/* * Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1ConcurrentRefine.hpp" #include "gc/g1/g1ConcurrentRefineThread.hpp" #include "gc/g1/g1DirtyCardQueue.hpp" #include "gc/g1/g1RemSet.hpp" #include "gc/g1/g1RemSetSummary.hpp" #include "gc/g1/g1YoungRemSetSamplingThread.hpp" #include "gc/g1/heapRegion.hpp" #include "gc/g1/heapRegionRemSet.hpp" #include "memory/allocation.inline.hpp" #include "runtime/thread.inline.hpp" class GetRSThreadVTimeClosure : public ThreadClosure { private: G1RemSetSummary* _summary; uint _counter; public: GetRSThreadVTimeClosure(G1RemSetSummary * summary) : ThreadClosure(), _summary(summary), _counter(0) { assert(_summary != NULL, "just checking"); } virtual void do_thread(Thread* t) { G1ConcurrentRefineThread* crt = (G1ConcurrentRefineThread*) t; _summary->set_rs_thread_vtime(_counter, crt->vtime_accum()); _counter++; } }; void G1RemSetSummary::update() { _num_conc_refined_cards = _rem_set->num_conc_refined_cards(); G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set(); _num_processed_buf_mutator = dcqs.processed_buffers_mut(); _num_processed_buf_rs_threads = dcqs.processed_buffers_rs_thread(); _num_coarsenings = HeapRegionRemSet::n_coarsenings(); G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1ConcurrentRefine* cg1r = g1h->concurrent_refine(); if (_rs_threads_vtimes != NULL) { GetRSThreadVTimeClosure p(this); cg1r->threads_do(&p); } set_sampling_thread_vtime(g1h->sampling_thread()->vtime_accum()); } void G1RemSetSummary::set_rs_thread_vtime(uint thread, double value) { assert(_rs_threads_vtimes != NULL, "just checking"); assert(thread < _num_vtimes, "just checking"); _rs_threads_vtimes[thread] = value; } double G1RemSetSummary::rs_thread_vtime(uint thread) const { assert(_rs_threads_vtimes != NULL, "just checking"); assert(thread < _num_vtimes, "just checking"); return _rs_threads_vtimes[thread]; } G1RemSetSummary::G1RemSetSummary() : _rem_set(NULL), _num_conc_refined_cards(0), _num_processed_buf_mutator(0), _num_processed_buf_rs_threads(0), _num_coarsenings(0), _num_vtimes(G1ConcurrentRefine::max_num_threads()), _rs_threads_vtimes(NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC)), _sampling_thread_vtime(0.0f) { memset(_rs_threads_vtimes, 0, sizeof(double) * _num_vtimes); } G1RemSetSummary::G1RemSetSummary(G1RemSet* rem_set) : _rem_set(rem_set), _num_conc_refined_cards(0), _num_processed_buf_mutator(0), _num_processed_buf_rs_threads(0), _num_coarsenings(0), _num_vtimes(G1ConcurrentRefine::max_num_threads()), _rs_threads_vtimes(NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC)), _sampling_thread_vtime(0.0f) { update(); } G1RemSetSummary::~G1RemSetSummary() { if (_rs_threads_vtimes) { FREE_C_HEAP_ARRAY(double, _rs_threads_vtimes); } } void G1RemSetSummary::set(G1RemSetSummary* other) { assert(other != NULL, "just checking"); assert(_num_vtimes == other->_num_vtimes, "just checking"); _num_conc_refined_cards = other->num_conc_refined_cards(); _num_processed_buf_mutator = other->num_processed_buf_mutator(); _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads(); _num_coarsenings = other->_num_coarsenings; memcpy(_rs_threads_vtimes, other->_rs_threads_vtimes, sizeof(double) * _num_vtimes); set_sampling_thread_vtime(other->sampling_thread_vtime()); } void G1RemSetSummary::subtract_from(G1RemSetSummary* other) { assert(other != NULL, "just checking"); assert(_num_vtimes == other->_num_vtimes, "just checking"); _num_conc_refined_cards = other->num_conc_refined_cards() - _num_conc_refined_cards; _num_processed_buf_mutator = other->num_processed_buf_mutator() - _num_processed_buf_mutator; _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads() - _num_processed_buf_rs_threads; _num_coarsenings = other->num_coarsenings() - _num_coarsenings; for (uint i = 0; i < _num_vtimes; i++) { set_rs_thread_vtime(i, other->rs_thread_vtime(i) - rs_thread_vtime(i)); } _sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime; } class RegionTypeCounter { private: const char* _name; size_t _rs_mem_size; size_t _cards_occupied; size_t _amount; size_t _code_root_mem_size; size_t _code_root_elems; double rs_mem_size_percent_of(size_t total) { return percent_of(_rs_mem_size, total); } double cards_occupied_percent_of(size_t total) { return percent_of(_cards_occupied, total); } double code_root_mem_size_percent_of(size_t total) { return percent_of(_code_root_mem_size, total); } double code_root_elems_percent_of(size_t total) { return percent_of(_code_root_elems, total); } size_t amount() const { return _amount; } public: RegionTypeCounter(const char* name) : _name(name), _rs_mem_size(0), _cards_occupied(0), _amount(0), _code_root_mem_size(0), _code_root_elems(0) { } void add(size_t rs_mem_size, size_t cards_occupied, size_t code_root_mem_size, size_t code_root_elems) { _rs_mem_size += rs_mem_size; _cards_occupied += cards_occupied; _code_root_mem_size += code_root_mem_size; _code_root_elems += code_root_elems; _amount++; } size_t rs_mem_size() const { return _rs_mem_size; } size_t cards_occupied() const { return _cards_occupied; } size_t code_root_mem_size() const { return _code_root_mem_size; } size_t code_root_elems() const { return _code_root_elems; } void print_rs_mem_info_on(outputStream * out, size_t total) { out->print_cr(" " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions", byte_size_in_proper_unit(rs_mem_size()), proper_unit_for_byte_size(rs_mem_size()), rs_mem_size_percent_of(total), amount(), _name); } void print_cards_occupied_info_on(outputStream * out, size_t total) { out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) entries by " SIZE_FORMAT " %s regions", cards_occupied(), cards_occupied_percent_of(total), amount(), _name); } void print_code_root_mem_info_on(outputStream * out, size_t total) { out->print_cr(" " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions", byte_size_in_proper_unit(code_root_mem_size()), proper_unit_for_byte_size(code_root_mem_size()), code_root_mem_size_percent_of(total), amount(), _name); } void print_code_root_elems_info_on(outputStream * out, size_t total) { out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) elements by " SIZE_FORMAT " %s regions", code_root_elems(), code_root_elems_percent_of(total), amount(), _name); } }; class HRRSStatsIter: public HeapRegionClosure { private: RegionTypeCounter _young; RegionTypeCounter _humongous; RegionTypeCounter _free; RegionTypeCounter _old; RegionTypeCounter _archive; RegionTypeCounter _all; size_t _max_rs_mem_sz; HeapRegion* _max_rs_mem_sz_region; size_t total_rs_mem_sz() const { return _all.rs_mem_size(); } size_t total_cards_occupied() const { return _all.cards_occupied(); } size_t max_rs_mem_sz() const { return _max_rs_mem_sz; } HeapRegion* max_rs_mem_sz_region() const { return _max_rs_mem_sz_region; } size_t _max_code_root_mem_sz; HeapRegion* _max_code_root_mem_sz_region; size_t total_code_root_mem_sz() const { return _all.code_root_mem_size(); } size_t total_code_root_elems() const { return _all.code_root_elems(); } size_t max_code_root_mem_sz() const { return _max_code_root_mem_sz; } HeapRegion* max_code_root_mem_sz_region() const { return _max_code_root_mem_sz_region; } public: HRRSStatsIter() : _young("Young"), _humongous("Humongous"), _free("Free"), _old("Old"), _archive("Archive"), _all("All"), _max_rs_mem_sz(0), _max_rs_mem_sz_region(NULL), _max_code_root_mem_sz(0), _max_code_root_mem_sz_region(NULL) {} bool do_heap_region(HeapRegion* r) { HeapRegionRemSet* hrrs = r->rem_set(); // HeapRegionRemSet::mem_size() includes the // size of the strong code roots size_t rs_mem_sz = hrrs->mem_size(); if (rs_mem_sz > _max_rs_mem_sz) { _max_rs_mem_sz = rs_mem_sz; _max_rs_mem_sz_region = r; } size_t occupied_cards = hrrs->occupied(); size_t code_root_mem_sz = hrrs->strong_code_roots_mem_size(); if (code_root_mem_sz > max_code_root_mem_sz()) { _max_code_root_mem_sz = code_root_mem_sz; _max_code_root_mem_sz_region = r; } size_t code_root_elems = hrrs->strong_code_roots_list_length(); RegionTypeCounter* current = NULL; if (r->is_free()) { current = &_free; } else if (r->is_young()) { current = &_young; } else if (r->is_humongous()) { current = &_humongous; } else if (r->is_old()) { current = &_old; } else if (r->is_archive()) { current = &_archive; } else { ShouldNotReachHere(); } current->add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems); _all.add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems); return false; } void print_summary_on(outputStream* out) { RegionTypeCounter* counters[] = { &_young, &_humongous, &_free, &_old, &_archive, NULL }; out->print_cr(" Current rem set statistics"); out->print_cr(" Total per region rem sets sizes = " SIZE_FORMAT "%s." " Max = " SIZE_FORMAT "%s.", byte_size_in_proper_unit(total_rs_mem_sz()), proper_unit_for_byte_size(total_rs_mem_sz()), byte_size_in_proper_unit(max_rs_mem_sz()), proper_unit_for_byte_size(max_rs_mem_sz())); for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { (*current)->print_rs_mem_info_on(out, total_rs_mem_sz()); } out->print_cr(" Static structures = " SIZE_FORMAT "%s," " free_lists = " SIZE_FORMAT "%s.", byte_size_in_proper_unit(HeapRegionRemSet::static_mem_size()), proper_unit_for_byte_size(HeapRegionRemSet::static_mem_size()), byte_size_in_proper_unit(HeapRegionRemSet::fl_mem_size()), proper_unit_for_byte_size(HeapRegionRemSet::fl_mem_size())); out->print_cr(" " SIZE_FORMAT " occupied cards represented.", total_cards_occupied()); for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { (*current)->print_cards_occupied_info_on(out, total_cards_occupied()); } // Largest sized rem set region statistics HeapRegionRemSet* rem_set = max_rs_mem_sz_region()->rem_set(); out->print_cr(" Region with largest rem set = " HR_FORMAT ", " "size = " SIZE_FORMAT "%s, occupied = " SIZE_FORMAT "%s.", HR_FORMAT_PARAMS(max_rs_mem_sz_region()), byte_size_in_proper_unit(rem_set->mem_size()), proper_unit_for_byte_size(rem_set->mem_size()), byte_size_in_proper_unit(rem_set->occupied()), proper_unit_for_byte_size(rem_set->occupied())); // Strong code root statistics HeapRegionRemSet* max_code_root_rem_set = max_code_root_mem_sz_region()->rem_set(); out->print_cr(" Total heap region code root sets sizes = " SIZE_FORMAT "%s." " Max = " SIZE_FORMAT "%s.", byte_size_in_proper_unit(total_code_root_mem_sz()), proper_unit_for_byte_size(total_code_root_mem_sz()), byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()), proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size())); for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { (*current)->print_code_root_mem_info_on(out, total_code_root_mem_sz()); } out->print_cr(" " SIZE_FORMAT " code roots represented.", total_code_root_elems()); for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { (*current)->print_code_root_elems_info_on(out, total_code_root_elems()); } out->print_cr(" Region with largest amount of code roots = " HR_FORMAT ", " "size = " SIZE_FORMAT "%s, num_elems = " SIZE_FORMAT ".", HR_FORMAT_PARAMS(max_code_root_mem_sz_region()), byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()), proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size()), max_code_root_rem_set->strong_code_roots_list_length()); } }; void G1RemSetSummary::print_on(outputStream* out) { out->print_cr(" Recent concurrent refinement statistics"); out->print_cr(" Processed " SIZE_FORMAT " cards concurrently", num_conc_refined_cards()); out->print_cr(" Of " SIZE_FORMAT " completed buffers:", num_processed_buf_total()); out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) by concurrent RS threads.", num_processed_buf_total(), percent_of(num_processed_buf_rs_threads(), num_processed_buf_total())); out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) by mutator threads.", num_processed_buf_mutator(), percent_of(num_processed_buf_mutator(), num_processed_buf_total())); out->print_cr(" Did " SIZE_FORMAT " coarsenings.", num_coarsenings()); out->print_cr(" Concurrent RS threads times (s)"); out->print(" "); for (uint i = 0; i < _num_vtimes; i++) { out->print(" %5.2f", rs_thread_vtime(i)); } out->cr(); out->print_cr(" Concurrent sampling threads times (s)"); out->print_cr(" %5.2f", sampling_thread_vtime()); HRRSStatsIter blk; G1CollectedHeap::heap()->heap_region_iterate(&blk); blk.print_summary_on(out); }