/* * Copyright (c) 2022, 2023, Arm Limited. All rights reserved. * Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @summary Vectorization test on basic int operations * @library /test/lib / * * @build jdk.test.whitebox.WhiteBox * compiler.vectorization.runner.VectorizationTestRunner * * @run driver jdk.test.lib.helpers.ClassFileInstaller jdk.test.whitebox.WhiteBox * @run main/othervm -Xbootclasspath/a:. * -XX:+UnlockDiagnosticVMOptions * -XX:+WhiteBoxAPI * compiler.vectorization.runner.BasicIntOpTest * * @requires vm.compiler2.enabled */ package compiler.vectorization.runner; import compiler.lib.ir_framework.*; public class BasicIntOpTest extends VectorizationTestRunner { private static final int SIZE = 543; private int[] a; private int[] b; private int[] c; public BasicIntOpTest() { a = new int[SIZE]; b = new int[SIZE]; c = new int[SIZE]; for (int i = 0; i < SIZE; i++) { a[i] = -25 * i; b[i] = 333 * i + 9999; c[i] = -987654321; } } // ---------------- Arithmetic ---------------- @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.SUB_VI, ">0"}) public int[] vectorNeg() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = -a[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "ssse3", "true"}, counts = {IRNode.ABS_VI, ">0"}) public int[] vectorAbs() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.abs(a[i]); } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.ADD_VI, ">0"}) public int[] vectorAdd() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] + b[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.SUB_VI, ">0"}) public int[] vectorSub() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] - b[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse4.1", "true"}, counts = {IRNode.MUL_VI, ">0"}) public int[] vectorMul() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] * b[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse4.1", "true"}, counts = {IRNode.MUL_VI, ">0", IRNode.ADD_VI, ">0"}) public int[] vectorMulAdd() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = c[i] + a[i] * b[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse4.1", "true"}, counts = {IRNode.MUL_VI, ">0", IRNode.SUB_VI, ">0"}) public int[] vectorMulSub() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = c[i] - a[i] * b[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "avx2", "true"}, counts = {IRNode.POPCOUNT_VI, ">0"}) public int[] vectorPopCount() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Integer.bitCount(a[i]); } return res; } // ---------------- Logic ---------------- @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.XOR_VI, ">0"}) public int[] vectorNot() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = ~a[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.AND_VI, ">0"}) public int[] vectorAnd() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] & b[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.OR_VI, ">0"}) public int[] vectorOr() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] | b[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.XOR_VI, ">0"}) public int[] vectorXor() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] ^ b[i]; } return res; } // ---------------- Shift ---------------- @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true", "rvv", "true"}, counts = {IRNode.LSHIFT_VI, ">0"}) public int[] vectorShiftLeft() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] << 3; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true", "rvv", "true"}, counts = {IRNode.RSHIFT_VI, ">0"}) public int[] vectorSignedShiftRight() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] >> 2; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true", "rvv", "true"}, counts = {IRNode.URSHIFT_VI, ">0"}) public int[] vectorUnsignedShiftRight() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] >>> 5; } return res; } // ---------------- Reduction ---------------- @Test public int reductionAdd() { int res = 0; for (int i = 0; i < SIZE; i++) { res += a[i]; } return res; } @Test public int reductionAnd() { int res = 0xffffffff; for (int i = 0; i < SIZE; i++) { res &= a[i]; } return res; } @Test public int reductionOr() { int res = 0; for (int i = 0; i < SIZE; i++) { res |= a[i]; } return res; } @Test public int reductionXor() { int res = 0x0f0f0f0f; for (int i = 0; i < SIZE; i++) { res ^= a[i]; } return res; } @Test // Note that integer max produces non-vectorizable CMoveI node. @IR(failOn = {IRNode.STORE_VECTOR}) public int reductionMax() { int res = Integer.MIN_VALUE; for (int i = 0; i < SIZE; i++) { res = Math.max(res, a[i]); } return res; } @Test // Note that integer min produces non-vectorizable CMoveI node. @IR(failOn = {IRNode.STORE_VECTOR}) public int reductionMin() { int res = Integer.MAX_VALUE; for (int i = 0; i < SIZE; i++) { res = Math.min(res, a[i]); } return res; } }