/* * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP #define SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP #include "runtime/atomic.inline.hpp" #include "runtime/os.hpp" #include "services/memTracker.hpp" // Explicit C-heap memory management void trace_heap_malloc(size_t size, const char* name, void *p); void trace_heap_free(void *p); #ifndef PRODUCT // Increments unsigned long value for statistics (not atomic on MP). inline void inc_stat_counter(volatile julong* dest, julong add_value) { #if defined(SPARC) || defined(X86) // Sparc and X86 have atomic jlong (8 bytes) instructions julong value = Atomic::load((volatile jlong*)dest); value += add_value; Atomic::store((jlong)value, (volatile jlong*)dest); #else // possible word-tearing during load/store *dest += add_value; #endif } #endif // allocate using malloc; will fail if no memory available inline char* AllocateHeap(size_t size, MEMFLAGS flags, const NativeCallStack& stack, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) { char* p = (char*) os::malloc(size, flags, stack); #ifdef ASSERT if (PrintMallocFree) trace_heap_malloc(size, "AllocateHeap", p); #endif if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) { vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "AllocateHeap"); } return p; } inline char* AllocateHeap(size_t size, MEMFLAGS flags, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) { return AllocateHeap(size, flags, CURRENT_PC, alloc_failmode); } inline char* ReallocateHeap(char *old, size_t size, MEMFLAGS flag, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) { char* p = (char*) os::realloc(old, size, flag, CURRENT_PC); #ifdef ASSERT if (PrintMallocFree) trace_heap_malloc(size, "ReallocateHeap", p); #endif if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) { vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "ReallocateHeap"); } return p; } inline void FreeHeap(void* p, MEMFLAGS memflags = mtInternal) { #ifdef ASSERT if (PrintMallocFree) trace_heap_free(p); #endif os::free(p, memflags); } template void* CHeapObj::operator new(size_t size, const NativeCallStack& stack) throw() { void* p = (void*)AllocateHeap(size, F, stack); #ifdef ASSERT if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p); #endif return p; } template void* CHeapObj::operator new(size_t size) throw() { return CHeapObj::operator new(size, CALLER_PC); } template void* CHeapObj::operator new (size_t size, const std::nothrow_t& nothrow_constant, const NativeCallStack& stack) throw() { void* p = (void*)AllocateHeap(size, F, stack, AllocFailStrategy::RETURN_NULL); #ifdef ASSERT if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p); #endif return p; } template void* CHeapObj::operator new (size_t size, const std::nothrow_t& nothrow_constant) throw() { return CHeapObj::operator new(size, nothrow_constant, CALLER_PC); } template void* CHeapObj::operator new [](size_t size, const NativeCallStack& stack) throw() { return CHeapObj::operator new(size, stack); } template void* CHeapObj::operator new [](size_t size) throw() { return CHeapObj::operator new(size, CALLER_PC); } template void* CHeapObj::operator new [](size_t size, const std::nothrow_t& nothrow_constant, const NativeCallStack& stack) throw() { return CHeapObj::operator new(size, nothrow_constant, stack); } template void* CHeapObj::operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() { return CHeapObj::operator new(size, nothrow_constant, CALLER_PC); } template void CHeapObj::operator delete(void* p){ FreeHeap(p, F); } template void CHeapObj::operator delete [](void* p){ FreeHeap(p, F); } template char* ArrayAllocator::allocate_inner(size_t &size, bool &use_malloc) { char* addr = NULL; if (use_malloc) { addr = AllocateHeap(size, F); if (addr == NULL && size >= (size_t)os::vm_allocation_granularity()) { // malloc failed let's try with mmap instead use_malloc = false; } else { return addr; } } int alignment = os::vm_allocation_granularity(); size = align_size_up(size, alignment); addr = os::reserve_memory(size, NULL, alignment, F); if (addr == NULL) { vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "Allocator (reserve)"); } os::commit_memory_or_exit(addr, size, !ExecMem, "Allocator (commit)"); return addr; } template E* ArrayAllocator::allocate(size_t length) { assert(_addr == NULL, "Already in use"); _size = sizeof(E) * length; _use_malloc = should_use_malloc(_size); _addr = allocate_inner(_size, _use_malloc); return (E*)_addr; } template E* ArrayAllocator::reallocate(size_t new_length) { size_t new_size = sizeof(E) * new_length; bool use_malloc = should_use_malloc(new_size); char* new_addr = allocate_inner(new_size, use_malloc); memcpy(new_addr, _addr, MIN2(new_size, _size)); free(); _size = new_size; _use_malloc = use_malloc; _addr = new_addr; return (E*)new_addr; } template void ArrayAllocator::free() { if (_addr != NULL) { if (_use_malloc) { FreeHeap(_addr, F); } else { os::release_memory(_addr, _size); } _addr = NULL; } } #endif // SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP