/* * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_RUNTIME_SHAREDRUNTIME_HPP #define SHARE_VM_RUNTIME_SHAREDRUNTIME_HPP #include "interpreter/bytecodeHistogram.hpp" #include "interpreter/bytecodeTracer.hpp" #include "interpreter/linkResolver.hpp" #include "memory/allocation.hpp" #include "memory/resourceArea.hpp" #include "utilities/hashtable.hpp" #include "utilities/macros.hpp" class AdapterHandlerEntry; class AdapterHandlerTable; class AdapterFingerPrint; class vframeStream; // Runtime is the base class for various runtime interfaces // (InterpreterRuntime, CompilerRuntime, etc.). It provides // shared functionality such as exception forwarding (C++ to // Java exceptions), locking/unlocking mechanisms, statistical // information, etc. class SharedRuntime: AllStatic { friend class VMStructs; private: static methodHandle resolve_sub_helper(JavaThread *thread, bool is_virtual, bool is_optimized, TRAPS); // Shared stub locations static RuntimeStub* _wrong_method_blob; static RuntimeStub* _wrong_method_abstract_blob; static RuntimeStub* _ic_miss_blob; static RuntimeStub* _resolve_opt_virtual_call_blob; static RuntimeStub* _resolve_virtual_call_blob; static RuntimeStub* _resolve_static_call_blob; static DeoptimizationBlob* _deopt_blob; static SafepointBlob* _polling_page_vectors_safepoint_handler_blob; static SafepointBlob* _polling_page_safepoint_handler_blob; static SafepointBlob* _polling_page_return_handler_blob; #ifdef COMPILER2 static UncommonTrapBlob* _uncommon_trap_blob; #endif // COMPILER2 #ifndef PRODUCT // Counters static int _nof_megamorphic_calls; // total # of megamorphic calls (through vtable) #endif // !PRODUCT private: enum { POLL_AT_RETURN, POLL_AT_LOOP, POLL_AT_VECTOR_LOOP }; static SafepointBlob* generate_handler_blob(address call_ptr, int poll_type); static RuntimeStub* generate_resolve_blob(address destination, const char* name); public: static void generate_stubs(void); // max bytes for each dtrace string parameter enum { max_dtrace_string_size = 256 }; // The following arithmetic routines are used on platforms that do // not have machine instructions to implement their functionality. // Do not remove these. // long arithmetics static jlong lmul(jlong y, jlong x); static jlong ldiv(jlong y, jlong x); static jlong lrem(jlong y, jlong x); // float and double remainder static jfloat frem(jfloat x, jfloat y); static jdouble drem(jdouble x, jdouble y); #ifdef _WIN64 // Workaround for fmod issue in the Windows x64 CRT static double fmod_winx64(double x, double y); #endif #ifdef __SOFTFP__ static jfloat fadd(jfloat x, jfloat y); static jfloat fsub(jfloat x, jfloat y); static jfloat fmul(jfloat x, jfloat y); static jfloat fdiv(jfloat x, jfloat y); static jdouble dadd(jdouble x, jdouble y); static jdouble dsub(jdouble x, jdouble y); static jdouble dmul(jdouble x, jdouble y); static jdouble ddiv(jdouble x, jdouble y); #endif // __SOFTFP__ // float conversion (needs to set appropriate rounding mode) static jint f2i (jfloat x); static jlong f2l (jfloat x); static jint d2i (jdouble x); static jlong d2l (jdouble x); static jfloat d2f (jdouble x); static jfloat l2f (jlong x); static jdouble l2d (jlong x); #ifdef __SOFTFP__ static jfloat i2f (jint x); static jdouble i2d (jint x); static jdouble f2d (jfloat x); #endif // __SOFTFP__ // double trigonometrics and transcendentals static jdouble dsin(jdouble x); static jdouble dcos(jdouble x); static jdouble dtan(jdouble x); static jdouble dlog(jdouble x); static jdouble dlog10(jdouble x); static jdouble dexp(jdouble x); static jdouble dpow(jdouble x, jdouble y); #if defined(__SOFTFP__) || defined(E500V2) static double dabs(double f); #endif #if defined(__SOFTFP__) || defined(PPC) static double dsqrt(double f); #endif // Montgomery multiplication static void montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints, jint len, jlong inv, jint *m_ints); static void montgomery_square(jint *a_ints, jint *n_ints, jint len, jlong inv, jint *m_ints); #ifdef __SOFTFP__ // C++ compiler generates soft float instructions as well as passing // float and double in registers. static int fcmpl(float x, float y); static int fcmpg(float x, float y); static int dcmpl(double x, double y); static int dcmpg(double x, double y); static int unordered_fcmplt(float x, float y); static int unordered_dcmplt(double x, double y); static int unordered_fcmple(float x, float y); static int unordered_dcmple(double x, double y); static int unordered_fcmpge(float x, float y); static int unordered_dcmpge(double x, double y); static int unordered_fcmpgt(float x, float y); static int unordered_dcmpgt(double x, double y); static float fneg(float f); static double dneg(double f); #endif // exception handling across interpreter/compiler boundaries static address raw_exception_handler_for_return_address(JavaThread* thread, address return_address); static address exception_handler_for_return_address(JavaThread* thread, address return_address); #if INCLUDE_ALL_GCS // G1 write barriers static void g1_wb_pre(oopDesc* orig, JavaThread *thread); static void g1_wb_post(void* card_addr, JavaThread* thread); #endif // INCLUDE_ALL_GCS // exception handling and implicit exceptions static address compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, bool force_unwind, bool top_frame_only); enum ImplicitExceptionKind { IMPLICIT_NULL, IMPLICIT_DIVIDE_BY_ZERO, STACK_OVERFLOW }; static void throw_AbstractMethodError(JavaThread* thread); static void throw_IncompatibleClassChangeError(JavaThread* thread); static void throw_ArithmeticException(JavaThread* thread); static void throw_NullPointerException(JavaThread* thread); static void throw_NullPointerException_at_call(JavaThread* thread); static void throw_StackOverflowError(JavaThread* thread); static void throw_delayed_StackOverflowError(JavaThread* thread); static void throw_StackOverflowError_common(JavaThread* thread, bool delayed); static address continuation_for_implicit_exception(JavaThread* thread, address faulting_pc, ImplicitExceptionKind exception_kind); #if INCLUDE_JVMCI static address deoptimize_for_implicit_exception(JavaThread* thread, address pc, nmethod* nm, int deopt_reason); #endif static void enable_stack_reserved_zone(JavaThread* thread); static frame look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr); // Shared stub locations static address get_poll_stub(address pc); static address get_ic_miss_stub() { assert(_ic_miss_blob!= NULL, "oops"); return _ic_miss_blob->entry_point(); } static address get_handle_wrong_method_stub() { assert(_wrong_method_blob!= NULL, "oops"); return _wrong_method_blob->entry_point(); } static address get_handle_wrong_method_abstract_stub() { assert(_wrong_method_abstract_blob!= NULL, "oops"); return _wrong_method_abstract_blob->entry_point(); } #ifdef COMPILER2 static void generate_uncommon_trap_blob(void); static UncommonTrapBlob* uncommon_trap_blob() { return _uncommon_trap_blob; } #endif // COMPILER2 static address get_resolve_opt_virtual_call_stub() { assert(_resolve_opt_virtual_call_blob != NULL, "oops"); return _resolve_opt_virtual_call_blob->entry_point(); } static address get_resolve_virtual_call_stub() { assert(_resolve_virtual_call_blob != NULL, "oops"); return _resolve_virtual_call_blob->entry_point(); } static address get_resolve_static_call_stub() { assert(_resolve_static_call_blob != NULL, "oops"); return _resolve_static_call_blob->entry_point(); } static SafepointBlob* polling_page_return_handler_blob() { return _polling_page_return_handler_blob; } static SafepointBlob* polling_page_safepoint_handler_blob() { return _polling_page_safepoint_handler_blob; } static SafepointBlob* polling_page_vectors_safepoint_handler_blob() { return _polling_page_vectors_safepoint_handler_blob; } // Counters #ifndef PRODUCT static address nof_megamorphic_calls_addr() { return (address)&_nof_megamorphic_calls; } #endif // PRODUCT // Helper routine for full-speed JVMTI exception throwing support static void throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception); static void throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message = NULL); // RedefineClasses() tracing support for obsolete method entry static int rc_trace_method_entry(JavaThread* thread, Method* m); // To be used as the entry point for unresolved native methods. static address native_method_throw_unsatisfied_link_error_entry(); static address native_method_throw_unsupported_operation_exception_entry(); // bytecode tracing is only used by the TraceBytecodes static intptr_t trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2) PRODUCT_RETURN0; static oop retrieve_receiver(Symbol* sig, frame caller); static void register_finalizer(JavaThread* thread, oopDesc* obj); // dtrace notifications static int dtrace_object_alloc(oopDesc* o, int size); static int dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size); static int dtrace_method_entry(JavaThread* thread, Method* m); static int dtrace_method_exit(JavaThread* thread, Method* m); // Utility method for retrieving the Java thread id, returns 0 if the // thread is not a well formed Java thread. static jlong get_java_tid(Thread* thread); // used by native wrappers to reenable yellow if overflow happened in native code static void reguard_yellow_pages(); // Fill in the "X cannot be cast to a Y" message for ClassCastException // // @param thr the current thread // @param name the name of the class of the object attempted to be cast // @return the dynamically allocated exception message (must be freed // by the caller using a resource mark) // // BCP must refer to the current 'checkcast' opcode for the frame // on top of the stack. // The caller (or one of it's callers) must use a ResourceMark // in order to correctly free the result. // static char* generate_class_cast_message(JavaThread* thr, const char* name); // Fill in the "X cannot be cast to a Y" message for ClassCastException // // @param name the name of the class of the object attempted to be cast // @param klass the name of the target klass attempt // @param gripe the specific kind of problem being reported // @return the dynamically allocated exception message (must be freed // by the caller using a resource mark) // // This version does not require access the frame, so it can be called // from interpreted code // The caller (or one of it's callers) must use a ResourceMark // in order to correctly free the result. // static char* generate_class_cast_message(const char* name, const char* klass, const char* gripe = " cannot be cast to "); // Resolves a call site- may patch in the destination of the call into the // compiled code. static methodHandle resolve_helper(JavaThread *thread, bool is_virtual, bool is_optimized, TRAPS); private: // deopt blob static void generate_deopt_blob(void); public: static DeoptimizationBlob* deopt_blob(void) { return _deopt_blob; } // Resets a call-site in compiled code so it will get resolved again. static methodHandle reresolve_call_site(JavaThread *thread, TRAPS); // In the code prolog, if the klass comparison fails, the inline cache // misses and the call site is patched to megamorphic static methodHandle handle_ic_miss_helper(JavaThread* thread, TRAPS); // Find the method that called us. static methodHandle find_callee_method(JavaThread* thread, TRAPS); private: static Handle find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS); static Handle find_callee_info_helper(JavaThread* thread, vframeStream& vfst, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS); static methodHandle extract_attached_method(vframeStream& vfst); static address clean_virtual_call_entry(); static address clean_opt_virtual_call_entry(); static address clean_static_call_entry(); public: // Read the array of BasicTypes from a Java signature, and compute where // compiled Java code would like to put the results. Values in reg_lo and // reg_hi refer to 4-byte quantities. Values less than SharedInfo::stack0 are // registers, those above refer to 4-byte stack slots. All stack slots are // based off of the window top. SharedInfo::stack0 refers to the first usable // slot in the bottom of the frame. SharedInfo::stack0+1 refers to the memory word // 4-bytes higher. So for sparc because the register window save area is at // the bottom of the frame the first 16 words will be skipped and SharedInfo::stack0 // will be just above it. ( // return value is the maximum number of VMReg stack slots the convention will use. static int java_calling_convention(const BasicType* sig_bt, VMRegPair* regs, int total_args_passed, int is_outgoing); static void check_member_name_argument_is_last_argument(const methodHandle& method, const BasicType* sig_bt, const VMRegPair* regs) NOT_DEBUG_RETURN; // Ditto except for calling C // // C argument in register AND stack slot. // Some architectures require that an argument must be passed in a register // AND in a stack slot. These architectures provide a second VMRegPair array // to be filled by the c_calling_convention method. On other architectures, // NULL is being passed as the second VMRegPair array, so arguments are either // passed in a register OR in a stack slot. static int c_calling_convention(const BasicType *sig_bt, VMRegPair *regs, VMRegPair *regs2, int total_args_passed); // Compute the new number of arguments in the signature if 32 bit ints // must be converted to longs. Needed if CCallingConventionRequiresIntsAsLongs // is true. static int convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt); // Adapt a method's signature if it contains 32 bit integers that must // be converted to longs. Needed if CCallingConventionRequiresIntsAsLongs // is true. static void convert_ints_to_longints(int i2l_argcnt, int& in_args_count, BasicType*& in_sig_bt, VMRegPair*& in_regs); // Generate I2C and C2I adapters. These adapters are simple argument marshalling // blobs. Unlike adapters in the tiger and earlier releases the code in these // blobs does not create a new frame and are therefore virtually invisible // to the stack walking code. In general these blobs extend the callers stack // as needed for the conversion of argument locations. // When calling a c2i blob the code will always call the interpreter even if // by the time we reach the blob there is compiled code available. This allows // the blob to pass the incoming stack pointer (the sender sp) in a known // location for the interpreter to record. This is used by the frame code // to correct the sender code to match up with the stack pointer when the // thread left the compiled code. In addition it allows the interpreter // to remove the space the c2i adapter allocated to do its argument conversion. // Although a c2i blob will always run interpreted even if compiled code is // present if we see that compiled code is present the compiled call site // will be patched/re-resolved so that later calls will run compiled. // Additionally a c2i blob need to have a unverified entry because it can be reached // in situations where the call site is an inlined cache site and may go megamorphic. // A i2c adapter is simpler than the c2i adapter. This is because it is assumed // that the interpreter before it does any call dispatch will record the current // stack pointer in the interpreter frame. On return it will restore the stack // pointer as needed. This means the i2c adapter code doesn't need any special // handshaking path with compiled code to keep the stack walking correct. static AdapterHandlerEntry* generate_i2c2i_adapters(MacroAssembler *_masm, int total_args_passed, int max_arg, const BasicType *sig_bt, const VMRegPair *regs, AdapterFingerPrint* fingerprint); static void gen_i2c_adapter(MacroAssembler *_masm, int total_args_passed, int comp_args_on_stack, const BasicType *sig_bt, const VMRegPair *regs); // OSR support // OSR_migration_begin will extract the jvm state from an interpreter // frame (locals, monitors) and store the data in a piece of C heap // storage. This then allows the interpreter frame to be removed from the // stack and the OSR nmethod to be called. That method is called with a // pointer to the C heap storage. This pointer is the return value from // OSR_migration_begin. static intptr_t* OSR_migration_begin(JavaThread *thread); // OSR_migration_end is a trivial routine. It is called after the compiled // method has extracted the jvm state from the C heap that OSR_migration_begin // created. It's entire job is to simply free this storage. static void OSR_migration_end(intptr_t* buf); // Convert a sig into a calling convention register layout // and find interesting things about it. static VMRegPair* find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int *arg_size); static VMReg name_for_receiver(); // "Top of Stack" slots that may be unused by the calling convention but must // otherwise be preserved. // On Intel these are not necessary and the value can be zero. // On Sparc this describes the words reserved for storing a register window // when an interrupt occurs. static uint out_preserve_stack_slots(); // Is vector's size (in bytes) bigger than a size saved by default? // For example, on x86 16 bytes XMM registers are saved by default. static bool is_wide_vector(int size); // Save and restore a native result static void save_native_result(MacroAssembler *_masm, BasicType ret_type, int frame_slots); static void restore_native_result(MacroAssembler *_masm, BasicType ret_type, int frame_slots); // Generate a native wrapper for a given method. The method takes arguments // in the Java compiled code convention, marshals them to the native // convention (handlizes oops, etc), transitions to native, makes the call, // returns to java state (possibly blocking), unhandlizes any result and // returns. // // The wrapper may contain special-case code if the given method // is a JNI critical method, or a compiled method handle adapter, // such as _invokeBasic, _linkToVirtual, etc. static nmethod* generate_native_wrapper(MacroAssembler* masm, const methodHandle& method, int compile_id, BasicType* sig_bt, VMRegPair* regs, BasicType ret_type); // Block before entering a JNI critical method static void block_for_jni_critical(JavaThread* thread); // A compiled caller has just called the interpreter, but compiled code // exists. Patch the caller so he no longer calls into the interpreter. static void fixup_callers_callsite(Method* moop, address ret_pc); static bool should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb); // Slow-path Locking and Unlocking static void complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* thread); static void complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* thread); // Resolving of calls static address resolve_static_call_C (JavaThread *thread); static address resolve_virtual_call_C (JavaThread *thread); static address resolve_opt_virtual_call_C(JavaThread *thread); // arraycopy, the non-leaf version. (See StubRoutines for all the leaf calls.) static void slow_arraycopy_C(oopDesc* src, jint src_pos, oopDesc* dest, jint dest_pos, jint length, JavaThread* thread); // handle ic miss with caller being compiled code // wrong method handling (inline cache misses, zombie methods) static address handle_wrong_method(JavaThread* thread); static address handle_wrong_method_abstract(JavaThread* thread); static address handle_wrong_method_ic_miss(JavaThread* thread); #ifndef PRODUCT // Collect and print inline cache miss statistics private: enum { maxICmiss_count = 100 }; static int _ICmiss_index; // length of IC miss histogram static int _ICmiss_count[maxICmiss_count]; // miss counts static address _ICmiss_at[maxICmiss_count]; // miss addresses static void trace_ic_miss(address at); public: static int _throw_null_ctr; // throwing a null-pointer exception static int _ic_miss_ctr; // total # of IC misses static int _wrong_method_ctr; static int _resolve_static_ctr; static int _resolve_virtual_ctr; static int _resolve_opt_virtual_ctr; static int _implicit_null_throws; static int _implicit_div0_throws; static int _jbyte_array_copy_ctr; // Slow-path byte array copy static int _jshort_array_copy_ctr; // Slow-path short array copy static int _jint_array_copy_ctr; // Slow-path int array copy static int _jlong_array_copy_ctr; // Slow-path long array copy static int _oop_array_copy_ctr; // Slow-path oop array copy static int _checkcast_array_copy_ctr; // Slow-path oop array copy, with cast static int _unsafe_array_copy_ctr; // Slow-path includes alignment checks static int _generic_array_copy_ctr; // Slow-path includes type decoding static int _slow_array_copy_ctr; // Slow-path failed out to a method call static int _new_instance_ctr; // 'new' object requires GC static int _new_array_ctr; // 'new' array requires GC static int _multi1_ctr, _multi2_ctr, _multi3_ctr, _multi4_ctr, _multi5_ctr; static int _find_handler_ctr; // find exception handler static int _rethrow_ctr; // rethrow exception static int _mon_enter_stub_ctr; // monitor enter stub static int _mon_exit_stub_ctr; // monitor exit stub static int _mon_enter_ctr; // monitor enter slow static int _mon_exit_ctr; // monitor exit slow static int _partial_subtype_ctr; // SubRoutines::partial_subtype_check // Statistics code // stats for "normal" compiled calls (non-interface) static int _nof_normal_calls; // total # of calls static int _nof_optimized_calls; // total # of statically-bound calls static int _nof_inlined_calls; // total # of inlined normal calls static int _nof_static_calls; // total # of calls to static methods or super methods (invokespecial) static int _nof_inlined_static_calls; // total # of inlined static calls // stats for compiled interface calls static int _nof_interface_calls; // total # of compiled calls static int _nof_optimized_interface_calls; // total # of statically-bound interface calls static int _nof_inlined_interface_calls; // total # of inlined interface calls static int _nof_megamorphic_interface_calls;// total # of megamorphic interface calls // stats for runtime exceptions static int _nof_removable_exceptions; // total # of exceptions that could be replaced by branches due to inlining public: // for compiler static address nof_normal_calls_addr() { return (address)&_nof_normal_calls; } static address nof_optimized_calls_addr() { return (address)&_nof_optimized_calls; } static address nof_inlined_calls_addr() { return (address)&_nof_inlined_calls; } static address nof_static_calls_addr() { return (address)&_nof_static_calls; } static address nof_inlined_static_calls_addr() { return (address)&_nof_inlined_static_calls; } static address nof_interface_calls_addr() { return (address)&_nof_interface_calls; } static address nof_optimized_interface_calls_addr() { return (address)&_nof_optimized_interface_calls; } static address nof_inlined_interface_calls_addr() { return (address)&_nof_inlined_interface_calls; } static address nof_megamorphic_interface_calls_addr() { return (address)&_nof_megamorphic_interface_calls; } static void print_call_statistics(int comp_total); static void print_statistics(); static void print_ic_miss_histogram(); #endif // PRODUCT }; // --------------------------------------------------------------------------- // Implementation of AdapterHandlerLibrary // // This library manages argument marshaling adapters and native wrappers. // There are 2 flavors of adapters: I2C and C2I. // // The I2C flavor takes a stock interpreted call setup, marshals the // arguments for a Java-compiled call, and jumps to Rmethod-> code()-> // code_begin(). It is broken to call it without an nmethod assigned. // The usual behavior is to lift any register arguments up out of the // stack and possibly re-pack the extra arguments to be contiguous. // I2C adapters will save what the interpreter's stack pointer will be // after arguments are popped, then adjust the interpreter's frame // size to force alignment and possibly to repack the arguments. // After re-packing, it jumps to the compiled code start. There are // no safepoints in this adapter code and a GC cannot happen while // marshaling is in progress. // // The C2I flavor takes a stock compiled call setup plus the target method in // Rmethod, marshals the arguments for an interpreted call and jumps to // Rmethod->_i2i_entry. On entry, the interpreted frame has not yet been // setup. Compiled frames are fixed-size and the args are likely not in the // right place. Hence all the args will likely be copied into the // interpreter's frame, forcing that frame to grow. The compiled frame's // outgoing stack args will be dead after the copy. // // Native wrappers, like adapters, marshal arguments. Unlike adapters they // also perform an official frame push & pop. They have a call to the native // routine in their middles and end in a return (instead of ending in a jump). // The native wrappers are stored in real nmethods instead of the BufferBlobs // used by the adapters. The code generation happens here because it's very // similar to what the adapters have to do. class AdapterHandlerEntry : public BasicHashtableEntry { friend class AdapterHandlerTable; private: AdapterFingerPrint* _fingerprint; address _i2c_entry; address _c2i_entry; address _c2i_unverified_entry; #ifdef ASSERT // Captures code and signature used to generate this adapter when // verifying adapter equivalence. unsigned char* _saved_code; int _saved_code_length; #endif void init(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) { _fingerprint = fingerprint; _i2c_entry = i2c_entry; _c2i_entry = c2i_entry; _c2i_unverified_entry = c2i_unverified_entry; #ifdef ASSERT _saved_code = NULL; _saved_code_length = 0; #endif } void deallocate(); // should never be used AdapterHandlerEntry(); public: address get_i2c_entry() const { return _i2c_entry; } address get_c2i_entry() const { return _c2i_entry; } address get_c2i_unverified_entry() const { return _c2i_unverified_entry; } address base_address(); void relocate(address new_base); AdapterFingerPrint* fingerprint() const { return _fingerprint; } AdapterHandlerEntry* next() { return (AdapterHandlerEntry*)BasicHashtableEntry::next(); } #ifdef ASSERT // Used to verify that code generated for shared adapters is equivalent void save_code (unsigned char* code, int length); bool compare_code(unsigned char* code, int length); #endif //virtual void print_on(outputStream* st) const; DO NOT USE void print_adapter_on(outputStream* st) const; }; class AdapterHandlerLibrary: public AllStatic { private: static BufferBlob* _buffer; // the temporary code buffer in CodeCache static AdapterHandlerTable* _adapters; static AdapterHandlerEntry* _abstract_method_handler; static BufferBlob* buffer_blob(); static void initialize(); public: static AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry); static void create_native_wrapper(const methodHandle& method); static AdapterHandlerEntry* get_adapter(const methodHandle& method); static void print_handler(const CodeBlob* b) { print_handler_on(tty, b); } static void print_handler_on(outputStream* st, const CodeBlob* b); static bool contains(const CodeBlob* b); #ifndef PRODUCT static void print_statistics(); #endif // PRODUCT }; #endif // SHARE_VM_RUNTIME_SHAREDRUNTIME_HPP