/* * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ # include "incls/_precompiled.incl" # include "incls/_numberSeq.cpp.incl" AbsSeq::AbsSeq(double alpha) : _num(0), _sum(0.0), _sum_of_squares(0.0), _davg(0.0), _dvariance(0.0), _alpha(alpha) { } void AbsSeq::add(double val) { if (_num == 0) { // if the sequence is empty, the davg is the same as the value _davg = val; // and the variance is 0 _dvariance = 0.0; } else { // otherwise, calculate both _davg = (1.0 - _alpha) * val + _alpha * _davg; double diff = val - _davg; _dvariance = (1.0 - _alpha) * diff * diff + _alpha * _dvariance; } } double AbsSeq::avg() const { if (_num == 0) return 0.0; else return _sum / total(); } double AbsSeq::variance() const { if (_num <= 1) return 0.0; double x_bar = avg(); double result = _sum_of_squares / total() - x_bar * x_bar; if (result < 0.0) { // due to loss-of-precision errors, the variance might be negative // by a small bit // guarantee(-0.1 < result && result < 0.0, // "if variance is negative, it should be very small"); result = 0.0; } return result; } double AbsSeq::sd() const { double var = variance(); guarantee( var >= 0.0, "variance should not be negative" ); return sqrt(var); } double AbsSeq::davg() const { return _davg; } double AbsSeq::dvariance() const { if (_num <= 1) return 0.0; double result = _dvariance; if (result < 0.0) { // due to loss-of-precision errors, the variance might be negative // by a small bit guarantee(-0.1 < result && result < 0.0, "if variance is negative, it should be very small"); result = 0.0; } return result; } double AbsSeq::dsd() const { double var = dvariance(); guarantee( var >= 0.0, "variance should not be negative" ); return sqrt(var); } NumberSeq::NumberSeq(double alpha) : AbsSeq(alpha), _maximum(0.0), _last(0.0) { } bool NumberSeq::check_nums(NumberSeq *total, int n, NumberSeq **parts) { for (int i = 0; i < n; ++i) { if (parts[i] != NULL && total->num() != parts[i]->num()) return false; } return true; } NumberSeq::NumberSeq(NumberSeq *total, int n, NumberSeq **parts) { guarantee(check_nums(total, n, parts), "all seq lengths should match"); double sum = total->sum(); for (int i = 0; i < n; ++i) { if (parts[i] != NULL) sum -= parts[i]->sum(); } _num = total->num(); _sum = sum; // we do not calculate these... _sum_of_squares = -1.0; _maximum = -1.0; _davg = -1.0; _dvariance = -1.0; } void NumberSeq::add(double val) { AbsSeq::add(val); _last = val; if (_num == 0) { _maximum = val; } else { if (val > _maximum) _maximum = val; } _sum += val; _sum_of_squares += val * val; ++_num; } TruncatedSeq::TruncatedSeq(int length, double alpha): AbsSeq(alpha), _length(length), _next(0) { _sequence = NEW_C_HEAP_ARRAY(double, _length); for (int i = 0; i < _length; ++i) _sequence[i] = 0.0; } void TruncatedSeq::add(double val) { AbsSeq::add(val); // get the oldest value in the sequence... double old_val = _sequence[_next]; // ...remove it from the sum and sum of squares _sum -= old_val; _sum_of_squares -= old_val * old_val; // ...and update them with the new value _sum += val; _sum_of_squares += val * val; // now replace the old value with the new one _sequence[_next] = val; _next = (_next + 1) % _length; // only increase it if the buffer is not full if (_num < _length) ++_num; guarantee( variance() > -1.0, "variance should be >= 0" ); } // can't easily keep track of this incrementally... double TruncatedSeq::maximum() const { if (_num == 0) return 0.0; double ret = _sequence[0]; for (int i = 1; i < _num; ++i) { double val = _sequence[i]; if (val > ret) ret = val; } return ret; } double TruncatedSeq::last() const { if (_num == 0) return 0.0; unsigned last_index = (_next + _length - 1) % _length; return _sequence[last_index]; } double TruncatedSeq::oldest() const { if (_num == 0) return 0.0; else if (_num < _length) // index 0 always oldest value until the array is full return _sequence[0]; else { // since the array is full, _next is over the oldest value return _sequence[_next]; } } double TruncatedSeq::predict_next() const { if (_num == 0) return 0.0; double num = (double) _num; double x_squared_sum = 0.0; double x_sum = 0.0; double y_sum = 0.0; double xy_sum = 0.0; double x_avg = 0.0; double y_avg = 0.0; int first = (_next + _length - _num) % _length; for (int i = 0; i < _num; ++i) { double x = (double) i; double y = _sequence[(first + i) % _length]; x_squared_sum += x * x; x_sum += x; y_sum += y; xy_sum += x * y; } x_avg = x_sum / num; y_avg = y_sum / num; double Sxx = x_squared_sum - x_sum * x_sum / num; double Sxy = xy_sum - x_sum * y_sum / num; double b1 = Sxy / Sxx; double b0 = y_avg - b1 * x_avg; return b0 + b1 * num; }