/* * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OPTO_GRAPHKIT_HPP #define SHARE_VM_OPTO_GRAPHKIT_HPP #include "ci/ciEnv.hpp" #include "ci/ciMethodData.hpp" #include "opto/addnode.hpp" #include "opto/callnode.hpp" #include "opto/cfgnode.hpp" #include "opto/compile.hpp" #include "opto/divnode.hpp" #include "opto/mulnode.hpp" #include "opto/phaseX.hpp" #include "opto/subnode.hpp" #include "opto/type.hpp" #include "runtime/deoptimization.hpp" class FastLockNode; class FastUnlockNode; class IdealKit; class Parse; class RootNode; //----------------------------------------------------------------------------- //----------------------------GraphKit----------------------------------------- // Toolkit for building the common sorts of subgraphs. // Does not know about bytecode parsing or type-flow results. // It is able to create graphs implementing the semantics of most // or all bytecodes, so that it can expand intrinsics and calls. // It may depend on JVMState structure, but it must not depend // on specific bytecode streams. class GraphKit : public Phase { friend class PreserveJVMState; protected: ciEnv* _env; // Compilation environment PhaseGVN &_gvn; // Some optimizations while parsing SafePointNode* _map; // Parser map from JVM to Nodes SafePointNode* _exceptions;// Parser map(s) for exception state(s) int _sp; // JVM Expression Stack Pointer int _bci; // JVM Bytecode Pointer ciMethod* _method; // JVM Current Method private: SafePointNode* map_not_null() const { assert(_map != NULL, "must call stopped() to test for reset compiler map"); return _map; } public: GraphKit(); // empty constructor GraphKit(JVMState* jvms); // the JVM state on which to operate #ifdef ASSERT ~GraphKit() { assert(!has_exceptions(), "user must call transfer_exceptions_into_jvms"); } #endif virtual Parse* is_Parse() const { return NULL; } ciEnv* env() const { return _env; } PhaseGVN& gvn() const { return _gvn; } void record_for_igvn(Node* n) const { C->record_for_igvn(n); } // delegate to Compile // Handy well-known nodes: Node* null() const { return zerocon(T_OBJECT); } Node* top() const { return C->top(); } RootNode* root() const { return C->root(); } // Create or find a constant node Node* intcon(jint con) const { return _gvn.intcon(con); } Node* longcon(jlong con) const { return _gvn.longcon(con); } Node* makecon(const Type *t) const { return _gvn.makecon(t); } Node* zerocon(BasicType bt) const { return _gvn.zerocon(bt); } // (See also macro MakeConX in type.hpp, which uses intcon or longcon.) // Helper for byte_map_base Node* byte_map_base_node() { // Get base of card map CardTableModRefBS* ct = (CardTableModRefBS*)(Universe::heap()->barrier_set()); assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust users of this code"); if (ct->byte_map_base != NULL) { return makecon(TypeRawPtr::make((address)ct->byte_map_base)); } else { return null(); } } jint find_int_con(Node* n, jint value_if_unknown) { return _gvn.find_int_con(n, value_if_unknown); } jlong find_long_con(Node* n, jlong value_if_unknown) { return _gvn.find_long_con(n, value_if_unknown); } // (See also macro find_intptr_t_con in type.hpp, which uses one of these.) // JVM State accessors: // Parser mapping from JVM indices into Nodes. // Low slots are accessed by the StartNode::enum. // Then come the locals at StartNode::Parms to StartNode::Parms+max_locals(); // Then come JVM stack slots. // Finally come the monitors, if any. // See layout accessors in class JVMState. SafePointNode* map() const { return _map; } bool has_exceptions() const { return _exceptions != NULL; } JVMState* jvms() const { return map_not_null()->_jvms; } int sp() const { return _sp; } int bci() const { return _bci; } Bytecodes::Code java_bc() const; ciMethod* method() const { return _method; } void set_jvms(JVMState* jvms) { set_map(jvms->map()); assert(jvms == this->jvms(), "sanity"); _sp = jvms->sp(); _bci = jvms->bci(); _method = jvms->has_method() ? jvms->method() : NULL; } void set_map(SafePointNode* m) { _map = m; debug_only(verify_map()); } void set_sp(int i) { assert(i >= 0, "must be non-negative"); _sp = i; } void clean_stack(int from_sp); // clear garbage beyond from_sp to top void inc_sp(int i) { set_sp(sp() + i); } void set_bci(int bci) { _bci = bci; } // Make sure jvms has current bci & sp. JVMState* sync_jvms() const; #ifdef ASSERT // Make sure JVMS has an updated copy of bci and sp. // Also sanity-check method, depth, and monitor depth. bool jvms_in_sync() const; // Make sure the map looks OK. void verify_map() const; // Make sure a proposed exception state looks OK. static void verify_exception_state(SafePointNode* ex_map); #endif // Clone the existing map state. (Implements PreserveJVMState.) SafePointNode* clone_map(); // Set the map to a clone of the given one. void set_map_clone(SafePointNode* m); // Tell if the compilation is failing. bool failing() const { return C->failing(); } // Set _map to NULL, signalling a stop to further bytecode execution. // Preserve the map intact for future use, and return it back to the caller. SafePointNode* stop() { SafePointNode* m = map(); set_map(NULL); return m; } // Stop, but first smash the map's inputs to NULL, to mark it dead. void stop_and_kill_map(); // Tell if _map is NULL, or control is top. bool stopped(); // Tell if this method or any caller method has exception handlers. bool has_ex_handler(); // Save an exception without blowing stack contents or other JVM state. // (The extra pointer is stuck with add_req on the map, beyond the JVMS.) static void set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop); // Recover a saved exception from its map. static Node* saved_ex_oop(SafePointNode* ex_map); // Recover a saved exception from its map, and remove it from the map. static Node* clear_saved_ex_oop(SafePointNode* ex_map); #ifdef ASSERT // Recover a saved exception from its map, and remove it from the map. static bool has_saved_ex_oop(SafePointNode* ex_map); #endif // Push an exception in the canonical position for handlers (stack(0)). void push_ex_oop(Node* ex_oop) { ensure_stack(1); // ensure room to push the exception set_stack(0, ex_oop); set_sp(1); clean_stack(1); } // Detach and return an exception state. SafePointNode* pop_exception_state() { SafePointNode* ex_map = _exceptions; if (ex_map != NULL) { _exceptions = ex_map->next_exception(); ex_map->set_next_exception(NULL); debug_only(verify_exception_state(ex_map)); } return ex_map; } // Add an exception, using the given JVM state, without commoning. void push_exception_state(SafePointNode* ex_map) { debug_only(verify_exception_state(ex_map)); ex_map->set_next_exception(_exceptions); _exceptions = ex_map; } // Turn the current JVM state into an exception state, appending the ex_oop. SafePointNode* make_exception_state(Node* ex_oop); // Add an exception, using the given JVM state. // Combine all exceptions with a common exception type into a single state. // (This is done via combine_exception_states.) void add_exception_state(SafePointNode* ex_map); // Combine all exceptions of any sort whatever into a single master state. SafePointNode* combine_and_pop_all_exception_states() { if (_exceptions == NULL) return NULL; SafePointNode* phi_map = pop_exception_state(); SafePointNode* ex_map; while ((ex_map = pop_exception_state()) != NULL) { combine_exception_states(ex_map, phi_map); } return phi_map; } // Combine the two exception states, building phis as necessary. // The second argument is updated to include contributions from the first. void combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map); // Reset the map to the given state. If there are any half-finished phis // in it (created by combine_exception_states), transform them now. // Returns the exception oop. (Caller must call push_ex_oop if required.) Node* use_exception_state(SafePointNode* ex_map); // Collect exceptions from a given JVM state into my exception list. void add_exception_states_from(JVMState* jvms); // Collect all raised exceptions into the current JVM state. // Clear the current exception list and map, returns the combined states. JVMState* transfer_exceptions_into_jvms(); // Helper to throw a built-in exception. // Range checks take the offending index. // Cast and array store checks take the offending class. // Others do not take the optional argument. // The JVMS must allow the bytecode to be re-executed // via an uncommon trap. void builtin_throw(Deoptimization::DeoptReason reason, Node* arg = NULL); // Helper to check the JavaThread::_should_post_on_exceptions flag // and branch to an uncommon_trap if it is true (with the specified reason and must_throw) void uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason, bool must_throw) ; // Helper Functions for adding debug information void kill_dead_locals(); #ifdef ASSERT bool dead_locals_are_killed(); #endif // The call may deoptimize. Supply required JVM state as debug info. // If must_throw is true, the call is guaranteed not to return normally. void add_safepoint_edges(SafePointNode* call, bool must_throw = false); // How many stack inputs does the current BC consume? // And, how does the stack change after the bytecode? // Returns false if unknown. bool compute_stack_effects(int& inputs, int& depth); // Add a fixed offset to a pointer Node* basic_plus_adr(Node* base, Node* ptr, intptr_t offset) { return basic_plus_adr(base, ptr, MakeConX(offset)); } Node* basic_plus_adr(Node* base, intptr_t offset) { return basic_plus_adr(base, base, MakeConX(offset)); } // Add a variable offset to a pointer Node* basic_plus_adr(Node* base, Node* offset) { return basic_plus_adr(base, base, offset); } Node* basic_plus_adr(Node* base, Node* ptr, Node* offset); // Some convenient shortcuts for common nodes Node* IfTrue(IfNode* iff) { return _gvn.transform(new (C,1) IfTrueNode(iff)); } Node* IfFalse(IfNode* iff) { return _gvn.transform(new (C,1) IfFalseNode(iff)); } Node* AddI(Node* l, Node* r) { return _gvn.transform(new (C,3) AddINode(l, r)); } Node* SubI(Node* l, Node* r) { return _gvn.transform(new (C,3) SubINode(l, r)); } Node* MulI(Node* l, Node* r) { return _gvn.transform(new (C,3) MulINode(l, r)); } Node* DivI(Node* ctl, Node* l, Node* r) { return _gvn.transform(new (C,3) DivINode(ctl, l, r)); } Node* AndI(Node* l, Node* r) { return _gvn.transform(new (C,3) AndINode(l, r)); } Node* OrI(Node* l, Node* r) { return _gvn.transform(new (C,3) OrINode(l, r)); } Node* XorI(Node* l, Node* r) { return _gvn.transform(new (C,3) XorINode(l, r)); } Node* MaxI(Node* l, Node* r) { return _gvn.transform(new (C,3) MaxINode(l, r)); } Node* MinI(Node* l, Node* r) { return _gvn.transform(new (C,3) MinINode(l, r)); } Node* LShiftI(Node* l, Node* r) { return _gvn.transform(new (C,3) LShiftINode(l, r)); } Node* RShiftI(Node* l, Node* r) { return _gvn.transform(new (C,3) RShiftINode(l, r)); } Node* URShiftI(Node* l, Node* r) { return _gvn.transform(new (C,3) URShiftINode(l, r)); } Node* CmpI(Node* l, Node* r) { return _gvn.transform(new (C,3) CmpINode(l, r)); } Node* CmpL(Node* l, Node* r) { return _gvn.transform(new (C,3) CmpLNode(l, r)); } Node* CmpP(Node* l, Node* r) { return _gvn.transform(new (C,3) CmpPNode(l, r)); } Node* Bool(Node* cmp, BoolTest::mask relop) { return _gvn.transform(new (C,2) BoolNode(cmp, relop)); } Node* AddP(Node* b, Node* a, Node* o) { return _gvn.transform(new (C,4) AddPNode(b, a, o)); } // Convert between int and long, and size_t. // (See macros ConvI2X, etc., in type.hpp for ConvI2X, etc.) Node* ConvI2L(Node* offset); Node* ConvL2I(Node* offset); // Find out the klass of an object. Node* load_object_klass(Node* object); // Find out the length of an array. Node* load_array_length(Node* array); // Helper function to do a NULL pointer check or ZERO check based on type. Node* null_check_common(Node* value, BasicType type, bool assert_null, Node* *null_control); // Throw an exception if a given value is null. // Return the value cast to not-null. // Be clever about equivalent dominating null checks. Node* do_null_check(Node* value, BasicType type) { return null_check_common(value, type, false, NULL); } // Throw an uncommon trap if a given value is __not__ null. // Return the value cast to null, and be clever about dominating checks. Node* do_null_assert(Node* value, BasicType type) { return null_check_common(value, type, true, NULL); } // Null check oop. Return null-path control into (*null_control). // Return a cast-not-null node which depends on the not-null control. // If never_see_null, use an uncommon trap (*null_control sees a top). // The cast is not valid along the null path; keep a copy of the original. Node* null_check_oop(Node* value, Node* *null_control, bool never_see_null = false); // Check the null_seen bit. bool seems_never_null(Node* obj, ciProfileData* data); // Use the type profile to narrow an object type. Node* maybe_cast_profiled_receiver(Node* not_null_obj, ciProfileData* data, ciKlass* require_klass); // Cast obj to not-null on this path Node* cast_not_null(Node* obj, bool do_replace_in_map = true); // Replace all occurrences of one node by another. void replace_in_map(Node* old, Node* neww); void push(Node* n) { map_not_null(); _map->set_stack(_map->_jvms,_sp++,n); } Node* pop() { map_not_null(); return _map->stack(_map->_jvms,--_sp); } Node* peek(int off=0) { map_not_null(); return _map->stack(_map->_jvms, _sp - off - 1); } void push_pair(Node* ldval) { push(ldval); push(top()); // the halfword is merely a placeholder } void push_pair_local(int i) { // longs are stored in locals in "push" order push( local(i+0) ); // the real value assert(local(i+1) == top(), ""); push(top()); // halfword placeholder } Node* pop_pair() { // the second half is pushed last & popped first; it contains exactly nothing Node* halfword = pop(); assert(halfword == top(), ""); // the long bits are pushed first & popped last: return pop(); } void set_pair_local(int i, Node* lval) { // longs are stored in locals as a value/half pair (like doubles) set_local(i+0, lval); set_local(i+1, top()); } // Push the node, which may be zero, one, or two words. void push_node(BasicType n_type, Node* n) { int n_size = type2size[n_type]; if (n_size == 1) push( n ); // T_INT, ... else if (n_size == 2) push_pair( n ); // T_DOUBLE, T_LONG else { assert(n_size == 0, "must be T_VOID"); } } Node* pop_node(BasicType n_type) { int n_size = type2size[n_type]; if (n_size == 1) return pop(); else if (n_size == 2) return pop_pair(); else return NULL; } Node* control() const { return map_not_null()->control(); } Node* i_o() const { return map_not_null()->i_o(); } Node* returnadr() const { return map_not_null()->returnadr(); } Node* frameptr() const { return map_not_null()->frameptr(); } Node* local(uint idx) const { map_not_null(); return _map->local( _map->_jvms, idx); } Node* stack(uint idx) const { map_not_null(); return _map->stack( _map->_jvms, idx); } Node* argument(uint idx) const { map_not_null(); return _map->argument( _map->_jvms, idx); } Node* monitor_box(uint idx) const { map_not_null(); return _map->monitor_box(_map->_jvms, idx); } Node* monitor_obj(uint idx) const { map_not_null(); return _map->monitor_obj(_map->_jvms, idx); } void set_control (Node* c) { map_not_null()->set_control(c); } void set_i_o (Node* c) { map_not_null()->set_i_o(c); } void set_local(uint idx, Node* c) { map_not_null(); _map->set_local( _map->_jvms, idx, c); } void set_stack(uint idx, Node* c) { map_not_null(); _map->set_stack( _map->_jvms, idx, c); } void set_argument(uint idx, Node* c){ map_not_null(); _map->set_argument(_map->_jvms, idx, c); } void ensure_stack(uint stk_size) { map_not_null(); _map->ensure_stack(_map->_jvms, stk_size); } // Access unaliased memory Node* memory(uint alias_idx); Node* memory(const TypePtr *tp) { return memory(C->get_alias_index(tp)); } Node* memory(Node* adr) { return memory(_gvn.type(adr)->is_ptr()); } // Access immutable memory Node* immutable_memory() { return C->immutable_memory(); } // Set unaliased memory void set_memory(Node* c, uint alias_idx) { merged_memory()->set_memory_at(alias_idx, c); } void set_memory(Node* c, const TypePtr *tp) { set_memory(c,C->get_alias_index(tp)); } void set_memory(Node* c, Node* adr) { set_memory(c,_gvn.type(adr)->is_ptr()); } // Get the entire memory state (probably a MergeMemNode), and reset it // (The resetting prevents somebody from using the dangling Node pointer.) Node* reset_memory(); // Get the entire memory state, asserted to be a MergeMemNode. MergeMemNode* merged_memory() { Node* mem = map_not_null()->memory(); assert(mem->is_MergeMem(), "parse memory is always pre-split"); return mem->as_MergeMem(); } // Set the entire memory state; produce a new MergeMemNode. void set_all_memory(Node* newmem); // Create a memory projection from the call, then set_all_memory. void set_all_memory_call(Node* call, bool separate_io_proj = false); // Create a LoadNode, reading from the parser's memory state. // (Note: require_atomic_access is useful only with T_LONG.) Node* make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, bool require_atomic_access = false) { // This version computes alias_index from bottom_type return make_load(ctl, adr, t, bt, adr->bottom_type()->is_ptr(), require_atomic_access); } Node* make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, const TypePtr* adr_type, bool require_atomic_access = false) { // This version computes alias_index from an address type assert(adr_type != NULL, "use other make_load factory"); return make_load(ctl, adr, t, bt, C->get_alias_index(adr_type), require_atomic_access); } // This is the base version which is given an alias index. Node* make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, int adr_idx, bool require_atomic_access = false); // Create & transform a StoreNode and store the effect into the // parser's memory state. Node* store_to_memory(Node* ctl, Node* adr, Node* val, BasicType bt, const TypePtr* adr_type, bool require_atomic_access = false) { // This version computes alias_index from an address type assert(adr_type != NULL, "use other store_to_memory factory"); return store_to_memory(ctl, adr, val, bt, C->get_alias_index(adr_type), require_atomic_access); } // This is the base version which is given alias index // Return the new StoreXNode Node* store_to_memory(Node* ctl, Node* adr, Node* val, BasicType bt, int adr_idx, bool require_atomic_access = false); // All in one pre-barrier, store, post_barrier // Insert a write-barrier'd store. This is to let generational GC // work; we have to flag all oop-stores before the next GC point. // // It comes in 3 flavors of store to an object, array, or unknown. // We use precise card marks for arrays to avoid scanning the entire // array. We use imprecise for object. We use precise for unknown // since we don't know if we have an array or and object or even // where the object starts. // // If val==NULL, it is taken to be a completely unknown value. QQQ Node* store_oop(Node* ctl, Node* obj, // containing obj Node* adr, // actual adress to store val at const TypePtr* adr_type, Node* val, const TypeOopPtr* val_type, BasicType bt, bool use_precise); Node* store_oop_to_object(Node* ctl, Node* obj, // containing obj Node* adr, // actual adress to store val at const TypePtr* adr_type, Node* val, const TypeOopPtr* val_type, BasicType bt) { return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, false); } Node* store_oop_to_array(Node* ctl, Node* obj, // containing obj Node* adr, // actual adress to store val at const TypePtr* adr_type, Node* val, const TypeOopPtr* val_type, BasicType bt) { return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true); } // Could be an array or object we don't know at compile time (unsafe ref.) Node* store_oop_to_unknown(Node* ctl, Node* obj, // containing obj Node* adr, // actual adress to store val at const TypePtr* adr_type, Node* val, BasicType bt); // For the few case where the barriers need special help void pre_barrier(Node* ctl, Node* obj, Node* adr, uint adr_idx, Node* val, const TypeOopPtr* val_type, BasicType bt); void post_barrier(Node* ctl, Node* store, Node* obj, Node* adr, uint adr_idx, Node* val, BasicType bt, bool use_precise); // Return addressing for an array element. Node* array_element_address(Node* ary, Node* idx, BasicType elembt, // Optional constraint on the array size: const TypeInt* sizetype = NULL); // Return a load of array element at idx. Node* load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype); //---------------- Dtrace support -------------------- void make_dtrace_method_entry_exit(ciMethod* method, bool is_entry); void make_dtrace_method_entry(ciMethod* method) { make_dtrace_method_entry_exit(method, true); } void make_dtrace_method_exit(ciMethod* method) { make_dtrace_method_entry_exit(method, false); } //--------------- stub generation ------------------- public: void gen_stub(address C_function, const char *name, int is_fancy_jump, bool pass_tls, bool return_pc); //---------- help for generating calls -------------- // Do a null check on the receiver, which is in argument(0). Node* null_check_receiver(ciMethod* callee) { assert(!callee->is_static(), "must be a virtual method"); int nargs = 1 + callee->signature()->size(); // Null check on self without removing any arguments. The argument // null check technically happens in the wrong place, which can lead to // invalid stack traces when the primitive is inlined into a method // which handles NullPointerExceptions. Node* receiver = argument(0); _sp += nargs; receiver = do_null_check(receiver, T_OBJECT); _sp -= nargs; return receiver; } // Fill in argument edges for the call from argument(0), argument(1), ... // (The next step is to call set_edges_for_java_call.) void set_arguments_for_java_call(CallJavaNode* call); // Fill in non-argument edges for the call. // Transform the call, and update the basics: control, i_o, memory. // (The next step is usually to call set_results_for_java_call.) void set_edges_for_java_call(CallJavaNode* call, bool must_throw = false, bool separate_io_proj = false); // Finish up a java call that was started by set_edges_for_java_call. // Call add_exception on any throw arising from the call. // Return the call result (transformed). Node* set_results_for_java_call(CallJavaNode* call, bool separate_io_proj = false); // Similar to set_edges_for_java_call, but simplified for runtime calls. void set_predefined_output_for_runtime_call(Node* call) { set_predefined_output_for_runtime_call(call, NULL, NULL); } void set_predefined_output_for_runtime_call(Node* call, Node* keep_mem, const TypePtr* hook_mem); Node* set_predefined_input_for_runtime_call(SafePointNode* call); // Replace the call with the current state of the kit. Requires // that the call was generated with separate io_projs so that // exceptional control flow can be handled properly. void replace_call(CallNode* call, Node* result); // helper functions for statistics void increment_counter(address counter_addr); // increment a debug counter void increment_counter(Node* counter_addr); // increment a debug counter // Bail out to the interpreter right now // The optional klass is the one causing the trap. // The optional reason is debug information written to the compile log. // Optional must_throw is the same as with add_safepoint_edges. void uncommon_trap(int trap_request, ciKlass* klass = NULL, const char* reason_string = NULL, bool must_throw = false, bool keep_exact_action = false); // Shorthand, to avoid saying "Deoptimization::" so many times. void uncommon_trap(Deoptimization::DeoptReason reason, Deoptimization::DeoptAction action, ciKlass* klass = NULL, const char* reason_string = NULL, bool must_throw = false, bool keep_exact_action = false) { uncommon_trap(Deoptimization::make_trap_request(reason, action), klass, reason_string, must_throw, keep_exact_action); } // Report if there were too many traps at the current method and bci. // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. // If there is no MDO at all, report no trap unless told to assume it. bool too_many_traps(Deoptimization::DeoptReason reason) { return C->too_many_traps(method(), bci(), reason); } // Report if there were too many recompiles at the current method and bci. bool too_many_recompiles(Deoptimization::DeoptReason reason) { return C->too_many_recompiles(method(), bci(), reason); } // Returns the object (if any) which was created the moment before. Node* just_allocated_object(Node* current_control); static bool use_ReduceInitialCardMarks() { return (ReduceInitialCardMarks && Universe::heap()->can_elide_tlab_store_barriers()); } // Sync Ideal and Graph kits. void sync_kit(IdealKit& ideal); void final_sync(IdealKit& ideal); // vanilla/CMS post barrier void write_barrier_post(Node *store, Node* obj, Node* adr, uint adr_idx, Node* val, bool use_precise); // G1 pre/post barriers void g1_write_barrier_pre(Node* obj, Node* adr, uint alias_idx, Node* val, const TypeOopPtr* val_type, BasicType bt); void g1_write_barrier_post(Node* store, Node* obj, Node* adr, uint alias_idx, Node* val, BasicType bt, bool use_precise); // Helper function for g1 private: void g1_mark_card(IdealKit& ideal, Node* card_adr, Node* store, uint oop_alias_idx, Node* index, Node* index_adr, Node* buffer, const TypeFunc* tf); public: // Helper function to round double arguments before a call void round_double_arguments(ciMethod* dest_method); void round_double_result(ciMethod* dest_method); // rounding for strict float precision conformance Node* precision_rounding(Node* n); // rounding for strict double precision conformance Node* dprecision_rounding(Node* n); // rounding for non-strict double stores Node* dstore_rounding(Node* n); // Helper functions for fast/slow path codes Node* opt_iff(Node* region, Node* iff); Node* make_runtime_call(int flags, const TypeFunc* call_type, address call_addr, const char* call_name, const TypePtr* adr_type, // NULL if no memory effects Node* parm0 = NULL, Node* parm1 = NULL, Node* parm2 = NULL, Node* parm3 = NULL, Node* parm4 = NULL, Node* parm5 = NULL, Node* parm6 = NULL, Node* parm7 = NULL); enum { // flag values for make_runtime_call RC_NO_FP = 1, // CallLeafNoFPNode RC_NO_IO = 2, // do not hook IO edges RC_NO_LEAF = 4, // CallStaticJavaNode RC_MUST_THROW = 8, // flag passed to add_safepoint_edges RC_NARROW_MEM = 16, // input memory is same as output RC_UNCOMMON = 32, // freq. expected to be like uncommon trap RC_LEAF = 0 // null value: no flags set }; // merge in all memory slices from new_mem, along the given path void merge_memory(Node* new_mem, Node* region, int new_path); void make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj); // Helper functions to build synchronizations int next_monitor(); Node* insert_mem_bar(int opcode, Node* precedent = NULL); Node* insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent = NULL); // Optional 'precedent' is appended as an extra edge, to force ordering. FastLockNode* shared_lock(Node* obj); void shared_unlock(Node* box, Node* obj); // helper functions for the fast path/slow path idioms Node* fast_and_slow(Node* in, const Type *result_type, Node* null_result, IfNode* fast_test, Node* fast_result, address slow_call, const TypeFunc *slow_call_type, Node* slow_arg, klassOop ex_klass, Node* slow_result); // Generate an instance-of idiom. Used by both the instance-of bytecode // and the reflective instance-of call. Node* gen_instanceof( Node *subobj, Node* superkls ); // Generate a check-cast idiom. Used by both the check-cast bytecode // and the array-store bytecode Node* gen_checkcast( Node *subobj, Node* superkls, Node* *failure_control = NULL ); // Generate a subtyping check. Takes as input the subtype and supertype. // Returns 2 values: sets the default control() to the true path and // returns the false path. Only reads from constant memory taken from the // default memory; does not write anything. It also doesn't take in an // Object; if you wish to check an Object you need to load the Object's // class prior to coming here. Node* gen_subtype_check(Node* subklass, Node* superklass); // Static parse-time type checking logic for gen_subtype_check: enum { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; int static_subtype_check(ciKlass* superk, ciKlass* subk); // Exact type check used for predicted calls and casts. // Rewrites (*casted_receiver) to be casted to the stronger type. // (Caller is responsible for doing replace_in_map.) Node* type_check_receiver(Node* receiver, ciKlass* klass, float prob, Node* *casted_receiver); // implementation of object creation Node* set_output_for_allocation(AllocateNode* alloc, const TypeOopPtr* oop_type, bool raw_mem_only); Node* get_layout_helper(Node* klass_node, jint& constant_value); Node* new_instance(Node* klass_node, Node* slow_test = NULL, bool raw_mem_only = false, Node* *return_size_val = NULL); Node* new_array(Node* klass_node, Node* count_val, int nargs, bool raw_mem_only = false, Node* *return_size_val = NULL); // Handy for making control flow IfNode* create_and_map_if(Node* ctrl, Node* tst, float prob, float cnt) { IfNode* iff = new (C, 2) IfNode(ctrl, tst, prob, cnt);// New IfNode's _gvn.set_type(iff, iff->Value(&_gvn)); // Value may be known at parse-time // Place 'if' on worklist if it will be in graph if (!tst->is_Con()) record_for_igvn(iff); // Range-check and Null-check removal is later return iff; } IfNode* create_and_xform_if(Node* ctrl, Node* tst, float prob, float cnt) { IfNode* iff = new (C, 2) IfNode(ctrl, tst, prob, cnt);// New IfNode's _gvn.transform(iff); // Value may be known at parse-time // Place 'if' on worklist if it will be in graph if (!tst->is_Con()) record_for_igvn(iff); // Range-check and Null-check removal is later return iff; } // Insert a loop predicate into the graph void add_predicate(int nargs = 0); void add_predicate_impl(Deoptimization::DeoptReason reason, int nargs); }; // Helper class to support building of control flow branches. Upon // creation the map and sp at bci are cloned and restored upon de- // struction. Typical use: // // { PreserveJVMState pjvms(this); // // code of new branch // } // // here the JVM state at bci is established class PreserveJVMState: public StackObj { protected: GraphKit* _kit; #ifdef ASSERT int _block; // PO of current block, if a Parse int _bci; #endif SafePointNode* _map; uint _sp; public: PreserveJVMState(GraphKit* kit, bool clone_map = true); ~PreserveJVMState(); }; // Helper class to build cutouts of the form if (p) ; else {x...}. // The code {x...} must not fall through. // The kit's main flow of control is set to the "then" continuation of if(p). class BuildCutout: public PreserveJVMState { public: BuildCutout(GraphKit* kit, Node* p, float prob, float cnt = COUNT_UNKNOWN); ~BuildCutout(); }; // Helper class to preserve the original _reexecute bit and _sp and restore // them back class PreserveReexecuteState: public StackObj { protected: GraphKit* _kit; uint _sp; JVMState::ReexecuteState _reexecute; public: PreserveReexecuteState(GraphKit* kit); ~PreserveReexecuteState(); }; #endif // SHARE_VM_OPTO_GRAPHKIT_HPP