/* * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @bug 4826774 * @summary Numerical tests for hexadecimal inputs to parseDouble, parseFloat * @author Joseph D. Darcy */ import java.util.regex.*; public class ParseHexFloatingPoint { private ParseHexFloatingPoint(){} public static final double infinityD = Double.POSITIVE_INFINITY; public static final double NaND = Double.NaN; static int test(String testName, String input, double result, double expected) { int failures =0; if (Double.compare(result, expected) != 0 ) { System.err.println("Failure for " + testName + ": For input " + input + " expected " + expected + " got " + result + "."); } return failures; } static int testCase(String input, double expected) { int failures =0; // Try different combination of letter components input = input.toLowerCase(java.util.Locale.US); String [] suffices = {"", "f", "F", "d", "D"}; String [] signs = {"", "-", "+"}; for(int i = 0; i < 2; i++) { String s1 = input; if(i == 1) s1 = s1.replace('x', 'X'); for(int j = 0; j < 2; j++) { String s2 = s1; if(j == 1) s2 = s2.replace('p', 'P'); for(int k = 0; k < 2; k++) { String s3 = s2; if(k == 1) s3 = upperCaseHex(s3); for(int m = 0; m < suffices.length; m++) { String s4 = s3 + suffices[m]; for(int n = 0; n < signs.length; n++) { String s5 = signs[n] + s4; double result = Double.parseDouble(s5); failures += test("Double.parseDouble", s5, result, (signs[n].equals("-") ? -expected: expected)); } } } } } return failures; } static String upperCaseHex(String s) { return s.replace('a', 'A').replace('b', 'B').replace('c', 'C'). replace('d', 'D').replace('e','E').replace('f', 'F'); } /* * Test easy and tricky double rounding cases. */ static int doubleTests() { /* * A String, double pair */ class PairSD { public String s; public double d; PairSD(String s, double d) { this.s = s; this.d = d; } } int failures = 0; // Hex strings that convert to three; test basic functionality // of significand and exponent shift adjusts along with the // no-op of adding leading zeros. These cases don't exercise // the rounding code. String leadingZeros = "0x0000000000000000000"; String [] threeTests = { "0x.003p12", "0x.006p11", "0x.00cp10", "0x.018p9", "0x.3p4", "0x.6p3", "0x.cp2", "0x1.8p1", "0x3p0", "0x6.0p-1", "0xc.0p-2", "0x18.0p-3", "0x3000000p-24", "0x3.0p0", "0x3.000000p0", }; for(int i=0; i < threeTests.length; i++) { String input = threeTests[i]; failures += testCase(input, 3.0); input.replaceFirst("^0x", leadingZeros); failures += testCase(input, 3.0); } long bigExponents [] = { 2*Double.MAX_EXPONENT, 2*Double.MIN_EXPONENT, (long)Integer.MAX_VALUE-1, (long)Integer.MAX_VALUE, (long)Integer.MAX_VALUE+1, (long)Integer.MIN_VALUE-1, (long)Integer.MIN_VALUE, (long)Integer.MIN_VALUE+1, Long.MAX_VALUE-1, Long.MAX_VALUE, Long.MIN_VALUE+1, Long.MIN_VALUE, }; // Test zero significand with large exponents. for(int i = 0; i < bigExponents.length; i++) { failures += testCase("0x0.0p"+Long.toString(bigExponents[i]) , 0.0); } // Test nonzero significand with large exponents. for(int i = 0; i < bigExponents.length; i++) { long exponent = bigExponents[i]; failures += testCase("0x10000.0p"+Long.toString(exponent) , (exponent <0?0.0:infinityD)); } // Test significands with different lengths and bit patterns. { long signif = 0; for(int i = 1; i <= 0xe; i++) { signif = (signif <<4) | (long)i; failures += testCase("0x"+Long.toHexString(signif)+"p0", signif); } } PairSD [] testCases = { new PairSD("0x0.0p0", 0.0/16.0), new PairSD("0x0.1p0", 1.0/16.0), new PairSD("0x0.2p0", 2.0/16.0), new PairSD("0x0.3p0", 3.0/16.0), new PairSD("0x0.4p0", 4.0/16.0), new PairSD("0x0.5p0", 5.0/16.0), new PairSD("0x0.6p0", 6.0/16.0), new PairSD("0x0.7p0", 7.0/16.0), new PairSD("0x0.8p0", 8.0/16.0), new PairSD("0x0.9p0", 9.0/16.0), new PairSD("0x0.ap0", 10.0/16.0), new PairSD("0x0.bp0", 11.0/16.0), new PairSD("0x0.cp0", 12.0/16.0), new PairSD("0x0.dp0", 13.0/16.0), new PairSD("0x0.ep0", 14.0/16.0), new PairSD("0x0.fp0", 15.0/16.0), // Half-way case between zero and MIN_VALUE rounds down to // zero new PairSD("0x1.0p-1075", 0.0), // Slighly more than half-way case between zero and // MIN_VALUES rounds up to zero. new PairSD("0x1.1p-1075", Double.MIN_VALUE), new PairSD("0x1.000000000001p-1075", Double.MIN_VALUE), new PairSD("0x1.000000000000001p-1075", Double.MIN_VALUE), // More subnormal rounding tests new PairSD("0x0.fffffffffffff7fffffp-1022", Math.nextDown(Double.MIN_NORMAL)), new PairSD("0x0.fffffffffffff8p-1022", Double.MIN_NORMAL), new PairSD("0x0.fffffffffffff800000001p-1022",Double.MIN_NORMAL), new PairSD("0x0.fffffffffffff80000000000000001p-1022",Double.MIN_NORMAL), new PairSD("0x1.0p-1022", Double.MIN_NORMAL), // Large value and overflow rounding tests new PairSD("0x1.fffffffffffffp1023", Double.MAX_VALUE), new PairSD("0x1.fffffffffffff0000000p1023", Double.MAX_VALUE), new PairSD("0x1.fffffffffffff4p1023", Double.MAX_VALUE), new PairSD("0x1.fffffffffffff7fffffp1023", Double.MAX_VALUE), new PairSD("0x1.fffffffffffff8p1023", infinityD), new PairSD("0x1.fffffffffffff8000001p1023", infinityD), new PairSD("0x1.ffffffffffffep1023", Math.nextDown(Double.MAX_VALUE)), new PairSD("0x1.ffffffffffffe0000p1023", Math.nextDown(Double.MAX_VALUE)), new PairSD("0x1.ffffffffffffe8p1023", Math.nextDown(Double.MAX_VALUE)), new PairSD("0x1.ffffffffffffe7p1023", Math.nextDown(Double.MAX_VALUE)), new PairSD("0x1.ffffffffffffeffffffp1023", Double.MAX_VALUE), new PairSD("0x1.ffffffffffffe8000001p1023", Double.MAX_VALUE), }; for (int i = 0; i < testCases.length; i++) { failures += testCase(testCases[i].s,testCases[i].d); } failures += significandAlignmentTests(); { java.util.Random rand = new java.util.Random(); // Consistency check; double => hexadecimal => double // preserves the original value. for(int i = 0; i < 1000; i++) { double d = rand.nextDouble(); failures += testCase(Double.toHexString(d), d); } } return failures; } /* * Verify rounding works the same regardless of how the * significand is aligned on input. A useful extension could be * to have this sort of test for strings near the overflow * threshold. */ static int significandAlignmentTests() { int failures = 0; // baseSignif * 2^baseExp = nextDown(2.0) long [] baseSignifs = { 0x1ffffffffffffe00L, 0x1fffffffffffff00L }; double [] answers = { Math.nextDown(Math.nextDown(2.0)), Math.nextDown(2.0), 2.0 }; int baseExp = -60; int count = 0; for(int i = 0; i < 2; i++) { for(long j = 0; j <= 0xfL; j++) { for(long k = 0; k <= 8; k+= 4) { // k = {0, 4, 8} long base = baseSignifs[i]; long testValue = base | (j<<4) | k; int offset = 0; // Calculate when significand should be incremented // see table 4.7 in Koren book if ((base & 0x100L) == 0L ) { // lsb is 0 if ( (j >= 8L) && // round is 1 ((j & 0x7L) != 0 || k != 0 ) ) // sticky is 1 offset = 1; } else { // lsb is 1 if (j >= 8L) // round is 1 offset = 1; } double expected = answers[i+offset]; for(int m = -2; m <= 3; m++) { count ++; // Form equal value string and evaluate it String s = "0x" + Long.toHexString((m >=0) ?(testValue<>(-m))) + "p" + (baseExp - m); failures += testCase(s, expected); } } } } return failures; } /* * Test tricky float rounding cases. The code which * reads in a hex string converts the string to a double value. * If a float value is needed, the double value is cast to float. * However, the cast be itself not always guaranteed to return the * right result since: * * 1. hex string => double can discard a sticky bit which would * influence a direct hex string => float conversion. * * 2. hex string => double => float can have a rounding to double * precision which results in a larger float value while a direct * hex string => float conversion would not round up. * * This method includes tests of the latter two possibilities. */ static int floatTests(){ int failures = 0; /* * A String, float pair */ class PairSD { public String s; public float f; PairSD(String s, float f) { this.s = s; this.f = f; } } String [][] roundingTestCases = { // Target float value hard rouding version {"0x1.000000p0", "0x1.0000000000001p0"}, // Try some values that should round up to nextUp(1.0f) {"0x1.000002p0", "0x1.0000010000001p0"}, {"0x1.000002p0", "0x1.00000100000008p0"}, {"0x1.000002p0", "0x1.0000010000000fp0"}, {"0x1.000002p0", "0x1.00000100000001p0"}, {"0x1.000002p0", "0x1.00000100000000000000000000000000000000001p0"}, {"0x1.000002p0", "0x1.0000010000000fp0"}, // Potential double rounding cases {"0x1.000002p0", "0x1.000002fffffffp0"}, {"0x1.000002p0", "0x1.000002fffffff8p0"}, {"0x1.000002p0", "0x1.000002ffffffffp0"}, {"0x1.000002p0", "0x1.000002ffff0ffp0"}, {"0x1.000002p0", "0x1.000002ffff0ff8p0"}, {"0x1.000002p0", "0x1.000002ffff0fffp0"}, {"0x1.000000p0", "0x1.000000fffffffp0"}, {"0x1.000000p0", "0x1.000000fffffff8p0"}, {"0x1.000000p0", "0x1.000000ffffffffp0"}, {"0x1.000000p0", "0x1.000000ffffffep0"}, {"0x1.000000p0", "0x1.000000ffffffe8p0"}, {"0x1.000000p0", "0x1.000000ffffffefp0"}, // Float subnormal cases {"0x0.000002p-126", "0x0.0000010000001p-126"}, {"0x0.000002p-126", "0x0.00000100000000000001p-126"}, {"0x0.000006p-126", "0x0.0000050000001p-126"}, {"0x0.000006p-126", "0x0.00000500000000000001p-126"}, {"0x0.0p-149", "0x0.7ffffffffffffffp-149"}, {"0x1.0p-148", "0x1.3ffffffffffffffp-148"}, {"0x1.cp-147", "0x1.bffffffffffffffp-147"}, {"0x1.fffffcp-127", "0x1.fffffdffffffffp-127"}, }; String [] signs = {"", "-"}; for(int i = 0; i < roundingTestCases.length; i++) { for(int j = 0; j < signs.length; j++) { String expectedIn = signs[j]+roundingTestCases[i][0]; String resultIn = signs[j]+roundingTestCases[i][1]; float expected = Float.parseFloat(expectedIn); float result = Float.parseFloat(resultIn); if( Float.compare(expected, result) != 0) { failures += 1; System.err.println("" + (i+1)); System.err.println("Expected = " + Float.toHexString(expected)); System.err.println("Rounded = " + Float.toHexString(result)); System.err.println("Double = " + Double.toHexString(Double.parseDouble(resultIn))); System.err.println("Input = " + resultIn); System.err.println(""); } } } return failures; } public static void main(String argv[]) { int failures = 0; failures += doubleTests(); failures += floatTests(); if (failures != 0) { throw new RuntimeException("" + failures + " failures while " + "testing hexadecimal floating-point " + "parsing."); } } }