/* * Copyright (c) 2018, 2024, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shared/bufferNode.hpp" #include "memory/allocation.hpp" #include "runtime/atomic.hpp" #include "runtime/interfaceSupport.inline.hpp" #include "runtime/semaphore.inline.hpp" #include "runtime/thread.hpp" #include "utilities/globalCounter.inline.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/ostream.hpp" #include "threadHelper.inline.hpp" #include "unittest.hpp" class BufferNode::TestSupport : AllStatic { public: static bool try_transfer_pending(Allocator* allocator) { return allocator->_free_list.try_transfer_pending(); } class CompletedList; class AllocatorThread; class ProcessorThread; }; typedef BufferNode::TestSupport::CompletedList CompletedList; typedef BufferNode::TestSupport::AllocatorThread AllocatorThread; typedef BufferNode::TestSupport::ProcessorThread ProcessorThread; // Some basic testing of BufferNode::Allocator. TEST_VM(BufferNodeAllocatorTest, test) { const size_t buffer_capacity = 256; BufferNode::Allocator allocator("Test Buffer Allocator", buffer_capacity); ASSERT_EQ(buffer_capacity, allocator.buffer_capacity()); // Allocate some new nodes for use in testing. BufferNode* nodes[10] = {}; const size_t node_count = ARRAY_SIZE(nodes); for (size_t i = 0; i < node_count; ++i) { ASSERT_EQ(0u, allocator.free_count()); nodes[i] = allocator.allocate(); ASSERT_EQ(nullptr, nodes[i]->next()); } // Release the nodes, adding them to the allocator's free list. for (size_t i = 0; i < node_count; ++i) { allocator.release(nodes[i]); } ASSERT_TRUE(BufferNode::TestSupport::try_transfer_pending(&allocator)); ASSERT_EQ(node_count, allocator.free_count()); // Allocate nodes from the free list. for (size_t i = 0; i < node_count; ++i) { size_t j = node_count - i; ASSERT_EQ(nodes[j - 1], allocator.allocate()); } ASSERT_EQ(0u, allocator.free_count()); // Release nodes back to the free list. for (size_t i = 0; i < node_count; ++i) { allocator.release(nodes[i]); } ASSERT_TRUE(BufferNode::TestSupport::try_transfer_pending(&allocator)); ASSERT_EQ(node_count, allocator.free_count()); } // Stress test with lock-free allocator and completed buffer list. // Completed buffer list pop avoids ABA by also being in a critical // section that is synchronized by the allocator's release. class BufferNode::TestSupport::CompletedList { BufferNode::Stack _completed_list; public: CompletedList() : _completed_list() {} ~CompletedList() { assert(_completed_list.empty(), "completed list not empty"); } void push(BufferNode* node) { assert(node != nullptr, "precondition"); _completed_list.push(*node); } BufferNode* pop() { GlobalCounter::CriticalSection cs(Thread::current()); return _completed_list.pop(); } }; // Simulate a mutator thread, allocating buffers and adding them to // the completed buffer list. class BufferNode::TestSupport::AllocatorThread : public JavaTestThread { BufferNode::Allocator* _allocator; CompletedList* _cbl; volatile size_t* _total_allocations; volatile bool* _continue_running; size_t _allocations; public: AllocatorThread(Semaphore* post, BufferNode::Allocator* allocator, CompletedList* cbl, volatile size_t* total_allocations, volatile bool* continue_running) : JavaTestThread(post), _allocator(allocator), _cbl(cbl), _total_allocations(total_allocations), _continue_running(continue_running), _allocations(0) {} virtual void main_run() { while (Atomic::load_acquire(_continue_running)) { BufferNode* node = _allocator->allocate(); _cbl->push(node); ++_allocations; ThreadBlockInVM tbiv(this); // Safepoint check. } tty->print_cr("allocations: " SIZE_FORMAT, _allocations); Atomic::add(_total_allocations, _allocations); } }; // Simulate a GC thread, taking buffers from the completed buffer list // and returning them to the allocator. class BufferNode::TestSupport::ProcessorThread : public JavaTestThread { BufferNode::Allocator* _allocator; CompletedList* _cbl; volatile bool* _continue_running; public: ProcessorThread(Semaphore* post, BufferNode::Allocator* allocator, CompletedList* cbl, volatile bool* continue_running) : JavaTestThread(post), _allocator(allocator), _cbl(cbl), _continue_running(continue_running) {} virtual void main_run() { bool shutdown_requested = false; while (true) { BufferNode* node = _cbl->pop(); if (node != nullptr) { _allocator->release(node); } else if (shutdown_requested) { return; } else if (!Atomic::load_acquire(_continue_running)) { // To avoid a race that could leave buffers in the list after this // thread has shut down, continue processing until the list is empty // *after* the shut down request has been received. shutdown_requested = true; } ThreadBlockInVM tbiv(this); // Safepoint check. } } }; static void run_test(BufferNode::Allocator* allocator, CompletedList* cbl) { // deallocation is slower than allocation, so lets create // more deallocation threads to prevent too large buildup of // free nodes (footprint) constexpr uint num_allocator_threads = 4; constexpr uint num_processor_threads = 6; constexpr uint milliseconds_to_run = 1000; Semaphore post; volatile size_t total_allocations = 0; volatile bool allocator_running = true; volatile bool processor_running = true; ProcessorThread* proc_threads[num_processor_threads] = {}; for (uint i = 0; i < num_processor_threads; ++i) { proc_threads[i] = new ProcessorThread(&post, allocator, cbl, &processor_running); proc_threads[i]->doit(); } AllocatorThread* alloc_threads[num_allocator_threads] = {}; for (uint i = 0; i < num_allocator_threads; ++i) { alloc_threads[i] = new AllocatorThread(&post, allocator, cbl, &total_allocations, &allocator_running); alloc_threads[i]->doit(); } JavaThread* this_thread = JavaThread::current(); tty->print_cr("Stressing allocator for %u ms", milliseconds_to_run); { ThreadInVMfromNative invm(this_thread); this_thread->sleep(milliseconds_to_run); } Atomic::release_store(&allocator_running, false); for (uint i = 0; i < num_allocator_threads; ++i) { ThreadInVMfromNative invm(this_thread); post.wait_with_safepoint_check(this_thread); } Atomic::release_store(&processor_running, false); for (uint i = 0; i < num_processor_threads; ++i) { ThreadInVMfromNative invm(this_thread); post.wait_with_safepoint_check(this_thread); } ASSERT_TRUE(BufferNode::TestSupport::try_transfer_pending(allocator)); tty->print_cr("total allocations: " SIZE_FORMAT, total_allocations); tty->print_cr("allocator free count: " SIZE_FORMAT, allocator->free_count()); } TEST_VM(BufferNodeAllocatorTest, stress_free_list_allocator) { const size_t buffer_capacity = DEFAULT_PADDING_SIZE / sizeof(void*); BufferNode::Allocator allocator("Test Allocator", buffer_capacity); CompletedList completed; run_test(&allocator, &completed); }