/* * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2018, SAP. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "memory/allocation.inline.hpp" #include "memory/metaspace.hpp" #include "runtime/mutex.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/os.hpp" #include "utilities/align.hpp" #include "utilities/debug.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/ostream.hpp" #include "unittest.hpp" #define NUM_PARALLEL_METASPACES 50 #define MAX_PER_METASPACE_ALLOCATION_WORDSIZE (512 * K) //#define DEBUG_VERBOSE true #ifdef DEBUG_VERBOSE struct chunkmanager_statistics_t { int num_specialized_chunks; int num_small_chunks; int num_medium_chunks; int num_humongous_chunks; }; extern void test_metaspace_retrieve_chunkmanager_statistics(Metaspace::MetadataType mdType, chunkmanager_statistics_t* out); static void print_chunkmanager_statistics(outputStream* st, Metaspace::MetadataType mdType) { chunkmanager_statistics_t stat; test_metaspace_retrieve_chunkmanager_statistics(mdType, &stat); st->print_cr("free chunks: %d / %d / %d / %d", stat.num_specialized_chunks, stat.num_small_chunks, stat.num_medium_chunks, stat.num_humongous_chunks); } #endif struct chunk_geometry_t { size_t specialized_chunk_word_size; size_t small_chunk_word_size; size_t medium_chunk_word_size; }; extern void test_metaspace_retrieve_chunk_geometry(Metaspace::MetadataType mdType, chunk_geometry_t* out); class MetaspaceAllocationTest : public ::testing::Test { protected: struct { size_t allocated; Mutex* lock; ClassLoaderMetaspace* space; bool is_empty() const { return allocated == 0; } bool is_full() const { return allocated >= MAX_PER_METASPACE_ALLOCATION_WORDSIZE; } } _spaces[NUM_PARALLEL_METASPACES]; chunk_geometry_t _chunk_geometry; virtual void SetUp() { ::memset(_spaces, 0, sizeof(_spaces)); test_metaspace_retrieve_chunk_geometry(Metaspace::NonClassType, &_chunk_geometry); } virtual void TearDown() { for (int i = 0; i < NUM_PARALLEL_METASPACES; i ++) { if (_spaces[i].space != NULL) { delete _spaces[i].space; delete _spaces[i].lock; } } } void create_space(int i) { assert(i >= 0 && i < NUM_PARALLEL_METASPACES, "Sanity"); assert(_spaces[i].space == NULL && _spaces[i].allocated == 0, "Sanity"); if (_spaces[i].lock == NULL) { _spaces[i].lock = new Mutex(Monitor::native, "gtest-MetaspaceAllocationTest-lock", false, Monitor::_safepoint_check_never); ASSERT_TRUE(_spaces[i].lock != NULL); } // Let every ~10th space be an anonymous one to test different allocation patterns. const Metaspace::MetaspaceType msType = (os::random() % 100 < 10) ? Metaspace::AnonymousMetaspaceType : Metaspace::StandardMetaspaceType; { // Pull lock during space creation, since this is what happens in the VM too // (see ClassLoaderData::metaspace_non_null(), which we mimick here). MutexLockerEx ml(_spaces[i].lock, Mutex::_no_safepoint_check_flag); _spaces[i].space = new ClassLoaderMetaspace(_spaces[i].lock, msType); } _spaces[i].allocated = 0; ASSERT_TRUE(_spaces[i].space != NULL); } // Returns the index of a random space where index is [0..metaspaces) and which is // empty, non-empty or full. // Returns -1 if no matching space exists. enum fillgrade { fg_empty, fg_non_empty, fg_full }; int get_random_matching_space(int metaspaces, fillgrade fg) { const int start_index = os::random() % metaspaces; int i = start_index; do { if (fg == fg_empty && _spaces[i].is_empty()) { return i; } else if ((fg == fg_full && _spaces[i].is_full()) || (fg == fg_non_empty && !_spaces[i].is_full() && !_spaces[i].is_empty())) { return i; } i ++; if (i == metaspaces) { i = 0; } } while (i != start_index); return -1; } int get_random_emtpy_space(int metaspaces) { return get_random_matching_space(metaspaces, fg_empty); } int get_random_non_emtpy_space(int metaspaces) { return get_random_matching_space(metaspaces, fg_non_empty); } int get_random_full_space(int metaspaces) { return get_random_matching_space(metaspaces, fg_full); } void do_test(Metaspace::MetadataType mdType, int metaspaces, int phases, int allocs_per_phase, float probability_for_large_allocations // 0.0-1.0 ) { // Alternate between breathing in (allocating n blocks for a random Metaspace) and // breathing out (deleting a random Metaspace). The intent is to stress the coalescation // and splitting of free chunks. int phases_done = 0; bool allocating = true; while (phases_done < phases) { bool force_switch = false; if (allocating) { // Allocate space from metaspace, with a preference for completely empty spaces. This // should provide a good mixture of metaspaces in the virtual space. int index = get_random_emtpy_space(metaspaces); if (index == -1) { index = get_random_non_emtpy_space(metaspaces); } if (index == -1) { // All spaces are full, switch to freeing. force_switch = true; } else { // create space if it does not yet exist. if (_spaces[index].space == NULL) { create_space(index); } // Allocate a bunch of blocks from it. Mostly small stuff but mix in large allocations // to force humongous chunk allocations. int allocs_done = 0; while (allocs_done < allocs_per_phase && !_spaces[index].is_full()) { size_t size = 0; int r = os::random() % 1000; if ((float)r < probability_for_large_allocations * 1000.0) { size = (os::random() % _chunk_geometry.medium_chunk_word_size) + _chunk_geometry.medium_chunk_word_size; } else { size = os::random() % 64; } // Note: In contrast to space creation, no need to lock here. ClassLoaderMetaspace::allocate() will lock itself. MetaWord* const p = _spaces[index].space->allocate(size, mdType); if (p == NULL) { // We very probably did hit the metaspace "until-gc" limit. #ifdef DEBUG_VERBOSE tty->print_cr("OOM for " SIZE_FORMAT " words. ", size); #endif // Just switch to deallocation and resume tests. force_switch = true; break; } else { _spaces[index].allocated += size; allocs_done ++; } } } } else { // freeing: find a metaspace and delete it, with preference for completely filled spaces. int index = get_random_full_space(metaspaces); if (index == -1) { index = get_random_non_emtpy_space(metaspaces); } if (index == -1) { force_switch = true; } else { assert(_spaces[index].space != NULL && _spaces[index].allocated > 0, "Sanity"); // Note: do not lock here. In the "wild" (the VM), we do not so either (see ~ClassLoaderData()). delete _spaces[index].space; _spaces[index].space = NULL; _spaces[index].allocated = 0; } } if (force_switch) { allocating = !allocating; } else { // periodically switch between allocating and freeing, but prefer allocation because // we want to intermingle allocations of multiple metaspaces. allocating = os::random() % 5 < 4; } phases_done ++; #ifdef DEBUG_VERBOSE int metaspaces_in_use = 0; size_t total_allocated = 0; for (int i = 0; i < metaspaces; i ++) { if (_spaces[i].allocated > 0) { total_allocated += _spaces[i].allocated; metaspaces_in_use ++; } } tty->print("%u:\tspaces: %d total words: " SIZE_FORMAT "\t\t\t", phases_done, metaspaces_in_use, total_allocated); print_chunkmanager_statistics(tty, mdType); #endif } #ifdef DEBUG_VERBOSE tty->print_cr("Test finished. "); MetaspaceUtils::print_metaspace_map(tty, mdType); print_chunkmanager_statistics(tty, mdType); #endif } }; TEST_F(MetaspaceAllocationTest, chunk_geometry) { ASSERT_GT(_chunk_geometry.specialized_chunk_word_size, (size_t) 0); ASSERT_GT(_chunk_geometry.small_chunk_word_size, _chunk_geometry.specialized_chunk_word_size); ASSERT_EQ(_chunk_geometry.small_chunk_word_size % _chunk_geometry.specialized_chunk_word_size, (size_t)0); ASSERT_GT(_chunk_geometry.medium_chunk_word_size, _chunk_geometry.small_chunk_word_size); ASSERT_EQ(_chunk_geometry.medium_chunk_word_size % _chunk_geometry.small_chunk_word_size, (size_t)0); } TEST_VM_F(MetaspaceAllocationTest, single_space_nonclass) { do_test(Metaspace::NonClassType, 1, 1000, 100, 0); } TEST_VM_F(MetaspaceAllocationTest, single_space_class) { do_test(Metaspace::ClassType, 1, 1000, 100, 0); } TEST_VM_F(MetaspaceAllocationTest, multi_space_nonclass) { do_test(Metaspace::NonClassType, NUM_PARALLEL_METASPACES, 100, 1000, 0.0); } TEST_VM_F(MetaspaceAllocationTest, multi_space_class) { do_test(Metaspace::ClassType, NUM_PARALLEL_METASPACES, 100, 1000, 0.0); } TEST_VM_F(MetaspaceAllocationTest, multi_space_nonclass_2) { // many metaspaces, with humongous chunks mixed in. do_test(Metaspace::NonClassType, NUM_PARALLEL_METASPACES, 100, 1000, .006f); }