/* * Copyright 1999-2009 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ // Thread-Local Edens support # include "incls/_precompiled.incl" # include "incls/_threadLocalAllocBuffer.cpp.incl" // static member initialization unsigned ThreadLocalAllocBuffer::_target_refills = 0; GlobalTLABStats* ThreadLocalAllocBuffer::_global_stats = NULL; void ThreadLocalAllocBuffer::clear_before_allocation() { _slow_refill_waste += (unsigned)remaining(); make_parsable(true); // also retire the TLAB } void ThreadLocalAllocBuffer::accumulate_statistics_before_gc() { global_stats()->initialize(); for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) { thread->tlab().accumulate_statistics(); thread->tlab().initialize_statistics(); } // Publish new stats if some allocation occurred. if (global_stats()->allocation() != 0) { global_stats()->publish(); if (PrintTLAB) { global_stats()->print(); } } } void ThreadLocalAllocBuffer::accumulate_statistics() { size_t capacity = Universe::heap()->tlab_capacity(myThread()) / HeapWordSize; size_t unused = Universe::heap()->unsafe_max_tlab_alloc(myThread()) / HeapWordSize; size_t used = capacity - unused; // Update allocation history if a reasonable amount of eden was allocated. bool update_allocation_history = used > 0.5 * capacity; _gc_waste += (unsigned)remaining(); if (PrintTLAB && (_number_of_refills > 0 || Verbose)) { print_stats("gc"); } if (_number_of_refills > 0) { if (update_allocation_history) { // Average the fraction of eden allocated in a tlab by this // thread for use in the next resize operation. // _gc_waste is not subtracted because it's included in // "used". size_t allocation = _number_of_refills * desired_size(); double alloc_frac = allocation / (double) used; _allocation_fraction.sample(alloc_frac); } global_stats()->update_allocating_threads(); global_stats()->update_number_of_refills(_number_of_refills); global_stats()->update_allocation(_number_of_refills * desired_size()); global_stats()->update_gc_waste(_gc_waste); global_stats()->update_slow_refill_waste(_slow_refill_waste); global_stats()->update_fast_refill_waste(_fast_refill_waste); } else { assert(_number_of_refills == 0 && _fast_refill_waste == 0 && _slow_refill_waste == 0 && _gc_waste == 0, "tlab stats == 0"); } global_stats()->update_slow_allocations(_slow_allocations); } // Fills the current tlab with a dummy filler array to create // an illusion of a contiguous Eden and optionally retires the tlab. // Waste accounting should be done in caller as appropriate; see, // for example, clear_before_allocation(). void ThreadLocalAllocBuffer::make_parsable(bool retire) { if (end() != NULL) { invariants(); CollectedHeap::fill_with_object(top(), hard_end()); if (retire || ZeroTLAB) { // "Reset" the TLAB set_start(NULL); set_top(NULL); set_pf_top(NULL); set_end(NULL); } } assert(!(retire || ZeroTLAB) || (start() == NULL && end() == NULL && top() == NULL), "TLAB must be reset"); } void ThreadLocalAllocBuffer::resize_all_tlabs() { for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) { thread->tlab().resize(); } } void ThreadLocalAllocBuffer::resize() { if (ResizeTLAB) { // Compute the next tlab size using expected allocation amount size_t alloc = (size_t)(_allocation_fraction.average() * (Universe::heap()->tlab_capacity(myThread()) / HeapWordSize)); size_t new_size = alloc / _target_refills; new_size = MIN2(MAX2(new_size, min_size()), max_size()); size_t aligned_new_size = align_object_size(new_size); if (PrintTLAB && Verbose) { gclog_or_tty->print("TLAB new size: thread: " INTPTR_FORMAT " [id: %2d]" " refills %d alloc: %8.6f desired_size: " SIZE_FORMAT " -> " SIZE_FORMAT "\n", myThread(), myThread()->osthread()->thread_id(), _target_refills, _allocation_fraction.average(), desired_size(), aligned_new_size); } set_desired_size(aligned_new_size); set_refill_waste_limit(initial_refill_waste_limit()); } } void ThreadLocalAllocBuffer::initialize_statistics() { _number_of_refills = 0; _fast_refill_waste = 0; _slow_refill_waste = 0; _gc_waste = 0; _slow_allocations = 0; } void ThreadLocalAllocBuffer::fill(HeapWord* start, HeapWord* top, size_t new_size) { _number_of_refills++; if (PrintTLAB && Verbose) { print_stats("fill"); } assert(top <= start + new_size - alignment_reserve(), "size too small"); initialize(start, top, start + new_size - alignment_reserve()); // Reset amount of internal fragmentation set_refill_waste_limit(initial_refill_waste_limit()); } void ThreadLocalAllocBuffer::initialize(HeapWord* start, HeapWord* top, HeapWord* end) { set_start(start); set_top(top); set_pf_top(top); set_end(end); invariants(); } void ThreadLocalAllocBuffer::initialize() { initialize(NULL, // start NULL, // top NULL); // end set_desired_size(initial_desired_size()); // Following check is needed because at startup the main (primordial) // thread is initialized before the heap is. The initialization for // this thread is redone in startup_initialization below. if (Universe::heap() != NULL) { size_t capacity = Universe::heap()->tlab_capacity(myThread()) / HeapWordSize; double alloc_frac = desired_size() * target_refills() / (double) capacity; _allocation_fraction.sample(alloc_frac); } set_refill_waste_limit(initial_refill_waste_limit()); initialize_statistics(); } void ThreadLocalAllocBuffer::startup_initialization() { // Assuming each thread's active tlab is, on average, // 1/2 full at a GC _target_refills = 100 / (2 * TLABWasteTargetPercent); _target_refills = MAX2(_target_refills, (unsigned)1U); _global_stats = new GlobalTLABStats(); // During jvm startup, the main (primordial) thread is initialized // before the heap is initialized. So reinitialize it now. guarantee(Thread::current()->is_Java_thread(), "tlab initialization thread not Java thread"); Thread::current()->tlab().initialize(); if (PrintTLAB && Verbose) { gclog_or_tty->print("TLAB min: " SIZE_FORMAT " initial: " SIZE_FORMAT " max: " SIZE_FORMAT "\n", min_size(), Thread::current()->tlab().initial_desired_size(), max_size()); } } size_t ThreadLocalAllocBuffer::initial_desired_size() { size_t init_sz; if (TLABSize > 0) { init_sz = MIN2(TLABSize / HeapWordSize, max_size()); } else if (global_stats() == NULL) { // Startup issue - main thread initialized before heap initialized. init_sz = min_size(); } else { // Initial size is a function of the average number of allocating threads. unsigned nof_threads = global_stats()->allocating_threads_avg(); init_sz = (Universe::heap()->tlab_capacity(myThread()) / HeapWordSize) / (nof_threads * target_refills()); init_sz = align_object_size(init_sz); init_sz = MIN2(MAX2(init_sz, min_size()), max_size()); } return init_sz; } const size_t ThreadLocalAllocBuffer::max_size() { // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE]. // This restriction could be removed by enabling filling with multiple arrays. // If we compute that the reasonable way as // header_size + ((sizeof(jint) * max_jint) / HeapWordSize) // we'll overflow on the multiply, so we do the divide first. // We actually lose a little by dividing first, // but that just makes the TLAB somewhat smaller than the biggest array, // which is fine, since we'll be able to fill that. size_t unaligned_max_size = typeArrayOopDesc::header_size(T_INT) + sizeof(jint) * ((juint) max_jint / (size_t) HeapWordSize); return align_size_down(unaligned_max_size, MinObjAlignment); } void ThreadLocalAllocBuffer::print_stats(const char* tag) { Thread* thrd = myThread(); size_t waste = _gc_waste + _slow_refill_waste + _fast_refill_waste; size_t alloc = _number_of_refills * _desired_size; double waste_percent = alloc == 0 ? 0.0 : 100.0 * waste / alloc; size_t tlab_used = Universe::heap()->tlab_capacity(thrd) - Universe::heap()->unsafe_max_tlab_alloc(thrd); gclog_or_tty->print("TLAB: %s thread: " INTPTR_FORMAT " [id: %2d]" " desired_size: " SIZE_FORMAT "KB" " slow allocs: %d refill waste: " SIZE_FORMAT "B" " alloc:%8.5f %8.0fKB refills: %d waste %4.1f%% gc: %dB" " slow: %dB fast: %dB\n", tag, thrd, thrd->osthread()->thread_id(), _desired_size / (K / HeapWordSize), _slow_allocations, _refill_waste_limit * HeapWordSize, _allocation_fraction.average(), _allocation_fraction.average() * tlab_used / K, _number_of_refills, waste_percent, _gc_waste * HeapWordSize, _slow_refill_waste * HeapWordSize, _fast_refill_waste * HeapWordSize); } void ThreadLocalAllocBuffer::verify() { HeapWord* p = start(); HeapWord* t = top(); HeapWord* prev_p = NULL; while (p < t) { oop(p)->verify(); prev_p = p; p += oop(p)->size(); } guarantee(p == top(), "end of last object must match end of space"); } Thread* ThreadLocalAllocBuffer::myThread() { return (Thread*)(((char *)this) + in_bytes(start_offset()) - in_bytes(Thread::tlab_start_offset())); } GlobalTLABStats::GlobalTLABStats() : _allocating_threads_avg(TLABAllocationWeight) { initialize(); _allocating_threads_avg.sample(1); // One allocating thread at startup if (UsePerfData) { EXCEPTION_MARK; ResourceMark rm; char* cname = PerfDataManager::counter_name("tlab", "allocThreads"); _perf_allocating_threads = PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_None, CHECK); cname = PerfDataManager::counter_name("tlab", "fills"); _perf_total_refills = PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_None, CHECK); cname = PerfDataManager::counter_name("tlab", "maxFills"); _perf_max_refills = PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_None, CHECK); cname = PerfDataManager::counter_name("tlab", "alloc"); _perf_allocation = PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK); cname = PerfDataManager::counter_name("tlab", "gcWaste"); _perf_gc_waste = PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK); cname = PerfDataManager::counter_name("tlab", "maxGcWaste"); _perf_max_gc_waste = PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK); cname = PerfDataManager::counter_name("tlab", "slowWaste"); _perf_slow_refill_waste = PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK); cname = PerfDataManager::counter_name("tlab", "maxSlowWaste"); _perf_max_slow_refill_waste = PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK); cname = PerfDataManager::counter_name("tlab", "fastWaste"); _perf_fast_refill_waste = PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK); cname = PerfDataManager::counter_name("tlab", "maxFastWaste"); _perf_max_fast_refill_waste = PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK); cname = PerfDataManager::counter_name("tlab", "slowAlloc"); _perf_slow_allocations = PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_None, CHECK); cname = PerfDataManager::counter_name("tlab", "maxSlowAlloc"); _perf_max_slow_allocations = PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_None, CHECK); } } void GlobalTLABStats::initialize() { // Clear counters summarizing info from all threads _allocating_threads = 0; _total_refills = 0; _max_refills = 0; _total_allocation = 0; _total_gc_waste = 0; _max_gc_waste = 0; _total_slow_refill_waste = 0; _max_slow_refill_waste = 0; _total_fast_refill_waste = 0; _max_fast_refill_waste = 0; _total_slow_allocations = 0; _max_slow_allocations = 0; } void GlobalTLABStats::publish() { _allocating_threads_avg.sample(_allocating_threads); if (UsePerfData) { _perf_allocating_threads ->set_value(_allocating_threads); _perf_total_refills ->set_value(_total_refills); _perf_max_refills ->set_value(_max_refills); _perf_allocation ->set_value(_total_allocation); _perf_gc_waste ->set_value(_total_gc_waste); _perf_max_gc_waste ->set_value(_max_gc_waste); _perf_slow_refill_waste ->set_value(_total_slow_refill_waste); _perf_max_slow_refill_waste->set_value(_max_slow_refill_waste); _perf_fast_refill_waste ->set_value(_total_fast_refill_waste); _perf_max_fast_refill_waste->set_value(_max_fast_refill_waste); _perf_slow_allocations ->set_value(_total_slow_allocations); _perf_max_slow_allocations ->set_value(_max_slow_allocations); } } void GlobalTLABStats::print() { size_t waste = _total_gc_waste + _total_slow_refill_waste + _total_fast_refill_waste; double waste_percent = _total_allocation == 0 ? 0.0 : 100.0 * waste / _total_allocation; gclog_or_tty->print("TLAB totals: thrds: %d refills: %d max: %d" " slow allocs: %d max %d waste: %4.1f%%" " gc: " SIZE_FORMAT "B max: " SIZE_FORMAT "B" " slow: " SIZE_FORMAT "B max: " SIZE_FORMAT "B" " fast: " SIZE_FORMAT "B max: " SIZE_FORMAT "B\n", _allocating_threads, _total_refills, _max_refills, _total_slow_allocations, _max_slow_allocations, waste_percent, _total_gc_waste * HeapWordSize, _max_gc_waste * HeapWordSize, _total_slow_refill_waste * HeapWordSize, _max_slow_refill_waste * HeapWordSize, _total_fast_refill_waste * HeapWordSize, _max_fast_refill_waste * HeapWordSize); }