permanently undefined (UDF): 0xe << 28 | 0b1111111 << 20 | 0b1111 << 4 static const int zombie_illegal_instruction = 0xe7f000f0; static int decode_rotated_imm12(int encoding) { int base = encoding & 0xff; int right_rotation = (encoding & 0xf00) >> 7; int left_rotation = 32 - right_rotation; int val = (base >> right_rotation) | (base << left_rotation); return val; } address addr_at(int offset) const { return (address)this + offset; } address instruction_address() const { return addr_at(0); } address next_raw_instruction_address() const { return addr_at(instruction_size); } static RawNativeInstruction* at(address address) { return (RawNativeInstruction*)address; } RawNativeInstruction* next_raw() const { return at(next_raw_instruction_address()); } public: int encoding() const { return *(int*)this; } void set_encoding(int value) { int old = *(int*)this; if (old != value) { *(int*)this = value; ICache::invalidate_word((address)this); } } InstructionKind kind() const { return (InstructionKind) ((encoding() >> 20) & 0xf2); } bool is_nop() const { return encoding() == (int)0xe1a00000; } bool is_b() const { return (encoding() & 0x0f000000) == 0x0a000000; } bool is_bx() const { return (encoding() & 0x0ffffff0) == 0x012fff10; } bool is_bl() const { return (encoding() & 0x0f000000) == 0x0b000000; } bool is_blx() const { return (encoding() & 0x0ffffff0) == 0x012fff30; } bool is_fat_call() const { return (is_add_lr() && next_raw()->is_jump()); } bool is_ldr_call() const { return (is_add_lr() && next_raw()->is_ldr_pc()); } bool is_jump() const { return is_b() || is_ldr_pc(); } bool is_call() const { return is_bl() || is_fat_call(); } bool is_branch() const { return is_b() || is_bl(); } bool is_far_branch() const { return is_movw() || is_ldr_literal(); } bool is_ldr_literal() const { // ldr Rx, [PC, #offset] for positive or negative offsets return (encoding() & 0x0f7f0000) == 0x051f0000; } bool is_ldr() const { // ldr Rd, [Rn, #offset] for positive or negative offsets return (encoding() & 0x0f700000) == 0x05100000; } int ldr_offset() const { assert(is_ldr(), "must be"); int offset = encoding() & 0xfff; if (encoding() & (1 << 23)) { // positive offset } else { // negative offset offset = -offset; } return offset; } // is_ldr_pc: ldr PC, PC, #offset bool is_ldr_pc() const { return (encoding() & 0x0f7ff000) == 0x051ff000; } // is_setting_pc(): ldr PC, Rxx, #offset bool is_setting_pc() const { return (encoding() & 0x0f70f000) == 0x0510f000; } bool is_add_lr() const { return (encoding() & 0x0ffff000) == 0x028fe000; } bool is_add_pc() const { return (encoding() & 0x0fff0000) == 0x028f0000; } bool is_sub_pc() const { return (encoding() & 0x0fff0000) == 0x024f0000; } bool is_pc_rel() const { return is_add_pc() || is_sub_pc(); } bool is_movw() const { return (encoding() & 0x0ff00000) == 0x03000000; } bool is_movt() const { return (encoding() & 0x0ff00000) == 0x03400000; } // c2 doesn't use fixed registers for safepoint poll address bool is_safepoint_poll() const { return (encoding() & 0xfff0ffff) == 0xe590c000; } }; inline RawNativeInstruction* rawNativeInstruction_at(address address) { return (RawNativeInstruction*)address; } // Base class exported to the front-end class NativeInstruction: public RawNativeInstruction { public: static NativeInstruction* at(address address) { return (NativeInstruction*)address; } public: // No need to consider indirections while parsing NativeInstruction address next_instruction_address() const { return next_raw_instruction_address(); } // next() is no longer defined to avoid confusion. // // The front end and most classes except for those defined in nativeInst_arm // or relocInfo_arm should only use next_instruction_address(), skipping // over composed instruction and ignoring back-end extensions. // // The back-end can use next_raw() when it knows the instruction sequence // and only wants to skip a single native instruction. }; inline NativeInstruction* nativeInstruction_at(address address) { return (NativeInstruction*)address; } // ------------------------------------------------------------------- // Raw b() or bl() instructions, not used by the front-end. class RawNativeBranch: public RawNativeInstruction { public: address destination(int adj = 0) const { return instruction_address() + (encoding() << 8 >> 6) + 8 + adj; } void set_destination(address dest) { int new_offset = (int)(dest - instruction_address() - 8); assert(new_offset < 0x2000000 && new_offset > -0x2000000, "encoding constraint"); set_encoding((encoding() & 0xff000000) | ((unsigned int)new_offset << 6 >> 8)); } }; inline RawNativeBranch* rawNativeBranch_at(address address) { assert(rawNativeInstruction_at(address)->is_branch(), "must be"); return (RawNativeBranch*)address; } class NativeBranch: public RawNativeBranch { }; inline NativeBranch* nativeBranch_at(address address) { return (NativeBranch *) rawNativeBranch_at(address); } // ------------------------------------------------------------------- // NativeGeneralJump is for patchable internal (near) jumps // It is used directly by the front-end and must be a single instruction wide // (to support patching to other kind of instructions). class NativeGeneralJump: public RawNativeInstruction { public: address jump_destination() const { return rawNativeBranch_at(instruction_address())->destination(); } void set_jump_destination(address dest) { return rawNativeBranch_at(instruction_address())->set_destination(dest); } static void insert_unconditional(address code_pos, address entry); static void replace_mt_safe(address instr_addr, address code_buffer) { assert(((int)instr_addr & 3) == 0 && ((int)code_buffer & 3) == 0, "must be aligned"); // Writing a word is atomic on ARM, so no MT-safe tricks are needed rawNativeInstruction_at(instr_addr)->set_encoding(*(int*)code_buffer); } }; inline NativeGeneralJump* nativeGeneralJump_at(address address) { assert(rawNativeInstruction_at(address)->is_jump(), "must be"); return (NativeGeneralJump*)address; } // ------------------------------------------------------------------- class RawNativeJump: public NativeInstruction { public: address jump_destination(int adj = 0) const { address a; if (is_b()) { a = rawNativeBranch_at(instruction_address())->destination(adj); // Jump destination -1 is encoded as a jump to self if (a == instruction_address()) { return (address)-1; } } else { assert(is_ldr_pc(), "must be"); int offset = this->ldr_offset(); a = *(address*)(instruction_address() + 8 + offset); } return a; } void set_jump_destination(address dest) { address a; if (is_b()) { // Jump destination -1 is encoded as a jump to self if (dest == (address)-1) { dest = instruction_address(); } rawNativeBranch_at(instruction_address())->set_destination(dest); } else { assert(is_ldr_pc(), "must be"); int offset = this->ldr_offset(); *(address*)(instruction_address() + 8 + offset) = dest; OrderAccess::storeload(); // overkill if caller holds lock? } } static void check_verified_entry_alignment(address entry, address verified_entry); static void patch_verified_entry(address entry, address verified_entry, address dest); }; inline RawNativeJump* rawNativeJump_at(address address) { assert(rawNativeInstruction_at(address)->is_jump(), "must be"); return (RawNativeJump*)address; } // ------------------------------------------------------------------- class RawNativeCall: public NativeInstruction { // See IC calls in LIR_Assembler::ic_call(): ARM v5/v6 doesn't use a // single bl for IC calls. public: address return_address() const { if (is_bl()) { return addr_at(instruction_size); } else { assert(is_fat_call(), "must be"); int offset = encoding() & 0xff; return addr_at(offset + 8); } } address destination(int adj = 0) const { if (is_bl()) { return rawNativeBranch_at(instruction_address())->destination(adj); } else { assert(is_add_lr(), "must be"); // fat_call RawNativeJump *next = rawNativeJump_at(next_raw_instruction_address()); return next->jump_destination(adj); } } void set_destination(address dest) { if (is_bl()) { return rawNativeBranch_at(instruction_address())->set_destination(dest); } else { assert(is_add_lr(), "must be"); // fat_call RawNativeJump *next = rawNativeJump_at(next_raw_instruction_address()); return next->set_jump_destination(dest); } } void set_destination_mt_safe(address dest) { assert(CodeCache::contains(dest), "external destination might be too far"); set_destination(dest); } void verify() { assert(RawNativeInstruction::is_call() || (!VM_Version::supports_movw() && RawNativeInstruction::is_jump()), "must be"); } void verify_alignment() { // Nothing to do on ARM } static bool is_call_before(address return_address); }; inline RawNativeCall* rawNativeCall_at(address address) { assert(rawNativeInstruction_at(address)->is_call(), "must be"); return (RawNativeCall*)address; } NativeCall* rawNativeCall_before(address return_address); // ------------------------------------------------------------------- // NativeMovRegMem need not be extended with indirection support. // (field access patching is handled differently in that case) class NativeMovRegMem: public NativeInstruction { public: enum arm_specific_constants { instruction_size = 8 }; int num_bytes_to_end_of_patch() const { return instruction_size; } int offset() const; void set_offset(int x); void add_offset_in_bytes(int add_offset) { set_offset(offset() + add_offset); } }; inline NativeMovRegMem* nativeMovRegMem_at(address address) { NativeMovRegMem* instr = (NativeMovRegMem*)address; assert(instr->kind() == NativeInstruction::instr_ldr_str || instr->kind() == NativeInstruction::instr_ldrh_strh || instr->kind() == NativeInstruction::instr_fld_fst, "must be"); return instr; } // ------------------------------------------------------------------- // NativeMovConstReg is primarily for loading oops and metadata class NativeMovConstReg: public NativeInstruction { public: intptr_t data() const; void set_data(intptr_t x, address pc = 0); bool is_pc_relative() { return !is_movw(); } void set_pc_relative_offset(address addr, address pc); address next_instruction_address() const { // NOTE: CompiledStaticCall::set_to_interpreted() calls this but // are restricted to single-instruction ldr. No need to jump over // several instructions. assert(is_ldr_literal(), "Should only use single-instructions load"); return next_raw_instruction_address(); } }; inline NativeMovConstReg* nativeMovConstReg_at(address address) { NativeInstruction* ni = nativeInstruction_at(address); assert(ni->is_ldr_literal() || ni->is_pc_rel() || ni->is_movw() && VM_Version::supports_movw(), "must be"); return (NativeMovConstReg*)address; } // ------------------------------------------------------------------- // Front end classes, hiding experimental back-end extensions. // Extension to support indirections class NativeJump: public RawNativeJump { public: }; inline NativeJump* nativeJump_at(address address) { assert(nativeInstruction_at(address)->is_jump(), "must be"); return (NativeJump*)address; } class NativeCall: public RawNativeCall { public: // NativeCall::next_instruction_address() is used only to define the // range where to look for the relocation information. We need not // walk over composed instructions (as long as the relocation information // is associated to the first instruction). address next_instruction_address() const { return next_raw_instruction_address(); } }; inline NativeCall* nativeCall_at(address address) { assert(nativeInstruction_at(address)->is_call() || (!VM_Version::supports_movw() && nativeInstruction_at(address)->is_jump()), "must be"); return (NativeCall*)address; } inline NativeCall* nativeCall_before(address return_address) { return (NativeCall *) rawNativeCall_before(return_address); } #endif // CPU_ARM_NATIVEINST_ARM_32_HPP