/* * Copyright (c) 1997, 2005, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #define ARENA_ALIGN_M1 (((size_t)(ARENA_AMALLOC_ALIGNMENT)) - 1) #define ARENA_ALIGN_MASK (~((size_t)ARENA_ALIGN_M1)) #define ARENA_ALIGN(x) ((((size_t)(x)) + ARENA_ALIGN_M1) & ARENA_ALIGN_MASK) // All classes in the virtual machine must be subclassed // by one of the following allocation classes: // // For objects allocated in the resource area (see resourceArea.hpp). // - ResourceObj // // For objects allocated in the C-heap (managed by: free & malloc). // - CHeapObj // // For objects allocated on the stack. // - StackObj // // For embedded objects. // - ValueObj // // For classes used as name spaces. // - AllStatic // // The printable subclasses are used for debugging and define virtual // member functions for printing. Classes that avoid allocating the // vtbl entries in the objects should therefore not be the printable // subclasses. // // The following macros and function should be used to allocate memory // directly in the resource area or in the C-heap: // // NEW_RESOURCE_ARRAY(type,size) // NEW_RESOURCE_OBJ(type) // NEW_C_HEAP_ARRAY(type,size) // NEW_C_HEAP_OBJ(type) // char* AllocateHeap(size_t size, const char* name); // void FreeHeap(void* p); // // C-heap allocation can be traced using +PrintHeapAllocation. // malloc and free should therefore never called directly. // Base class for objects allocated in the C-heap. // In non product mode we introduce a super class for all allocation classes // that supports printing. // We avoid the superclass in product mode since some C++ compilers add // a word overhead for empty super classes. #ifdef PRODUCT #define ALLOCATION_SUPER_CLASS_SPEC #else #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj class AllocatedObj { public: // Printing support void print() const; void print_value() const; virtual void print_on(outputStream* st) const; virtual void print_value_on(outputStream* st) const; }; #endif class CHeapObj ALLOCATION_SUPER_CLASS_SPEC { public: void* operator new(size_t size); void operator delete(void* p); void* new_array(size_t size); }; // Base class for objects allocated on the stack only. // Calling new or delete will result in fatal error. class StackObj ALLOCATION_SUPER_CLASS_SPEC { public: void* operator new(size_t size); void operator delete(void* p); }; // Base class for objects used as value objects. // Calling new or delete will result in fatal error. // // Portability note: Certain compilers (e.g. gcc) will // always make classes bigger if it has a superclass, even // if the superclass does not have any virtual methods or // instance fields. The HotSpot implementation relies on this // not to happen. So never make a ValueObj class a direct subclass // of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g., // like this: // // class A VALUE_OBJ_CLASS_SPEC { // ... // } // // With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can // be defined as a an empty string "". // class _ValueObj { public: void* operator new(size_t size); void operator delete(void* p); }; // Base class for classes that constitute name spaces. class AllStatic { public: AllStatic() { ShouldNotCallThis(); } ~AllStatic() { ShouldNotCallThis(); } }; //------------------------------Chunk------------------------------------------ // Linked list of raw memory chunks class Chunk: public CHeapObj { protected: Chunk* _next; // Next Chunk in list const size_t _len; // Size of this Chunk public: void* operator new(size_t size, size_t length); void operator delete(void* p); Chunk(size_t length); enum { // default sizes; make them slightly smaller than 2**k to guard against // buddy-system style malloc implementations #ifdef _LP64 slack = 40, // [RGV] Not sure if this is right, but make it // a multiple of 8. #else slack = 20, // suspected sizeof(Chunk) + internal malloc headers #endif init_size = 1*K - slack, // Size of first chunk medium_size= 10*K - slack, // Size of medium-sized chunk size = 32*K - slack, // Default size of an Arena chunk (following the first) non_pool_size = init_size + 32 // An initial size which is not one of above }; void chop(); // Chop this chunk void next_chop(); // Chop next chunk static size_t aligned_overhead_size(void) { return ARENA_ALIGN(sizeof(Chunk)); } size_t length() const { return _len; } Chunk* next() const { return _next; } void set_next(Chunk* n) { _next = n; } // Boundaries of data area (possibly unused) char* bottom() const { return ((char*) this) + aligned_overhead_size(); } char* top() const { return bottom() + _len; } bool contains(char* p) const { return bottom() <= p && p <= top(); } // Start the chunk_pool cleaner task static void start_chunk_pool_cleaner_task(); }; //------------------------------Arena------------------------------------------ // Fast allocation of memory class Arena: public CHeapObj { protected: friend class ResourceMark; friend class HandleMark; friend class NoHandleMark; Chunk *_first; // First chunk Chunk *_chunk; // current chunk char *_hwm, *_max; // High water mark and max in current chunk void* grow(size_t x); // Get a new Chunk of at least size x NOT_PRODUCT(size_t _size_in_bytes;) // Size of arena (used for memory usage tracing) NOT_PRODUCT(static size_t _bytes_allocated;) // total #bytes allocated since start friend class AllocStats; debug_only(void* malloc(size_t size);) debug_only(void* internal_malloc_4(size_t x);) public: Arena(); Arena(size_t init_size); Arena(Arena *old); ~Arena(); void destruct_contents(); char* hwm() const { return _hwm; } // Fast allocate in the arena. Common case is: pointer test + increment. void* Amalloc(size_t x) { assert(is_power_of_2(ARENA_AMALLOC_ALIGNMENT) , "should be a power of 2"); x = ARENA_ALIGN(x); debug_only(if (UseMallocOnly) return malloc(x);) NOT_PRODUCT(_bytes_allocated += x); if (_hwm + x > _max) { return grow(x); } else { char *old = _hwm; _hwm += x; return old; } } // Further assume size is padded out to words void *Amalloc_4(size_t x) { assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" ); debug_only(if (UseMallocOnly) return malloc(x);) NOT_PRODUCT(_bytes_allocated += x); if (_hwm + x > _max) { return grow(x); } else { char *old = _hwm; _hwm += x; return old; } } // Allocate with 'double' alignment. It is 8 bytes on sparc. // In other cases Amalloc_D() should be the same as Amalloc_4(). void* Amalloc_D(size_t x) { assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" ); debug_only(if (UseMallocOnly) return malloc(x);) #if defined(SPARC) && !defined(_LP64) #define DALIGN_M1 7 size_t delta = (((size_t)_hwm + DALIGN_M1) & ~DALIGN_M1) - (size_t)_hwm; x += delta; #endif NOT_PRODUCT(_bytes_allocated += x); if (_hwm + x > _max) { return grow(x); // grow() returns a result aligned >= 8 bytes. } else { char *old = _hwm; _hwm += x; #if defined(SPARC) && !defined(_LP64) old += delta; // align to 8-bytes #endif return old; } } // Fast delete in area. Common case is: NOP (except for storage reclaimed) void Afree(void *ptr, size_t size) { #ifdef ASSERT if (ZapResourceArea) memset(ptr, badResourceValue, size); // zap freed memory if (UseMallocOnly) return; #endif if (((char*)ptr) + size == _hwm) _hwm = (char*)ptr; } void *Arealloc( void *old_ptr, size_t old_size, size_t new_size ); // Move contents of this arena into an empty arena Arena *move_contents(Arena *empty_arena); // Determine if pointer belongs to this Arena or not. bool contains( const void *ptr ) const; // Total of all chunks in use (not thread-safe) size_t used() const; // Total # of bytes used size_t size_in_bytes() const NOT_PRODUCT({ return _size_in_bytes; }) PRODUCT_RETURN0; void set_size_in_bytes(size_t size) NOT_PRODUCT({ _size_in_bytes = size; }) PRODUCT_RETURN; static void free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) PRODUCT_RETURN; static void free_all(char** start, char** end) PRODUCT_RETURN; private: // Reset this Arena to empty, access will trigger grow if necessary void reset(void) { _first = _chunk = NULL; _hwm = _max = NULL; } }; // One of the following macros must be used when allocating // an array or object from an arena #define NEW_ARENA_ARRAY(arena, type, size)\ (type*) arena->Amalloc((size) * sizeof(type)) #define REALLOC_ARENA_ARRAY(arena, type, old, old_size, new_size)\ (type*) arena->Arealloc((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type) ) #define FREE_ARENA_ARRAY(arena, type, old, size)\ arena->Afree((char*)(old), (size) * sizeof(type)) #define NEW_ARENA_OBJ(arena, type)\ NEW_ARENA_ARRAY(arena, type, 1) //%note allocation_1 extern char* resource_allocate_bytes(size_t size); extern char* resource_allocate_bytes(Thread* thread, size_t size); extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size); extern void resource_free_bytes( char *old, size_t size ); //---------------------------------------------------------------------- // Base class for objects allocated in the resource area per default. // Optionally, objects may be allocated on the C heap with // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena) // ResourceObj's can be allocated within other objects, but don't use // new or delete (allocation_type is unknown). If new is used to allocate, // use delete to deallocate. class ResourceObj ALLOCATION_SUPER_CLASS_SPEC { public: enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 }; #ifdef ASSERT private: // When this object is allocated on stack the new() operator is not // called but garbage on stack may look like a valid allocation_type. // Store negated 'this' pointer when new() is called to distinguish cases. uintptr_t _allocation; public: static void set_allocation_type(address res, allocation_type type); allocation_type get_allocation_type(); bool allocated_on_stack() { return get_allocation_type() == STACK_OR_EMBEDDED; } bool allocated_on_res_area() { return get_allocation_type() == RESOURCE_AREA; } bool allocated_on_C_heap() { return get_allocation_type() == C_HEAP; } bool allocated_on_arena() { return get_allocation_type() == ARENA; } ResourceObj(); // default construtor ResourceObj(const ResourceObj& r); // default copy construtor ResourceObj& operator=(const ResourceObj& r); // default copy assignment ~ResourceObj(); #endif // ASSERT public: void* operator new(size_t size, allocation_type type); void* operator new(size_t size, Arena *arena) { address res = (address)arena->Amalloc(size); DEBUG_ONLY(set_allocation_type(res, ARENA);) return res; } void* operator new(size_t size) { address res = (address)resource_allocate_bytes(size); DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);) return res; } void* operator new(size_t size, void* where, allocation_type type) { address res = (address)where; DEBUG_ONLY(set_allocation_type(res, type);) return res; } void operator delete(void* p); }; // One of the following macros must be used when allocating an array // or object to determine whether it should reside in the C heap on in // the resource area. #define NEW_RESOURCE_ARRAY(type, size)\ (type*) resource_allocate_bytes((size) * sizeof(type)) #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\ (type*) resource_allocate_bytes(thread, (size) * sizeof(type)) #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\ (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type) ) #define FREE_RESOURCE_ARRAY(type, old, size)\ resource_free_bytes((char*)(old), (size) * sizeof(type)) #define FREE_FAST(old)\ /* nop */ #define NEW_RESOURCE_OBJ(type)\ NEW_RESOURCE_ARRAY(type, 1) #define NEW_C_HEAP_ARRAY(type, size)\ (type*) (AllocateHeap((size) * sizeof(type), XSTR(type) " in " __FILE__)) #define REALLOC_C_HEAP_ARRAY(type, old, size)\ (type*) (ReallocateHeap((char*)old, (size) * sizeof(type), XSTR(type) " in " __FILE__)) #define FREE_C_HEAP_ARRAY(type,old) \ FreeHeap((char*)(old)) #define NEW_C_HEAP_OBJ(type)\ NEW_C_HEAP_ARRAY(type, 1) extern bool warn_new_operator; // for statistics #ifndef PRODUCT class AllocStats : StackObj { int start_mallocs, start_frees; size_t start_malloc_bytes, start_res_bytes; public: AllocStats(); int num_mallocs(); // since creation of receiver size_t alloc_bytes(); size_t resource_bytes(); int num_frees(); void print(); }; #endif //------------------------------ReallocMark--------------------------------- // Code which uses REALLOC_RESOURCE_ARRAY should check an associated // ReallocMark, which is declared in the same scope as the reallocated // pointer. Any operation that could __potentially__ cause a reallocation // should check the ReallocMark. class ReallocMark: public StackObj { protected: NOT_PRODUCT(int _nesting;) public: ReallocMark() PRODUCT_RETURN; void check() PRODUCT_RETURN; };