/* * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "compiler/compileLog.hpp" #include "libadt/vectset.hpp" #include "memory/allocation.inline.hpp" #include "memory/resourceArea.hpp" #include "opto/addnode.hpp" #include "opto/callnode.hpp" #include "opto/castnode.hpp" #include "opto/convertnode.hpp" #include "opto/divnode.hpp" #include "opto/matcher.hpp" #include "opto/memnode.hpp" #include "opto/mulnode.hpp" #include "opto/opcodes.hpp" #include "opto/opaquenode.hpp" #include "opto/superword.hpp" #include "opto/vectornode.hpp" #include "opto/movenode.hpp" // // S U P E R W O R D T R A N S F O R M //============================================================================= //------------------------------SuperWord--------------------------- SuperWord::SuperWord(PhaseIdealLoop* phase) : _phase(phase), _arena(phase->C->comp_arena()), _igvn(phase->_igvn), _packset(arena(), 8, 0, NULL), // packs for the current block _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb _block(arena(), 8, 0, NULL), // nodes in current block _post_block(arena(), 8, 0, NULL), // nodes common to current block which are marked as post loop vectorizable _data_entry(arena(), 8, 0, NULL), // nodes with all inputs from outside _mem_slice_head(arena(), 8, 0, NULL), // memory slice heads _mem_slice_tail(arena(), 8, 0, NULL), // memory slice tails _node_info(arena(), 8, 0, SWNodeInfo::initial), // info needed per node _clone_map(phase->C->clone_map()), // map of nodes created in cloning _cmovev_kit(_arena, this), // map to facilitate CMoveV creation _align_to_ref(NULL), // memory reference to align vectors to _disjoint_ptrs(arena(), 8, 0, OrderedPair::initial), // runtime disambiguated pointer pairs _dg(_arena), // dependence graph _visited(arena()), // visited node set _post_visited(arena()), // post visited node set _n_idx_list(arena(), 8), // scratch list of (node,index) pairs _nlist(arena(), 8, 0, NULL), // scratch list of nodes _stk(arena(), 8, 0, NULL), // scratch stack of nodes _lpt(NULL), // loop tree node _lp(NULL), // LoopNode _bb(NULL), // basic block _iv(NULL), // induction var _race_possible(false), // cases where SDMU is true _early_return(true), // analysis evaluations routine _do_vector_loop(phase->C->do_vector_loop()), // whether to do vectorization/simd style _do_reserve_copy(DoReserveCopyInSuperWord), _num_work_vecs(0), // amount of vector work we have _num_reductions(0), // amount of reduction work we have _ii_first(-1), // first loop generation index - only if do_vector_loop() _ii_last(-1), // last loop generation index - only if do_vector_loop() _ii_order(arena(), 8, 0, 0) { #ifndef PRODUCT _vector_loop_debug = 0; if (_phase->C->method() != NULL) { _vector_loop_debug = phase->C->directive()->VectorizeDebugOption; } #endif } //------------------------------transform_loop--------------------------- void SuperWord::transform_loop(IdealLoopTree* lpt, bool do_optimization) { assert(UseSuperWord, "should be"); // Do vectors exist on this architecture? if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return; assert(lpt->_head->is_CountedLoop(), "must be"); CountedLoopNode *cl = lpt->_head->as_CountedLoop(); if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()); if (post_loop_allowed) { if (cl->is_reduction_loop()) return; // no predication mapping Node *limit = cl->limit(); if (limit->is_Con()) return; // non constant limits only // Now check the limit for expressions we do not handle if (limit->is_Add()) { Node *in2 = limit->in(2); if (in2->is_Con()) { int val = in2->get_int(); // should not try to program these cases if (val < 0) return; } } } // skip any loop that has not been assigned max unroll by analysis if (do_optimization) { if (SuperWordLoopUnrollAnalysis && cl->slp_max_unroll() == 0) return; } // Check for no control flow in body (other than exit) Node *cl_exit = cl->loopexit(); if (cl->is_main_loop() && (cl_exit->in(0) != lpt->_head)) { #ifndef PRODUCT if (TraceSuperWord) { tty->print_cr("SuperWord::transform_loop: loop too complicated, cl_exit->in(0) != lpt->_head"); tty->print("cl_exit %d", cl_exit->_idx); cl_exit->dump(); tty->print("cl_exit->in(0) %d", cl_exit->in(0)->_idx); cl_exit->in(0)->dump(); tty->print("lpt->_head %d", lpt->_head->_idx); lpt->_head->dump(); lpt->dump_head(); } #endif return; } // Make sure the are no extra control users of the loop backedge if (cl->back_control()->outcnt() != 1) { return; } // Skip any loops already optimized by slp if (cl->is_vectorized_loop()) return; if (cl->do_unroll_only()) return; if (cl->is_main_loop()) { // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit)))) CountedLoopEndNode* pre_end = get_pre_loop_end(cl); if (pre_end == NULL) return; Node *pre_opaq1 = pre_end->limit(); if (pre_opaq1->Opcode() != Op_Opaque1) return; } init(); // initialize data structures set_lpt(lpt); set_lp(cl); // For now, define one block which is the entire loop body set_bb(cl); if (do_optimization) { assert(_packset.length() == 0, "packset must be empty"); SLP_extract(); if (PostLoopMultiversioning && Matcher::has_predicated_vectors()) { if (cl->is_vectorized_loop() && cl->is_main_loop() && !cl->is_reduction_loop()) { IdealLoopTree *lpt_next = lpt->_next; CountedLoopNode *cl_next = lpt_next->_head->as_CountedLoop(); _phase->has_range_checks(lpt_next); if (cl_next->is_post_loop() && !cl_next->range_checks_present()) { if (!cl_next->is_vectorized_loop()) { int slp_max_unroll_factor = cl->slp_max_unroll(); cl_next->set_slp_max_unroll(slp_max_unroll_factor); } } } } } } //------------------------------early unrolling analysis------------------------------ void SuperWord::unrolling_analysis(int &local_loop_unroll_factor) { bool is_slp = true; ResourceMark rm; size_t ignored_size = lpt()->_body.size(); int *ignored_loop_nodes = NEW_RESOURCE_ARRAY(int, ignored_size); Node_Stack nstack((int)ignored_size); CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); Node *cl_exit = cl->loopexit_or_null(); int rpo_idx = _post_block.length(); assert(rpo_idx == 0, "post loop block is empty"); // First clear the entries for (uint i = 0; i < lpt()->_body.size(); i++) { ignored_loop_nodes[i] = -1; } int max_vector = Matcher::max_vector_size(T_BYTE); bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()); // Process the loop, some/all of the stack entries will not be in order, ergo // need to preprocess the ignored initial state before we process the loop for (uint i = 0; i < lpt()->_body.size(); i++) { Node* n = lpt()->_body.at(i); if (n == cl->incr() || n->is_reduction() || n->is_AddP() || n->is_Cmp() || n->is_IfTrue() || n->is_CountedLoop() || (n == cl_exit)) { ignored_loop_nodes[i] = n->_idx; continue; } if (n->is_If()) { IfNode *iff = n->as_If(); if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) { if (lpt()->is_loop_exit(iff)) { ignored_loop_nodes[i] = n->_idx; continue; } } } if (n->is_Phi() && (n->bottom_type() == Type::MEMORY)) { Node* n_tail = n->in(LoopNode::LoopBackControl); if (n_tail != n->in(LoopNode::EntryControl)) { if (!n_tail->is_Mem()) { is_slp = false; break; } } } // This must happen after check of phi/if if (n->is_Phi() || n->is_If()) { ignored_loop_nodes[i] = n->_idx; continue; } if (n->is_LoadStore() || n->is_MergeMem() || (n->is_Proj() && !n->as_Proj()->is_CFG())) { is_slp = false; break; } // Ignore nodes with non-primitive type. BasicType bt; if (n->is_Mem()) { bt = n->as_Mem()->memory_type(); } else { bt = n->bottom_type()->basic_type(); } if (is_java_primitive(bt) == false) { ignored_loop_nodes[i] = n->_idx; continue; } if (n->is_Mem()) { MemNode* current = n->as_Mem(); Node* adr = n->in(MemNode::Address); Node* n_ctrl = _phase->get_ctrl(adr); // save a queue of post process nodes if (n_ctrl != NULL && lpt()->is_member(_phase->get_loop(n_ctrl))) { // Process the memory expression int stack_idx = 0; bool have_side_effects = true; if (adr->is_AddP() == false) { nstack.push(adr, stack_idx++); } else { // Mark the components of the memory operation in nstack SWPointer p1(current, this, &nstack, true); have_side_effects = p1.node_stack()->is_nonempty(); } // Process the pointer stack while (have_side_effects) { Node* pointer_node = nstack.node(); for (uint j = 0; j < lpt()->_body.size(); j++) { Node* cur_node = lpt()->_body.at(j); if (cur_node == pointer_node) { ignored_loop_nodes[j] = cur_node->_idx; break; } } nstack.pop(); have_side_effects = nstack.is_nonempty(); } } } } if (is_slp) { // Now we try to find the maximum supported consistent vector which the machine // description can use bool small_basic_type = false; bool flag_small_bt = false; for (uint i = 0; i < lpt()->_body.size(); i++) { if (ignored_loop_nodes[i] != -1) continue; BasicType bt; Node* n = lpt()->_body.at(i); if (n->is_Mem()) { bt = n->as_Mem()->memory_type(); } else { bt = n->bottom_type()->basic_type(); } if (post_loop_allowed) { if (!small_basic_type) { switch (bt) { case T_CHAR: case T_BYTE: case T_SHORT: small_basic_type = true; break; case T_LONG: // TODO: Remove when support completed for mask context with LONG. // Support needs to be augmented for logical qword operations, currently we map to dword // buckets for vectors on logicals as these were legacy. small_basic_type = true; break; default: break; } } } if (is_java_primitive(bt) == false) continue; int cur_max_vector = Matcher::max_vector_size(bt); // If a max vector exists which is not larger than _local_loop_unroll_factor // stop looking, we already have the max vector to map to. if (cur_max_vector < local_loop_unroll_factor) { is_slp = false; if (TraceSuperWordLoopUnrollAnalysis) { tty->print_cr("slp analysis fails: unroll limit greater than max vector\n"); } break; } // Map the maximal common vector if (VectorNode::implemented(n->Opcode(), cur_max_vector, bt)) { if (cur_max_vector < max_vector && !flag_small_bt) { max_vector = cur_max_vector; } else if (cur_max_vector > max_vector && UseSubwordForMaxVector) { // Analyse subword in the loop to set maximum vector size to take advantage of full vector width for subword types. // Here we analyze if narrowing is likely to happen and if it is we set vector size more aggressively. // We check for possibility of narrowing by looking through chain operations using subword types. if (is_subword_type(bt)) { uint start, end; VectorNode::vector_operands(n, &start, &end); for (uint j = start; j < end; j++) { Node* in = n->in(j); // Don't propagate through a memory if (!in->is_Mem() && in_bb(in) && in->bottom_type()->basic_type() == T_INT) { bool same_type = true; for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) { Node *use = in->fast_out(k); if (!in_bb(use) && use->bottom_type()->basic_type() != bt) { same_type = false; break; } } if (same_type) { max_vector = cur_max_vector; flag_small_bt = true; cl->mark_subword_loop(); } } } } } // We only process post loops on predicated targets where we want to // mask map the loop to a single iteration if (post_loop_allowed) { _post_block.at_put_grow(rpo_idx++, n); } } } if (is_slp) { local_loop_unroll_factor = max_vector; cl->mark_passed_slp(); } cl->mark_was_slp(); if (cl->is_main_loop()) { cl->set_slp_max_unroll(local_loop_unroll_factor); } else if (post_loop_allowed) { if (!small_basic_type) { // avoid replication context for small basic types in programmable masked loops cl->set_slp_max_unroll(local_loop_unroll_factor); } } } } //------------------------------SLP_extract--------------------------- // Extract the superword level parallelism // // 1) A reverse post-order of nodes in the block is constructed. By scanning // this list from first to last, all definitions are visited before their uses. // // 2) A point-to-point dependence graph is constructed between memory references. // This simplies the upcoming "independence" checker. // // 3) The maximum depth in the node graph from the beginning of the block // to each node is computed. This is used to prune the graph search // in the independence checker. // // 4) For integer types, the necessary bit width is propagated backwards // from stores to allow packed operations on byte, char, and short // integers. This reverses the promotion to type "int" that javac // did for operations like: char c1,c2,c3; c1 = c2 + c3. // // 5) One of the memory references is picked to be an aligned vector reference. // The pre-loop trip count is adjusted to align this reference in the // unrolled body. // // 6) The initial set of pack pairs is seeded with memory references. // // 7) The set of pack pairs is extended by following use->def and def->use links. // // 8) The pairs are combined into vector sized packs. // // 9) Reorder the memory slices to co-locate members of the memory packs. // // 10) Generate ideal vector nodes for the final set of packs and where necessary, // inserting scalar promotion, vector creation from multiple scalars, and // extraction of scalar values from vectors. // void SuperWord::SLP_extract() { #ifndef PRODUCT if (_do_vector_loop && TraceSuperWord) { tty->print("SuperWord::SLP_extract\n"); tty->print("input loop\n"); _lpt->dump_head(); _lpt->dump(); for (uint i = 0; i < _lpt->_body.size(); i++) { _lpt->_body.at(i)->dump(); } } #endif // Ready the block if (!construct_bb()) { return; // Exit if no interesting nodes or complex graph. } // build _dg, _disjoint_ptrs dependence_graph(); // compute function depth(Node*) compute_max_depth(); CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()); if (cl->is_main_loop()) { if (_do_vector_loop) { if (mark_generations() != -1) { hoist_loads_in_graph(); // this only rebuild the graph; all basic structs need rebuild explicitly if (!construct_bb()) { return; // Exit if no interesting nodes or complex graph. } dependence_graph(); compute_max_depth(); } #ifndef PRODUCT if (TraceSuperWord) { tty->print_cr("\nSuperWord::_do_vector_loop: graph after hoist_loads_in_graph"); _lpt->dump_head(); for (int j = 0; j < _block.length(); j++) { Node* n = _block.at(j); int d = depth(n); for (int i = 0; i < d; i++) tty->print("%s", " "); tty->print("%d :", d); n->dump(); } } #endif } compute_vector_element_type(); // Attempt vectorization find_adjacent_refs(); extend_packlist(); if (_do_vector_loop) { if (_packset.length() == 0) { if (TraceSuperWord) { tty->print_cr("\nSuperWord::_do_vector_loop DFA could not build packset, now trying to build anyway"); } pack_parallel(); } } combine_packs(); construct_my_pack_map(); if (UseVectorCmov) { merge_packs_to_cmovd(); } filter_packs(); schedule(); } else if (post_loop_allowed) { int saved_mapped_unroll_factor = cl->slp_max_unroll(); if (saved_mapped_unroll_factor) { int vector_mapped_unroll_factor = saved_mapped_unroll_factor; // now reset the slp_unroll_factor so that we can check the analysis mapped // what the vector loop was mapped to cl->set_slp_max_unroll(0); // do the analysis on the post loop unrolling_analysis(vector_mapped_unroll_factor); // if our analyzed loop is a canonical fit, start processing it if (vector_mapped_unroll_factor == saved_mapped_unroll_factor) { // now add the vector nodes to packsets for (int i = 0; i < _post_block.length(); i++) { Node* n = _post_block.at(i); Node_List* singleton = new Node_List(); singleton->push(n); _packset.append(singleton); set_my_pack(n, singleton); } // map base types for vector usage compute_vector_element_type(); } else { return; } } else { // for some reason we could not map the slp analysis state of the vectorized loop return; } } output(); } //------------------------------find_adjacent_refs--------------------------- // Find the adjacent memory references and create pack pairs for them. // This is the initial set of packs that will then be extended by // following use->def and def->use links. The align positions are // assigned relative to the reference "align_to_ref" void SuperWord::find_adjacent_refs() { // Get list of memory operations Node_List memops; for (int i = 0; i < _block.length(); i++) { Node* n = _block.at(i); if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) && is_java_primitive(n->as_Mem()->memory_type())) { int align = memory_alignment(n->as_Mem(), 0); if (align != bottom_align) { memops.push(n); } } } Node_List align_to_refs; int best_iv_adjustment = 0; MemNode* best_align_to_mem_ref = NULL; while (memops.size() != 0) { // Find a memory reference to align to. MemNode* mem_ref = find_align_to_ref(memops); if (mem_ref == NULL) break; align_to_refs.push(mem_ref); int iv_adjustment = get_iv_adjustment(mem_ref); if (best_align_to_mem_ref == NULL) { // Set memory reference which is the best from all memory operations // to be used for alignment. The pre-loop trip count is modified to align // this reference to a vector-aligned address. best_align_to_mem_ref = mem_ref; best_iv_adjustment = iv_adjustment; NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);) } SWPointer align_to_ref_p(mem_ref, this, NULL, false); // Set alignment relative to "align_to_ref" for all related memory operations. for (int i = memops.size() - 1; i >= 0; i--) { MemNode* s = memops.at(i)->as_Mem(); if (isomorphic(s, mem_ref) && (!_do_vector_loop || same_origin_idx(s, mem_ref))) { SWPointer p2(s, this, NULL, false); if (p2.comparable(align_to_ref_p)) { int align = memory_alignment(s, iv_adjustment); set_alignment(s, align); } } } // Create initial pack pairs of memory operations for which // alignment is set and vectors will be aligned. bool create_pack = true; if (memory_alignment(mem_ref, best_iv_adjustment) == 0 || _do_vector_loop) { if (!Matcher::misaligned_vectors_ok()) { int vw = vector_width(mem_ref); int vw_best = vector_width(best_align_to_mem_ref); if (vw > vw_best) { // Do not vectorize a memory access with more elements per vector // if unaligned memory access is not allowed because number of // iterations in pre-loop will be not enough to align it. create_pack = false; } else { SWPointer p2(best_align_to_mem_ref, this, NULL, false); if (align_to_ref_p.invar() != p2.invar()) { // Do not vectorize memory accesses with different invariants // if unaligned memory accesses are not allowed. create_pack = false; } } } } else { if (same_velt_type(mem_ref, best_align_to_mem_ref)) { // Can't allow vectorization of unaligned memory accesses with the // same type since it could be overlapped accesses to the same array. create_pack = false; } else { // Allow independent (different type) unaligned memory operations // if HW supports them. if (!Matcher::misaligned_vectors_ok()) { create_pack = false; } else { // Check if packs of the same memory type but // with a different alignment were created before. for (uint i = 0; i < align_to_refs.size(); i++) { MemNode* mr = align_to_refs.at(i)->as_Mem(); if (mr == mem_ref) { // Skip when we are looking at same memory operation. continue; } if (same_velt_type(mr, mem_ref) && memory_alignment(mr, iv_adjustment) != 0) create_pack = false; } } } } if (create_pack) { for (uint i = 0; i < memops.size(); i++) { Node* s1 = memops.at(i); int align = alignment(s1); if (align == top_align) continue; for (uint j = 0; j < memops.size(); j++) { Node* s2 = memops.at(j); if (alignment(s2) == top_align) continue; if (s1 != s2 && are_adjacent_refs(s1, s2)) { if (stmts_can_pack(s1, s2, align)) { Node_List* pair = new Node_List(); pair->push(s1); pair->push(s2); if (!_do_vector_loop || same_origin_idx(s1, s2)) { _packset.append(pair); } } } } } } else { // Don't create unaligned pack // First, remove remaining memory ops of the same type from the list. for (int i = memops.size() - 1; i >= 0; i--) { MemNode* s = memops.at(i)->as_Mem(); if (same_velt_type(s, mem_ref)) { memops.remove(i); } } // Second, remove already constructed packs of the same type. for (int i = _packset.length() - 1; i >= 0; i--) { Node_List* p = _packset.at(i); MemNode* s = p->at(0)->as_Mem(); if (same_velt_type(s, mem_ref)) { remove_pack_at(i); } } // If needed find the best memory reference for loop alignment again. if (same_velt_type(mem_ref, best_align_to_mem_ref)) { // Put memory ops from remaining packs back on memops list for // the best alignment search. uint orig_msize = memops.size(); for (int i = 0; i < _packset.length(); i++) { Node_List* p = _packset.at(i); MemNode* s = p->at(0)->as_Mem(); assert(!same_velt_type(s, mem_ref), "sanity"); memops.push(s); } best_align_to_mem_ref = find_align_to_ref(memops); if (best_align_to_mem_ref == NULL) { if (TraceSuperWord) { tty->print_cr("SuperWord::find_adjacent_refs(): best_align_to_mem_ref == NULL"); } break; } best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref); NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);) // Restore list. while (memops.size() > orig_msize) (void)memops.pop(); } } // unaligned memory accesses // Remove used mem nodes. for (int i = memops.size() - 1; i >= 0; i--) { MemNode* m = memops.at(i)->as_Mem(); if (alignment(m) != top_align) { memops.remove(i); } } } // while (memops.size() != 0 set_align_to_ref(best_align_to_mem_ref); if (TraceSuperWord) { tty->print_cr("\nAfter find_adjacent_refs"); print_packset(); } } #ifndef PRODUCT void SuperWord::find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment) { if (is_trace_adjacent()) { tty->print("SuperWord::find_adjacent_refs best_align_to_mem_ref = %d, best_iv_adjustment = %d", best_align_to_mem_ref->_idx, best_iv_adjustment); best_align_to_mem_ref->dump(); } } #endif //------------------------------find_align_to_ref--------------------------- // Find a memory reference to align the loop induction variable to. // Looks first at stores then at loads, looking for a memory reference // with the largest number of references similar to it. MemNode* SuperWord::find_align_to_ref(Node_List &memops) { GrowableArray cmp_ct(arena(), memops.size(), memops.size(), 0); // Count number of comparable memory ops for (uint i = 0; i < memops.size(); i++) { MemNode* s1 = memops.at(i)->as_Mem(); SWPointer p1(s1, this, NULL, false); // Discard if pre loop can't align this reference if (!ref_is_alignable(p1)) { *cmp_ct.adr_at(i) = 0; continue; } for (uint j = i+1; j < memops.size(); j++) { MemNode* s2 = memops.at(j)->as_Mem(); if (isomorphic(s1, s2)) { SWPointer p2(s2, this, NULL, false); if (p1.comparable(p2)) { (*cmp_ct.adr_at(i))++; (*cmp_ct.adr_at(j))++; } } } } // Find Store (or Load) with the greatest number of "comparable" references, // biggest vector size, smallest data size and smallest iv offset. int max_ct = 0; int max_vw = 0; int max_idx = -1; int min_size = max_jint; int min_iv_offset = max_jint; for (uint j = 0; j < memops.size(); j++) { MemNode* s = memops.at(j)->as_Mem(); if (s->is_Store()) { int vw = vector_width_in_bytes(s); assert(vw > 1, "sanity"); SWPointer p(s, this, NULL, false); if ( cmp_ct.at(j) > max_ct || (cmp_ct.at(j) == max_ct && ( vw > max_vw || (vw == max_vw && ( data_size(s) < min_size || (data_size(s) == min_size && p.offset_in_bytes() < min_iv_offset)))))) { max_ct = cmp_ct.at(j); max_vw = vw; max_idx = j; min_size = data_size(s); min_iv_offset = p.offset_in_bytes(); } } } // If no stores, look at loads if (max_ct == 0) { for (uint j = 0; j < memops.size(); j++) { MemNode* s = memops.at(j)->as_Mem(); if (s->is_Load()) { int vw = vector_width_in_bytes(s); assert(vw > 1, "sanity"); SWPointer p(s, this, NULL, false); if ( cmp_ct.at(j) > max_ct || (cmp_ct.at(j) == max_ct && ( vw > max_vw || (vw == max_vw && ( data_size(s) < min_size || (data_size(s) == min_size && p.offset_in_bytes() < min_iv_offset)))))) { max_ct = cmp_ct.at(j); max_vw = vw; max_idx = j; min_size = data_size(s); min_iv_offset = p.offset_in_bytes(); } } } } #ifdef ASSERT if (TraceSuperWord && Verbose) { tty->print_cr("\nVector memops after find_align_to_ref"); for (uint i = 0; i < memops.size(); i++) { MemNode* s = memops.at(i)->as_Mem(); s->dump(); } } #endif if (max_ct > 0) { #ifdef ASSERT if (TraceSuperWord) { tty->print("\nVector align to node: "); memops.at(max_idx)->as_Mem()->dump(); } #endif return memops.at(max_idx)->as_Mem(); } return NULL; } //------------------span_works_for_memory_size----------------------------- static bool span_works_for_memory_size(MemNode* mem, int span, int mem_size, int offset) { bool span_matches_memory = false; if ((mem_size == type2aelembytes(T_BYTE) || mem_size == type2aelembytes(T_SHORT)) && ABS(span) == type2aelembytes(T_INT)) { // There is a mismatch on span size compared to memory. for (DUIterator_Fast jmax, j = mem->fast_outs(jmax); j < jmax; j++) { Node* use = mem->fast_out(j); if (!VectorNode::is_type_transition_to_int(use)) { return false; } } // If all uses transition to integer, it means that we can successfully align even on mismatch. return true; } else { span_matches_memory = ABS(span) == mem_size; } return span_matches_memory && (ABS(offset) % mem_size) == 0; } //------------------------------ref_is_alignable--------------------------- // Can the preloop align the reference to position zero in the vector? bool SuperWord::ref_is_alignable(SWPointer& p) { if (!p.has_iv()) { return true; // no induction variable } CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop()); assert(pre_end != NULL, "we must have a correct pre-loop"); assert(pre_end->stride_is_con(), "pre loop stride is constant"); int preloop_stride = pre_end->stride_con(); int span = preloop_stride * p.scale_in_bytes(); int mem_size = p.memory_size(); int offset = p.offset_in_bytes(); // Stride one accesses are alignable if offset is aligned to memory operation size. // Offset can be unaligned when UseUnalignedAccesses is used. if (span_works_for_memory_size(p.mem(), span, mem_size, offset)) { return true; } // If the initial offset from start of the object is computable, // check if the pre-loop can align the final offset accordingly. // // In other words: Can we find an i such that the offset // after i pre-loop iterations is aligned to vw? // (init_offset + pre_loop) % vw == 0 (1) // where // pre_loop = i * span // is the number of bytes added to the offset by i pre-loop iterations. // // For this to hold we need pre_loop to increase init_offset by // pre_loop = vw - (init_offset % vw) // // This is only possible if pre_loop is divisible by span because each // pre-loop iteration increases the initial offset by 'span' bytes: // (vw - (init_offset % vw)) % span == 0 // int vw = vector_width_in_bytes(p.mem()); assert(vw > 1, "sanity"); Node* init_nd = pre_end->init_trip(); if (init_nd->is_Con() && p.invar() == NULL) { int init = init_nd->bottom_type()->is_int()->get_con(); int init_offset = init * p.scale_in_bytes() + offset; if (init_offset < 0) { // negative offset from object start? return false; // may happen in dead loop } if (vw % span == 0) { // If vm is a multiple of span, we use formula (1). if (span > 0) { return (vw - (init_offset % vw)) % span == 0; } else { assert(span < 0, "nonzero stride * scale"); return (init_offset % vw) % -span == 0; } } else if (span % vw == 0) { // If span is a multiple of vw, we can simplify formula (1) to: // (init_offset + i * span) % vw == 0 // => // (init_offset % vw) + ((i * span) % vw) == 0 // => // init_offset % vw == 0 // // Because we add a multiple of vw to the initial offset, the final // offset is a multiple of vw if and only if init_offset is a multiple. // return (init_offset % vw) == 0; } } return false; } //---------------------------get_vw_bytes_special------------------------ int SuperWord::get_vw_bytes_special(MemNode* s) { // Get the vector width in bytes. int vw = vector_width_in_bytes(s); // Check for special case where there is an MulAddS2I usage where short vectors are going to need combined. BasicType btype = velt_basic_type(s); if (type2aelembytes(btype) == 2) { bool should_combine_adjacent = true; for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) { Node* user = s->fast_out(i); if (!VectorNode::is_muladds2i(user)) { should_combine_adjacent = false; } } if (should_combine_adjacent) { vw = MIN2(Matcher::max_vector_size(btype)*type2aelembytes(btype), vw * 2); } } return vw; } //---------------------------get_iv_adjustment--------------------------- // Calculate loop's iv adjustment for this memory ops. int SuperWord::get_iv_adjustment(MemNode* mem_ref) { SWPointer align_to_ref_p(mem_ref, this, NULL, false); int offset = align_to_ref_p.offset_in_bytes(); int scale = align_to_ref_p.scale_in_bytes(); int elt_size = align_to_ref_p.memory_size(); int vw = get_vw_bytes_special(mem_ref); assert(vw > 1, "sanity"); int iv_adjustment; if (scale != 0) { int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1; // At least one iteration is executed in pre-loop by default. As result // several iterations are needed to align memory operations in main-loop even // if offset is 0. int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw)); assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0), "(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size); iv_adjustment = iv_adjustment_in_bytes/elt_size; } else { // This memory op is not dependent on iv (scale == 0) iv_adjustment = 0; } #ifndef PRODUCT if (TraceSuperWord) { tty->print("SuperWord::get_iv_adjustment: n = %d, noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d: ", mem_ref->_idx, offset, iv_adjustment, elt_size, scale, iv_stride(), vw); mem_ref->dump(); } #endif return iv_adjustment; } //---------------------------dependence_graph--------------------------- // Construct dependency graph. // Add dependence edges to load/store nodes for memory dependence // A.out()->DependNode.in(1) and DependNode.out()->B.prec(x) void SuperWord::dependence_graph() { CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); // First, assign a dependence node to each memory node for (int i = 0; i < _block.length(); i++ ) { Node *n = _block.at(i); if (n->is_Mem() || (n->is_Phi() && n->bottom_type() == Type::MEMORY)) { _dg.make_node(n); } } // For each memory slice, create the dependences for (int i = 0; i < _mem_slice_head.length(); i++) { Node* n = _mem_slice_head.at(i); Node* n_tail = _mem_slice_tail.at(i); // Get slice in predecessor order (last is first) if (cl->is_main_loop()) { mem_slice_preds(n_tail, n, _nlist); } #ifndef PRODUCT if(TraceSuperWord && Verbose) { tty->print_cr("SuperWord::dependence_graph: built a new mem slice"); for (int j = _nlist.length() - 1; j >= 0 ; j--) { _nlist.at(j)->dump(); } } #endif // Make the slice dependent on the root DepMem* slice = _dg.dep(n); _dg.make_edge(_dg.root(), slice); // Create a sink for the slice DepMem* slice_sink = _dg.make_node(NULL); _dg.make_edge(slice_sink, _dg.tail()); // Now visit each pair of memory ops, creating the edges for (int j = _nlist.length() - 1; j >= 0 ; j--) { Node* s1 = _nlist.at(j); // If no dependency yet, use slice if (_dg.dep(s1)->in_cnt() == 0) { _dg.make_edge(slice, s1); } SWPointer p1(s1->as_Mem(), this, NULL, false); bool sink_dependent = true; for (int k = j - 1; k >= 0; k--) { Node* s2 = _nlist.at(k); if (s1->is_Load() && s2->is_Load()) continue; SWPointer p2(s2->as_Mem(), this, NULL, false); int cmp = p1.cmp(p2); if (SuperWordRTDepCheck && p1.base() != p2.base() && p1.valid() && p2.valid()) { // Create a runtime check to disambiguate OrderedPair pp(p1.base(), p2.base()); _disjoint_ptrs.append_if_missing(pp); } else if (!SWPointer::not_equal(cmp)) { // Possibly same address _dg.make_edge(s1, s2); sink_dependent = false; } } if (sink_dependent) { _dg.make_edge(s1, slice_sink); } } if (TraceSuperWord) { tty->print_cr("\nDependence graph for slice: %d", n->_idx); for (int q = 0; q < _nlist.length(); q++) { _dg.print(_nlist.at(q)); } tty->cr(); } _nlist.clear(); } if (TraceSuperWord) { tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE"); for (int r = 0; r < _disjoint_ptrs.length(); r++) { _disjoint_ptrs.at(r).print(); tty->cr(); } tty->cr(); } } //---------------------------mem_slice_preds--------------------------- // Return a memory slice (node list) in predecessor order starting at "start" void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray &preds) { assert(preds.length() == 0, "start empty"); Node* n = start; Node* prev = NULL; while (true) { NOT_PRODUCT( if(is_trace_mem_slice()) tty->print_cr("SuperWord::mem_slice_preds: n %d", n->_idx);) assert(in_bb(n), "must be in block"); for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { Node* out = n->fast_out(i); if (out->is_Load()) { if (in_bb(out)) { preds.push(out); if (TraceSuperWord && Verbose) { tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", out->_idx); } } } else { // FIXME if (out->is_MergeMem() && !in_bb(out)) { // Either unrolling is causing a memory edge not to disappear, // or need to run igvn.optimize() again before SLP } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) { // Ditto. Not sure what else to check further. } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) { // StoreCM has an input edge used as a precedence edge. // Maybe an issue when oop stores are vectorized. } else { assert(out == prev || prev == NULL, "no branches off of store slice"); } }//else }//for if (n == stop) break; preds.push(n); if (TraceSuperWord && Verbose) { tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", n->_idx); } prev = n; assert(n->is_Mem(), "unexpected node %s", n->Name()); n = n->in(MemNode::Memory); } } //------------------------------stmts_can_pack--------------------------- // Can s1 and s2 be in a pack with s1 immediately preceding s2 and // s1 aligned at "align" bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) { // Do not use superword for non-primitives BasicType bt1 = velt_basic_type(s1); BasicType bt2 = velt_basic_type(s2); if(!is_java_primitive(bt1) || !is_java_primitive(bt2)) return false; if (Matcher::max_vector_size(bt1) < 2) { return false; // No vectors for this type } if (isomorphic(s1, s2)) { if ((independent(s1, s2) && have_similar_inputs(s1, s2)) || reduction(s1, s2)) { if (!exists_at(s1, 0) && !exists_at(s2, 1)) { if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) { int s1_align = alignment(s1); int s2_align = alignment(s2); if (s1_align == top_align || s1_align == align) { if (s2_align == top_align || s2_align == align + data_size(s1)) { return true; } } } } } } return false; } //------------------------------exists_at--------------------------- // Does s exist in a pack at position pos? bool SuperWord::exists_at(Node* s, uint pos) { for (int i = 0; i < _packset.length(); i++) { Node_List* p = _packset.at(i); if (p->at(pos) == s) { return true; } } return false; } //------------------------------are_adjacent_refs--------------------------- // Is s1 immediately before s2 in memory? bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) { if (!s1->is_Mem() || !s2->is_Mem()) return false; if (!in_bb(s1) || !in_bb(s2)) return false; // Do not use superword for non-primitives if (!is_java_primitive(s1->as_Mem()->memory_type()) || !is_java_primitive(s2->as_Mem()->memory_type())) { return false; } // FIXME - co_locate_pack fails on Stores in different mem-slices, so // only pack memops that are in the same alias set until that's fixed. if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) != _phase->C->get_alias_index(s2->as_Mem()->adr_type())) return false; SWPointer p1(s1->as_Mem(), this, NULL, false); SWPointer p2(s2->as_Mem(), this, NULL, false); if (p1.base() != p2.base() || !p1.comparable(p2)) return false; int diff = p2.offset_in_bytes() - p1.offset_in_bytes(); return diff == data_size(s1); } //------------------------------isomorphic--------------------------- // Are s1 and s2 similar? bool SuperWord::isomorphic(Node* s1, Node* s2) { if (s1->Opcode() != s2->Opcode()) return false; if (s1->req() != s2->req()) return false; if (s1->in(0) != s2->in(0)) return false; if (!same_velt_type(s1, s2)) return false; return true; } //------------------------------independent--------------------------- // Is there no data path from s1 to s2 or s2 to s1? bool SuperWord::independent(Node* s1, Node* s2) { // assert(s1->Opcode() == s2->Opcode(), "check isomorphic first"); int d1 = depth(s1); int d2 = depth(s2); if (d1 == d2) return s1 != s2; Node* deep = d1 > d2 ? s1 : s2; Node* shallow = d1 > d2 ? s2 : s1; visited_clear(); return independent_path(shallow, deep); } //--------------------------have_similar_inputs----------------------- // For a node pair (s1, s2) which is isomorphic and independent, // do s1 and s2 have similar input edges? bool SuperWord::have_similar_inputs(Node* s1, Node* s2) { // assert(isomorphic(s1, s2) == true, "check isomorphic"); // assert(independent(s1, s2) == true, "check independent"); if (s1->req() > 1 && !s1->is_Store() && !s1->is_Load()) { for (uint i = 1; i < s1->req(); i++) { if (s1->in(i)->Opcode() != s2->in(i)->Opcode()) return false; } } return true; } //------------------------------reduction--------------------------- // Is there a data path between s1 and s2 and the nodes reductions? bool SuperWord::reduction(Node* s1, Node* s2) { bool retValue = false; int d1 = depth(s1); int d2 = depth(s2); if (d1 + 1 == d2) { if (s1->is_reduction() && s2->is_reduction()) { // This is an ordered set, so s1 should define s2 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { Node* t1 = s1->fast_out(i); if (t1 == s2) { // both nodes are reductions and connected retValue = true; } } } } return retValue; } //------------------------------independent_path------------------------------ // Helper for independent bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) { if (dp >= 1000) return false; // stop deep recursion visited_set(deep); int shal_depth = depth(shallow); assert(shal_depth <= depth(deep), "must be"); for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) { Node* pred = preds.current(); if (in_bb(pred) && !visited_test(pred)) { if (shallow == pred) { return false; } if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) { return false; } } } return true; } //------------------------------set_alignment--------------------------- void SuperWord::set_alignment(Node* s1, Node* s2, int align) { set_alignment(s1, align); if (align == top_align || align == bottom_align) { set_alignment(s2, align); } else { set_alignment(s2, align + data_size(s1)); } } //------------------------------data_size--------------------------- int SuperWord::data_size(Node* s) { Node* use = NULL; //test if the node is a candidate for CMoveV optimization, then return the size of CMov if (UseVectorCmov) { use = _cmovev_kit.is_Bool_candidate(s); if (use != NULL) { return data_size(use); } use = _cmovev_kit.is_CmpD_candidate(s); if (use != NULL) { return data_size(use); } } int bsize = type2aelembytes(velt_basic_type(s)); assert(bsize != 0, "valid size"); return bsize; } //------------------------------extend_packlist--------------------------- // Extend packset by following use->def and def->use links from pack members. void SuperWord::extend_packlist() { bool changed; do { packset_sort(_packset.length()); changed = false; for (int i = 0; i < _packset.length(); i++) { Node_List* p = _packset.at(i); changed |= follow_use_defs(p); changed |= follow_def_uses(p); } } while (changed); if (_race_possible) { for (int i = 0; i < _packset.length(); i++) { Node_List* p = _packset.at(i); order_def_uses(p); } } if (TraceSuperWord) { tty->print_cr("\nAfter extend_packlist"); print_packset(); } } //------------------------------follow_use_defs--------------------------- // Extend the packset by visiting operand definitions of nodes in pack p bool SuperWord::follow_use_defs(Node_List* p) { assert(p->size() == 2, "just checking"); Node* s1 = p->at(0); Node* s2 = p->at(1); assert(s1->req() == s2->req(), "just checking"); assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking"); if (s1->is_Load()) return false; int align = alignment(s1); NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: s1 %d, align %d", s1->_idx, align);) bool changed = false; int start = s1->is_Store() ? MemNode::ValueIn : 1; int end = s1->is_Store() ? MemNode::ValueIn+1 : s1->req(); for (int j = start; j < end; j++) { Node* t1 = s1->in(j); Node* t2 = s2->in(j); if (!in_bb(t1) || !in_bb(t2)) continue; if (stmts_can_pack(t1, t2, align)) { if (est_savings(t1, t2) >= 0) { Node_List* pair = new Node_List(); pair->push(t1); pair->push(t2); _packset.append(pair); NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: set_alignment(%d, %d, %d)", t1->_idx, t2->_idx, align);) set_alignment(t1, t2, align); changed = true; } } } return changed; } //------------------------------follow_def_uses--------------------------- // Extend the packset by visiting uses of nodes in pack p bool SuperWord::follow_def_uses(Node_List* p) { bool changed = false; Node* s1 = p->at(0); Node* s2 = p->at(1); assert(p->size() == 2, "just checking"); assert(s1->req() == s2->req(), "just checking"); assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking"); if (s1->is_Store()) return false; int align = alignment(s1); NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: s1 %d, align %d", s1->_idx, align);) int savings = -1; int num_s1_uses = 0; Node* u1 = NULL; Node* u2 = NULL; for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { Node* t1 = s1->fast_out(i); num_s1_uses++; if (!in_bb(t1)) continue; for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) { Node* t2 = s2->fast_out(j); if (!in_bb(t2)) continue; if (t2->Opcode() == Op_AddI && t2 == _lp->as_CountedLoop()->incr()) continue; // don't mess with the iv if (!opnd_positions_match(s1, t1, s2, t2)) continue; if (stmts_can_pack(t1, t2, align)) { int my_savings = est_savings(t1, t2); if (my_savings > savings) { savings = my_savings; u1 = t1; u2 = t2; } } } } if (num_s1_uses > 1) { _race_possible = true; } if (savings >= 0) { Node_List* pair = new Node_List(); pair->push(u1); pair->push(u2); _packset.append(pair); NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: set_alignment(%d, %d, %d)", u1->_idx, u2->_idx, align);) set_alignment(u1, u2, align); changed = true; } return changed; } //------------------------------order_def_uses--------------------------- // For extended packsets, ordinally arrange uses packset by major component void SuperWord::order_def_uses(Node_List* p) { Node* s1 = p->at(0); if (s1->is_Store()) return; // reductions are always managed beforehand if (s1->is_reduction()) return; for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { Node* t1 = s1->fast_out(i); // Only allow operand swap on commuting operations if (!t1->is_Add() && !t1->is_Mul() && !VectorNode::is_muladds2i(t1)) { break; } // Now find t1's packset Node_List* p2 = NULL; for (int j = 0; j < _packset.length(); j++) { p2 = _packset.at(j); Node* first = p2->at(0); if (t1 == first) { break; } p2 = NULL; } // Arrange all sub components by the major component if (p2 != NULL) { for (uint j = 1; j < p->size(); j++) { Node* d1 = p->at(j); Node* u1 = p2->at(j); opnd_positions_match(s1, t1, d1, u1); } } } } //---------------------------opnd_positions_match------------------------- // Is the use of d1 in u1 at the same operand position as d2 in u2? bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) { // check reductions to see if they are marshalled to represent the reduction // operator in a specified opnd if (u1->is_reduction() && u2->is_reduction()) { // ensure reductions have phis and reduction definitions feeding the 1st operand Node* first = u1->in(2); if (first->is_Phi() || first->is_reduction()) { u1->swap_edges(1, 2); } // ensure reductions have phis and reduction definitions feeding the 1st operand first = u2->in(2); if (first->is_Phi() || first->is_reduction()) { u2->swap_edges(1, 2); } return true; } uint ct = u1->req(); if (ct != u2->req()) return false; uint i1 = 0; uint i2 = 0; do { for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break; for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break; if (i1 != i2) { if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) { // Further analysis relies on operands position matching. u2->swap_edges(i1, i2); } else if (VectorNode::is_muladds2i(u2) && u1 != u2) { if (i1 == 5 - i2) { // ((i1 == 3 && i2 == 2) || (i1 == 2 && i2 == 3) || (i1 == 1 && i2 == 4) || (i1 == 4 && i2 == 1)) u2->swap_edges(1, 2); u2->swap_edges(3, 4); } if (i1 == 3 - i2 || i1 == 7 - i2) { // ((i1 == 1 && i2 == 2) || (i1 == 2 && i2 == 1) || (i1 == 3 && i2 == 4) || (i1 == 4 && i2 == 3)) u2->swap_edges(2, 3); u2->swap_edges(1, 4); } return false; // Just swap the edges, the muladds2i nodes get packed in follow_use_defs } else { return false; } } else if (i1 == i2 && VectorNode::is_muladds2i(u2) && u1 != u2) { u2->swap_edges(1, 3); u2->swap_edges(2, 4); return false; // Just swap the edges, the muladds2i nodes get packed in follow_use_defs } } while (i1 < ct); return true; } //------------------------------est_savings--------------------------- // Estimate the savings from executing s1 and s2 as a pack int SuperWord::est_savings(Node* s1, Node* s2) { int save_in = 2 - 1; // 2 operations per instruction in packed form // inputs for (uint i = 1; i < s1->req(); i++) { Node* x1 = s1->in(i); Node* x2 = s2->in(i); if (x1 != x2) { if (are_adjacent_refs(x1, x2)) { save_in += adjacent_profit(x1, x2); } else if (!in_packset(x1, x2)) { save_in -= pack_cost(2); } else { save_in += unpack_cost(2); } } } // uses of result uint ct = 0; int save_use = 0; for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { Node* s1_use = s1->fast_out(i); for (int j = 0; j < _packset.length(); j++) { Node_List* p = _packset.at(j); if (p->at(0) == s1_use) { for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) { Node* s2_use = s2->fast_out(k); if (p->at(p->size()-1) == s2_use) { ct++; if (are_adjacent_refs(s1_use, s2_use)) { save_use += adjacent_profit(s1_use, s2_use); } } } } } } if (ct < s1->outcnt()) save_use += unpack_cost(1); if (ct < s2->outcnt()) save_use += unpack_cost(1); return MAX2(save_in, save_use); } //------------------------------costs--------------------------- int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; } int SuperWord::pack_cost(int ct) { return ct; } int SuperWord::unpack_cost(int ct) { return ct; } //------------------------------combine_packs--------------------------- // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last void SuperWord::combine_packs() { bool changed = true; // Combine packs regardless max vector size. while (changed) { changed = false; for (int i = 0; i < _packset.length(); i++) { Node_List* p1 = _packset.at(i); if (p1 == NULL) continue; // Because of sorting we can start at i + 1 for (int j = i + 1; j < _packset.length(); j++) { Node_List* p2 = _packset.at(j); if (p2 == NULL) continue; if (i == j) continue; if (p1->at(p1->size()-1) == p2->at(0)) { for (uint k = 1; k < p2->size(); k++) { p1->push(p2->at(k)); } _packset.at_put(j, NULL); changed = true; } } } } // Split packs which have size greater then max vector size. for (int i = 0; i < _packset.length(); i++) { Node_List* p1 = _packset.at(i); if (p1 != NULL) { BasicType bt = velt_basic_type(p1->at(0)); uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector assert(is_power_of_2(max_vlen), "sanity"); uint psize = p1->size(); if (!is_power_of_2(psize)) { // Skip pack which can't be vector. // case1: for(...) { a[i] = i; } elements values are different (i+x) // case2: for(...) { a[i] = b[i+1]; } can't align both, load and store _packset.at_put(i, NULL); continue; } if (psize > max_vlen) { Node_List* pack = new Node_List(); for (uint j = 0; j < psize; j++) { pack->push(p1->at(j)); if (pack->size() >= max_vlen) { assert(is_power_of_2(pack->size()), "sanity"); _packset.append(pack); pack = new Node_List(); } } _packset.at_put(i, NULL); } } } // Compress list. for (int i = _packset.length() - 1; i >= 0; i--) { Node_List* p1 = _packset.at(i); if (p1 == NULL) { _packset.remove_at(i); } } if (TraceSuperWord) { tty->print_cr("\nAfter combine_packs"); print_packset(); } } //-----------------------------construct_my_pack_map-------------------------- // Construct the map from nodes to packs. Only valid after the // point where a node is only in one pack (after combine_packs). void SuperWord::construct_my_pack_map() { Node_List* rslt = NULL; for (int i = 0; i < _packset.length(); i++) { Node_List* p = _packset.at(i); for (uint j = 0; j < p->size(); j++) { Node* s = p->at(j); assert(my_pack(s) == NULL, "only in one pack"); set_my_pack(s, p); } } } //------------------------------filter_packs--------------------------- // Remove packs that are not implemented or not profitable. void SuperWord::filter_packs() { // Remove packs that are not implemented for (int i = _packset.length() - 1; i >= 0; i--) { Node_List* pk = _packset.at(i); bool impl = implemented(pk); if (!impl) { #ifndef PRODUCT if (TraceSuperWord && Verbose) { tty->print_cr("Unimplemented"); pk->at(0)->dump(); } #endif remove_pack_at(i); } Node *n = pk->at(0); if (n->is_reduction()) { _num_reductions++; } else { _num_work_vecs++; } } // Remove packs that are not profitable bool changed; do { changed = false; for (int i = _packset.length() - 1; i >= 0; i--) { Node_List* pk = _packset.at(i); bool prof = profitable(pk); if (!prof) { #ifndef PRODUCT if (TraceSuperWord && Verbose) { tty->print_cr("Unprofitable"); pk->at(0)->dump(); } #endif remove_pack_at(i); changed = true; } } } while (changed); #ifndef PRODUCT if (TraceSuperWord) { tty->print_cr("\nAfter filter_packs"); print_packset(); tty->cr(); } #endif } //------------------------------merge_packs_to_cmovd--------------------------- // Merge CMoveD into new vector-nodes // We want to catch this pattern and subsume CmpD and Bool into CMoveD // // SubD ConD // / | / // / | / / // / | / / // / | / / // / / / // / / | / // v / | / // CmpD | / // | | / // v | / // Bool | / // \ | / // \ | / // \ | / // \ | / // \ v / // CMoveD // void SuperWord::merge_packs_to_cmovd() { for (int i = _packset.length() - 1; i >= 0; i--) { _cmovev_kit.make_cmovevd_pack(_packset.at(i)); } #ifndef PRODUCT if (TraceSuperWord) { tty->print_cr("\nSuperWord::merge_packs_to_cmovd(): After merge"); print_packset(); tty->cr(); } #endif } Node* CMoveKit::is_Bool_candidate(Node* def) const { Node* use = NULL; if (!def->is_Bool() || def->in(0) != NULL || def->outcnt() != 1) { return NULL; } for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { use = def->fast_out(j); if (!_sw->same_generation(def, use) || !use->is_CMove()) { return NULL; } } return use; } Node* CMoveKit::is_CmpD_candidate(Node* def) const { Node* use = NULL; if (!def->is_Cmp() || def->in(0) != NULL || def->outcnt() != 1) { return NULL; } for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { use = def->fast_out(j); if (!_sw->same_generation(def, use) || (use = is_Bool_candidate(use)) == NULL || !_sw->same_generation(def, use)) { return NULL; } } return use; } Node_List* CMoveKit::make_cmovevd_pack(Node_List* cmovd_pk) { Node *cmovd = cmovd_pk->at(0); if (!cmovd->is_CMove()) { return NULL; } if (cmovd->Opcode() != Op_CMoveF && cmovd->Opcode() != Op_CMoveD) { return NULL; } if (pack(cmovd) != NULL) { // already in the cmov pack return NULL; } if (cmovd->in(0) != NULL) { NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CMoveD %d has control flow, escaping...", cmovd->_idx); cmovd->dump();}) return NULL; } Node* bol = cmovd->as_CMove()->in(CMoveNode::Condition); if (!bol->is_Bool() || bol->outcnt() != 1 || !_sw->same_generation(bol, cmovd) || bol->in(0) != NULL // BoolNode has control flow!! || _sw->my_pack(bol) == NULL) { NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: Bool %d does not fit CMoveD %d for building vector, escaping...", bol->_idx, cmovd->_idx); bol->dump();}) return NULL; } Node_List* bool_pk = _sw->my_pack(bol); if (bool_pk->size() != cmovd_pk->size() ) { return NULL; } Node* cmpd = bol->in(1); if (!cmpd->is_Cmp() || cmpd->outcnt() != 1 || !_sw->same_generation(cmpd, cmovd) || cmpd->in(0) != NULL // CmpDNode has control flow!! || _sw->my_pack(cmpd) == NULL) { NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CmpD %d does not fit CMoveD %d for building vector, escaping...", cmpd->_idx, cmovd->_idx); cmpd->dump();}) return NULL; } Node_List* cmpd_pk = _sw->my_pack(cmpd); if (cmpd_pk->size() != cmovd_pk->size() ) { return NULL; } if (!test_cmpd_pack(cmpd_pk, cmovd_pk)) { NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: cmpd pack for CmpD %d failed vectorization test", cmpd->_idx); cmpd->dump();}) return NULL; } Node_List* new_cmpd_pk = new Node_List(); uint sz = cmovd_pk->size() - 1; for (uint i = 0; i <= sz; ++i) { Node* cmov = cmovd_pk->at(i); Node* bol = bool_pk->at(i); Node* cmp = cmpd_pk->at(i); new_cmpd_pk->insert(i, cmov); map(cmov, new_cmpd_pk); map(bol, new_cmpd_pk); map(cmp, new_cmpd_pk); _sw->set_my_pack(cmov, new_cmpd_pk); // and keep old packs for cmp and bool } _sw->_packset.remove(cmovd_pk); _sw->_packset.remove(bool_pk); _sw->_packset.remove(cmpd_pk); _sw->_packset.append(new_cmpd_pk); NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print_cr("CMoveKit::make_cmovevd_pack: added syntactic CMoveD pack"); _sw->print_pack(new_cmpd_pk);}) return new_cmpd_pk; } bool CMoveKit::test_cmpd_pack(Node_List* cmpd_pk, Node_List* cmovd_pk) { Node* cmpd0 = cmpd_pk->at(0); assert(cmpd0->is_Cmp(), "CMoveKit::test_cmpd_pack: should be CmpDNode"); assert(cmovd_pk->at(0)->is_CMove(), "CMoveKit::test_cmpd_pack: should be CMoveD"); assert(cmpd_pk->size() == cmovd_pk->size(), "CMoveKit::test_cmpd_pack: should be same size"); Node* in1 = cmpd0->in(1); Node* in2 = cmpd0->in(2); Node_List* in1_pk = _sw->my_pack(in1); Node_List* in2_pk = _sw->my_pack(in2); if ( (in1_pk != NULL && in1_pk->size() != cmpd_pk->size()) || (in2_pk != NULL && in2_pk->size() != cmpd_pk->size()) ) { return false; } // test if "all" in1 are in the same pack or the same node if (in1_pk == NULL) { for (uint j = 1; j < cmpd_pk->size(); j++) { if (cmpd_pk->at(j)->in(1) != in1) { return false; } }//for: in1_pk is not pack but all CmpD nodes in the pack have the same in(1) } // test if "all" in2 are in the same pack or the same node if (in2_pk == NULL) { for (uint j = 1; j < cmpd_pk->size(); j++) { if (cmpd_pk->at(j)->in(2) != in2) { return false; } }//for: in2_pk is not pack but all CmpD nodes in the pack have the same in(2) } //now check if cmpd_pk may be subsumed in vector built for cmovd_pk int cmovd_ind1, cmovd_ind2; if (cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse) && cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) { cmovd_ind1 = CMoveNode::IfFalse; cmovd_ind2 = CMoveNode::IfTrue; } else if (cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse) && cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) { cmovd_ind2 = CMoveNode::IfFalse; cmovd_ind1 = CMoveNode::IfTrue; } else { return false; } for (uint j = 1; j < cmpd_pk->size(); j++) { if (cmpd_pk->at(j)->in(1) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind1) || cmpd_pk->at(j)->in(2) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind2)) { return false; }//if } NOT_PRODUCT(if(_sw->is_trace_cmov()) { tty->print("CMoveKit::test_cmpd_pack: cmpd pack for 1st CmpD %d is OK for vectorization: ", cmpd0->_idx); cmpd0->dump(); }) return true; } //------------------------------implemented--------------------------- // Can code be generated for pack p? bool SuperWord::implemented(Node_List* p) { bool retValue = false; Node* p0 = p->at(0); if (p0 != NULL) { int opc = p0->Opcode(); uint size = p->size(); if (p0->is_reduction()) { const Type *arith_type = p0->bottom_type(); // Length 2 reductions of INT/LONG do not offer performance benefits if (((arith_type->basic_type() == T_INT) || (arith_type->basic_type() == T_LONG)) && (size == 2)) { retValue = false; } else { retValue = ReductionNode::implemented(opc, size, arith_type->basic_type()); } } else { retValue = VectorNode::implemented(opc, size, velt_basic_type(p0)); } if (!retValue) { if (is_cmov_pack(p)) { NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::implemented: found cmpd pack"); print_pack(p);}) return true; } } } return retValue; } bool SuperWord::is_cmov_pack(Node_List* p) { return _cmovev_kit.pack(p->at(0)) != NULL; } //------------------------------same_inputs-------------------------- // For pack p, are all idx operands the same? bool SuperWord::same_inputs(Node_List* p, int idx) { Node* p0 = p->at(0); uint vlen = p->size(); Node* p0_def = p0->in(idx); for (uint i = 1; i < vlen; i++) { Node* pi = p->at(i); Node* pi_def = pi->in(idx); if (p0_def != pi_def) { return false; } } return true; } //------------------------------profitable--------------------------- // For pack p, are all operands and all uses (with in the block) vector? bool SuperWord::profitable(Node_List* p) { Node* p0 = p->at(0); uint start, end; VectorNode::vector_operands(p0, &start, &end); // Return false if some inputs are not vectors or vectors with different // size or alignment. // Also, for now, return false if not scalar promotion case when inputs are // the same. Later, implement PackNode and allow differing, non-vector inputs // (maybe just the ones from outside the block.) for (uint i = start; i < end; i++) { if (!is_vector_use(p0, i)) { return false; } } // Check if reductions are connected if (p0->is_reduction()) { Node* second_in = p0->in(2); Node_List* second_pk = my_pack(second_in); if ((second_pk == NULL) || (_num_work_vecs == _num_reductions)) { // Remove reduction flag if no parent pack or if not enough work // to cover reduction expansion overhead p0->remove_flag(Node::Flag_is_reduction); return false; } else if (second_pk->size() != p->size()) { return false; } } if (VectorNode::is_shift(p0)) { // For now, return false if shift count is vector or not scalar promotion // case (different shift counts) because it is not supported yet. Node* cnt = p0->in(2); Node_List* cnt_pk = my_pack(cnt); if (cnt_pk != NULL) return false; if (!same_inputs(p, 2)) return false; } if (!p0->is_Store()) { // For now, return false if not all uses are vector. // Later, implement ExtractNode and allow non-vector uses (maybe // just the ones outside the block.) for (uint i = 0; i < p->size(); i++) { Node* def = p->at(i); if (is_cmov_pack_internal_node(p, def)) { continue; } for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { Node* use = def->fast_out(j); for (uint k = 0; k < use->req(); k++) { Node* n = use->in(k); if (def == n) { // reductions should only have a Phi use at the the loop // head and out of loop uses if (def->is_reduction() && ((use->is_Phi() && use->in(0) == _lpt->_head) || !_lpt->is_member(_phase->get_loop(_phase->ctrl_or_self(use))))) { assert(i == p->size()-1, "must be last element of the pack"); continue; } if (!is_vector_use(use, k)) { return false; } } } } } } return true; } //------------------------------schedule--------------------------- // Adjust the memory graph for the packed operations void SuperWord::schedule() { // Co-locate in the memory graph the members of each memory pack for (int i = 0; i < _packset.length(); i++) { co_locate_pack(_packset.at(i)); } } //-------------------------------remove_and_insert------------------- // Remove "current" from its current position in the memory graph and insert // it after the appropriate insertion point (lip or uip). void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip, Node *uip, Unique_Node_List &sched_before) { Node* my_mem = current->in(MemNode::Memory); bool sched_up = sched_before.member(current); // remove current_store from its current position in the memmory graph for (DUIterator i = current->outs(); current->has_out(i); i++) { Node* use = current->out(i); if (use->is_Mem()) { assert(use->in(MemNode::Memory) == current, "must be"); if (use == prev) { // connect prev to my_mem _igvn.replace_input_of(use, MemNode::Memory, my_mem); --i; //deleted this edge; rescan position } else if (sched_before.member(use)) { if (!sched_up) { // Will be moved together with current _igvn.replace_input_of(use, MemNode::Memory, uip); --i; //deleted this edge; rescan position } } else { if (sched_up) { // Will be moved together with current _igvn.replace_input_of(use, MemNode::Memory, lip); --i; //deleted this edge; rescan position } } } } Node *insert_pt = sched_up ? uip : lip; // all uses of insert_pt's memory state should use current's instead for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) { Node* use = insert_pt->out(i); if (use->is_Mem()) { assert(use->in(MemNode::Memory) == insert_pt, "must be"); _igvn.replace_input_of(use, MemNode::Memory, current); --i; //deleted this edge; rescan position } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) { uint pos; //lip (lower insert point) must be the last one in the memory slice for (pos=1; pos < use->req(); pos++) { if (use->in(pos) == insert_pt) break; } _igvn.replace_input_of(use, pos, current); --i; } } //connect current to insert_pt _igvn.replace_input_of(current, MemNode::Memory, insert_pt); } //------------------------------co_locate_pack---------------------------------- // To schedule a store pack, we need to move any sandwiched memory ops either before // or after the pack, based upon dependence information: // (1) If any store in the pack depends on the sandwiched memory op, the // sandwiched memory op must be scheduled BEFORE the pack; // (2) If a sandwiched memory op depends on any store in the pack, the // sandwiched memory op must be scheduled AFTER the pack; // (3) If a sandwiched memory op (say, memA) depends on another sandwiched // memory op (say memB), memB must be scheduled before memA. So, if memA is // scheduled before the pack, memB must also be scheduled before the pack; // (4) If there is no dependence restriction for a sandwiched memory op, we simply // schedule this store AFTER the pack // (5) We know there is no dependence cycle, so there in no other case; // (6) Finally, all memory ops in another single pack should be moved in the same direction. // // To schedule a load pack, we use the memory state of either the first or the last load in // the pack, based on the dependence constraint. void SuperWord::co_locate_pack(Node_List* pk) { if (pk->at(0)->is_Store()) { MemNode* first = executed_first(pk)->as_Mem(); MemNode* last = executed_last(pk)->as_Mem(); Unique_Node_List schedule_before_pack; Unique_Node_List memops; MemNode* current = last->in(MemNode::Memory)->as_Mem(); MemNode* previous = last; while (true) { assert(in_bb(current), "stay in block"); memops.push(previous); for (DUIterator i = current->outs(); current->has_out(i); i++) { Node* use = current->out(i); if (use->is_Mem() && use != previous) memops.push(use); } if (current == first) break; previous = current; current = current->in(MemNode::Memory)->as_Mem(); } // determine which memory operations should be scheduled before the pack for (uint i = 1; i < memops.size(); i++) { Node *s1 = memops.at(i); if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) { for (uint j = 0; j< i; j++) { Node *s2 = memops.at(j); if (!independent(s1, s2)) { if (in_pack(s2, pk) || schedule_before_pack.member(s2)) { schedule_before_pack.push(s1); // s1 must be scheduled before Node_List* mem_pk = my_pack(s1); if (mem_pk != NULL) { for (uint ii = 0; ii < mem_pk->size(); ii++) { Node* s = mem_pk->at(ii); // follow partner if (memops.member(s) && !schedule_before_pack.member(s)) schedule_before_pack.push(s); } } break; } } } } } Node* upper_insert_pt = first->in(MemNode::Memory); // Following code moves loads connected to upper_insert_pt below aliased stores. // Collect such loads here and reconnect them back to upper_insert_pt later. memops.clear(); for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) { Node* use = upper_insert_pt->out(i); if (use->is_Mem() && !use->is_Store()) { memops.push(use); } } MemNode* lower_insert_pt = last; previous = last; //previous store in pk current = last->in(MemNode::Memory)->as_Mem(); // start scheduling from "last" to "first" while (true) { assert(in_bb(current), "stay in block"); assert(in_pack(previous, pk), "previous stays in pack"); Node* my_mem = current->in(MemNode::Memory); if (in_pack(current, pk)) { // Forward users of my memory state (except "previous) to my input memory state for (DUIterator i = current->outs(); current->has_out(i); i++) { Node* use = current->out(i); if (use->is_Mem() && use != previous) { assert(use->in(MemNode::Memory) == current, "must be"); if (schedule_before_pack.member(use)) { _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt); } else { _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt); } --i; // deleted this edge; rescan position } } previous = current; } else { // !in_pack(current, pk) ==> a sandwiched store remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack); } if (current == first) break; current = my_mem->as_Mem(); } // end while // Reconnect loads back to upper_insert_pt. for (uint i = 0; i < memops.size(); i++) { Node *ld = memops.at(i); if (ld->in(MemNode::Memory) != upper_insert_pt) { _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt); } } } else if (pk->at(0)->is_Load()) { //load // all loads in the pack should have the same memory state. By default, // we use the memory state of the last load. However, if any load could // not be moved down due to the dependence constraint, we use the memory // state of the first load. Node* first_mem = pk->at(0)->in(MemNode::Memory); Node* last_mem = first_mem; for (uint i = 1; i < pk->size(); i++) { Node* ld = pk->at(i); Node* mem = ld->in(MemNode::Memory); assert(in_bb(first_mem) || in_bb(mem) || mem == first_mem, "2 different memory state from outside the loop?"); if (in_bb(mem)) { if (in_bb(first_mem) && bb_idx(mem) < bb_idx(first_mem)) { first_mem = mem; } if (!in_bb(last_mem) || bb_idx(mem) > bb_idx(last_mem)) { last_mem = mem; } } } bool schedule_last = true; for (uint i = 0; i < pk->size(); i++) { Node* ld = pk->at(i); for (Node* current = last_mem; current != ld->in(MemNode::Memory); current=current->in(MemNode::Memory)) { assert(current != first_mem, "corrupted memory graph"); if(current->is_Mem() && !independent(current, ld)){ schedule_last = false; // a later store depends on this load break; } } } Node* mem_input = schedule_last ? last_mem : first_mem; _igvn.hash_delete(mem_input); // Give each load the same memory state for (uint i = 0; i < pk->size(); i++) { LoadNode* ld = pk->at(i)->as_Load(); _igvn.replace_input_of(ld, MemNode::Memory, mem_input); } } } #ifndef PRODUCT void SuperWord::print_loop(bool whole) { Node_Stack stack(_arena, _phase->C->unique() >> 2); Node_List rpo_list; VectorSet visited(_arena); visited.set(lpt()->_head->_idx); _phase->rpo(lpt()->_head, stack, visited, rpo_list); _phase->dump(lpt(), rpo_list.size(), rpo_list ); if(whole) { tty->print_cr("\n Whole loop tree"); _phase->dump(); tty->print_cr(" End of whole loop tree\n"); } } #endif //------------------------------output--------------------------- // Convert packs into vector node operations void SuperWord::output() { CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); Compile* C = _phase->C; if (_packset.length() == 0) { if (cl->is_main_loop()) { // Instigate more unrolling for optimization when vectorization fails. C->set_major_progress(); cl->set_notpassed_slp(); cl->mark_do_unroll_only(); } return; } #ifndef PRODUCT if (TraceLoopOpts) { tty->print("SuperWord::output "); lpt()->dump_head(); } #endif if (cl->is_main_loop()) { // MUST ENSURE main loop's initial value is properly aligned: // (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0 align_initial_loop_index(align_to_ref()); // Insert extract (unpack) operations for scalar uses for (int i = 0; i < _packset.length(); i++) { insert_extracts(_packset.at(i)); } } uint max_vlen_in_bytes = 0; uint max_vlen = 0; bool can_process_post_loop = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()); NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop before create_reserve_version_of_loop"); print_loop(true);}) CountedLoopReserveKit make_reversable(_phase, _lpt, do_reserve_copy()); NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop after create_reserve_version_of_loop"); print_loop(true);}) if (do_reserve_copy() && !make_reversable.has_reserved()) { NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: loop was not reserved correctly, exiting SuperWord");}) return; } for (int i = 0; i < _block.length(); i++) { Node* n = _block.at(i); Node_List* p = my_pack(n); if (p && n == executed_last(p)) { uint vlen = p->size(); uint vlen_in_bytes = 0; Node* vn = NULL; Node* low_adr = p->at(0); Node* first = executed_first(p); if (can_process_post_loop) { // override vlen with the main loops vector length vlen = cl->slp_max_unroll(); } NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d executed first, %d executed last in pack", first->_idx, n->_idx); print_pack(p);}) int opc = n->Opcode(); if (n->is_Load()) { Node* ctl = n->in(MemNode::Control); Node* mem = first->in(MemNode::Memory); SWPointer p1(n->as_Mem(), this, NULL, false); // Identify the memory dependency for the new loadVector node by // walking up through memory chain. // This is done to give flexibility to the new loadVector node so that // it can move above independent storeVector nodes. while (mem->is_StoreVector()) { SWPointer p2(mem->as_Mem(), this, NULL, false); int cmp = p1.cmp(p2); if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) { mem = mem->in(MemNode::Memory); } else { break; // dependent memory } } Node* adr = low_adr->in(MemNode::Address); const TypePtr* atyp = n->adr_type(); vn = LoadVectorNode::make(opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p)); vlen_in_bytes = vn->as_LoadVector()->memory_size(); } else if (n->is_Store()) { // Promote value to be stored to vector Node* val = vector_opd(p, MemNode::ValueIn); if (val == NULL) { if (do_reserve_copy()) { NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: val should not be NULL, exiting SuperWord");}) return; //and reverse to backup IG } ShouldNotReachHere(); } Node* ctl = n->in(MemNode::Control); Node* mem = first->in(MemNode::Memory); Node* adr = low_adr->in(MemNode::Address); const TypePtr* atyp = n->adr_type(); vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen); vlen_in_bytes = vn->as_StoreVector()->memory_size(); } else if (VectorNode::is_muladds2i(n)) { assert(n->req() == 5u, "MulAddS2I should have 4 operands."); Node* in1 = vector_opd(p, 1); Node* in2 = vector_opd(p, 2); vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n)); vlen_in_bytes = vn->as_Vector()->length_in_bytes(); } else if (n->req() == 3 && !is_cmov_pack(p)) { // Promote operands to vector Node* in1 = NULL; bool node_isa_reduction = n->is_reduction(); if (node_isa_reduction) { // the input to the first reduction operation is retained in1 = low_adr->in(1); } else { in1 = vector_opd(p, 1); if (in1 == NULL) { if (do_reserve_copy()) { NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in1 should not be NULL, exiting SuperWord");}) return; //and reverse to backup IG } ShouldNotReachHere(); } } Node* in2 = vector_opd(p, 2); if (in2 == NULL) { if (do_reserve_copy()) { NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in2 should not be NULL, exiting SuperWord");}) return; //and reverse to backup IG } ShouldNotReachHere(); } if (VectorNode::is_invariant_vector(in1) && (node_isa_reduction == false) && (n->is_Add() || n->is_Mul())) { // Move invariant vector input into second position to avoid register spilling. Node* tmp = in1; in1 = in2; in2 = tmp; } if (node_isa_reduction) { const Type *arith_type = n->bottom_type(); vn = ReductionNode::make(opc, NULL, in1, in2, arith_type->basic_type()); if (in2->is_Load()) { vlen_in_bytes = in2->as_LoadVector()->memory_size(); } else { vlen_in_bytes = in2->as_Vector()->length_in_bytes(); } } else { vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n)); vlen_in_bytes = vn->as_Vector()->length_in_bytes(); } } else if (opc == Op_SqrtF || opc == Op_SqrtD || opc == Op_AbsF || opc == Op_AbsD || opc == Op_NegF || opc == Op_NegD || opc == Op_PopCountI) { assert(n->req() == 2, "only one input expected"); Node* in = vector_opd(p, 1); vn = VectorNode::make(opc, in, NULL, vlen, velt_basic_type(n)); vlen_in_bytes = vn->as_Vector()->length_in_bytes(); } else if (is_cmov_pack(p)) { if (can_process_post_loop) { // do not refactor of flow in post loop context return; } if (!n->is_CMove()) { continue; } // place here CMoveVDNode NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: print before CMove vectorization"); print_loop(false);}) Node* bol = n->in(CMoveNode::Condition); if (!bol->is_Bool() && bol->Opcode() == Op_ExtractI && bol->req() > 1 ) { NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d is not Bool node, trying its in(1) node %d", bol->_idx, bol->in(1)->_idx); bol->dump(); bol->in(1)->dump();}) bol = bol->in(1); //may be ExtractNode } assert(bol->is_Bool(), "should be BoolNode - too late to bail out!"); if (!bol->is_Bool()) { if (do_reserve_copy()) { NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: expected %d bool node, exiting SuperWord", bol->_idx); bol->dump();}) return; //and reverse to backup IG } ShouldNotReachHere(); } int cond = (int)bol->as_Bool()->_test._test; Node* in_cc = _igvn.intcon(cond); NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created intcon in_cc node %d", in_cc->_idx); in_cc->dump();}) Node* cc = bol->clone(); cc->set_req(1, in_cc); NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created bool cc node %d", cc->_idx); cc->dump();}) Node* src1 = vector_opd(p, 2); //2=CMoveNode::IfFalse if (src1 == NULL) { if (do_reserve_copy()) { NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src1 should not be NULL, exiting SuperWord");}) return; //and reverse to backup IG } ShouldNotReachHere(); } Node* src2 = vector_opd(p, 3); //3=CMoveNode::IfTrue if (src2 == NULL) { if (do_reserve_copy()) { NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src2 should not be NULL, exiting SuperWord");}) return; //and reverse to backup IG } ShouldNotReachHere(); } BasicType bt = velt_basic_type(n); const TypeVect* vt = TypeVect::make(bt, vlen); assert(bt == T_FLOAT || bt == T_DOUBLE, "Only vectorization for FP cmovs is supported"); if (bt == T_FLOAT) { vn = new CMoveVFNode(cc, src1, src2, vt); } else { assert(bt == T_DOUBLE, "Expected double"); vn = new CMoveVDNode(cc, src1, src2, vt); } NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created new CMove node %d: ", vn->_idx); vn->dump();}) } else if (opc == Op_FmaD || opc == Op_FmaF) { // Promote operands to vector Node* in1 = vector_opd(p, 1); Node* in2 = vector_opd(p, 2); Node* in3 = vector_opd(p, 3); vn = VectorNode::make(opc, in1, in2, in3, vlen, velt_basic_type(n)); vlen_in_bytes = vn->as_Vector()->length_in_bytes(); } else { if (do_reserve_copy()) { NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: ShouldNotReachHere, exiting SuperWord");}) return; //and reverse to backup IG } ShouldNotReachHere(); } assert(vn != NULL, "sanity"); if (vn == NULL) { if (do_reserve_copy()){ NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: got NULL node, cannot proceed, exiting SuperWord");}) return; //and reverse to backup IG } ShouldNotReachHere(); } _block.at_put(i, vn); _igvn.register_new_node_with_optimizer(vn); _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0))); for (uint j = 0; j < p->size(); j++) { Node* pm = p->at(j); _igvn.replace_node(pm, vn); } _igvn._worklist.push(vn); if (can_process_post_loop) { // first check if the vector size if the maximum vector which we can use on the machine, // other vector size have reduced values for predicated data mapping. if (vlen_in_bytes != (uint)MaxVectorSize) { return; } } if (vlen_in_bytes >= max_vlen_in_bytes && vlen > max_vlen) { max_vlen = vlen; max_vlen_in_bytes = vlen_in_bytes; } #ifdef ASSERT if (TraceNewVectors) { tty->print("new Vector node: "); vn->dump(); } #endif } }//for (int i = 0; i < _block.length(); i++) if (max_vlen_in_bytes > C->max_vector_size()) { C->set_max_vector_size(max_vlen_in_bytes); } if (max_vlen_in_bytes > 0) { cl->mark_loop_vectorized(); } if (SuperWordLoopUnrollAnalysis) { if (cl->has_passed_slp()) { uint slp_max_unroll_factor = cl->slp_max_unroll(); if (slp_max_unroll_factor == max_vlen) { if (TraceSuperWordLoopUnrollAnalysis) { tty->print_cr("vector loop(unroll=%d, len=%d)\n", max_vlen, max_vlen_in_bytes*BitsPerByte); } // For atomic unrolled loops which are vector mapped, instigate more unrolling cl->set_notpassed_slp(); if (cl->is_main_loop()) { // if vector resources are limited, do not allow additional unrolling, also // do not unroll more on pure vector loops which were not reduced so that we can // program the post loop to single iteration execution. if (FLOATPRESSURE > 8) { C->set_major_progress(); cl->mark_do_unroll_only(); } } if (do_reserve_copy()) { if (can_process_post_loop) { // Now create the difference of trip and limit and use it as our mask index. // Note: We limited the unroll of the vectorized loop so that // only vlen-1 size iterations can remain to be mask programmed. Node *incr = cl->incr(); SubINode *index = new SubINode(cl->limit(), cl->init_trip()); _igvn.register_new_node_with_optimizer(index); SetVectMaskINode *mask = new SetVectMaskINode(_phase->get_ctrl(cl->init_trip()), index); _igvn.register_new_node_with_optimizer(mask); // make this a single iteration loop AddINode *new_incr = new AddINode(incr->in(1), mask); _igvn.register_new_node_with_optimizer(new_incr); _phase->set_ctrl(new_incr, _phase->get_ctrl(incr)); _igvn.replace_node(incr, new_incr); cl->mark_is_multiversioned(); cl->loopexit()->add_flag(Node::Flag_has_vector_mask_set); } } } } } if (do_reserve_copy()) { make_reversable.use_new(); } NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("\n Final loop after SuperWord"); print_loop(true);}) return; } //------------------------------vector_opd--------------------------- // Create a vector operand for the nodes in pack p for operand: in(opd_idx) Node* SuperWord::vector_opd(Node_List* p, int opd_idx) { Node* p0 = p->at(0); uint vlen = p->size(); Node* opd = p0->in(opd_idx); CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); if (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()) { // override vlen with the main loops vector length vlen = cl->slp_max_unroll(); } if (same_inputs(p, opd_idx)) { if (opd->is_Vector() || opd->is_LoadVector()) { assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector"); if (opd_idx == 2 && VectorNode::is_shift(p0)) { NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("shift's count can't be vector");}) return NULL; } return opd; // input is matching vector } if ((opd_idx == 2) && VectorNode::is_shift(p0)) { Compile* C = _phase->C; Node* cnt = opd; // Vector instructions do not mask shift count, do it here. juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); const TypeInt* t = opd->find_int_type(); if (t != NULL && t->is_con()) { juint shift = t->get_con(); if (shift > mask) { // Unsigned cmp cnt = ConNode::make(TypeInt::make(shift & mask)); } } else { if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) { cnt = ConNode::make(TypeInt::make(mask)); _igvn.register_new_node_with_optimizer(cnt); cnt = new AndINode(opd, cnt); _igvn.register_new_node_with_optimizer(cnt); _phase->set_ctrl(cnt, _phase->get_ctrl(opd)); } assert(opd->bottom_type()->isa_int(), "int type only"); if (!opd->bottom_type()->isa_int()) { NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should be int type only");}) return NULL; } // Move non constant shift count into vector register. cnt = VectorNode::shift_count(p0, cnt, vlen, velt_basic_type(p0)); } if (cnt != opd) { _igvn.register_new_node_with_optimizer(cnt); _phase->set_ctrl(cnt, _phase->get_ctrl(opd)); } return cnt; } assert(!opd->is_StoreVector(), "such vector is not expected here"); if (opd->is_StoreVector()) { NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("StoreVector is not expected here");}) return NULL; } // Convert scalar input to vector with the same number of elements as // p0's vector. Use p0's type because size of operand's container in // vector should match p0's size regardless operand's size. const Type* p0_t = velt_type(p0); VectorNode* vn = VectorNode::scalar2vector(opd, vlen, p0_t); _igvn.register_new_node_with_optimizer(vn); _phase->set_ctrl(vn, _phase->get_ctrl(opd)); #ifdef ASSERT if (TraceNewVectors) { tty->print("new Vector node: "); vn->dump(); } #endif return vn; } // Insert pack operation BasicType bt = velt_basic_type(p0); PackNode* pk = PackNode::make(opd, vlen, bt); DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); ) for (uint i = 1; i < vlen; i++) { Node* pi = p->at(i); Node* in = pi->in(opd_idx); assert(my_pack(in) == NULL, "Should already have been unpacked"); if (my_pack(in) != NULL) { NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should already have been unpacked");}) return NULL; } assert(opd_bt == in->bottom_type()->basic_type(), "all same type"); pk->add_opd(in); if (VectorNode::is_muladds2i(pi)) { Node* in2 = pi->in(opd_idx + 2); assert(my_pack(in2) == NULL, "Should already have been unpacked"); if (my_pack(in2) != NULL) { NOT_PRODUCT(if (is_trace_loop_reverse() || TraceLoopOpts) { tty->print_cr("Should already have been unpacked"); }) return NULL; } assert(opd_bt == in2->bottom_type()->basic_type(), "all same type"); pk->add_opd(in2); } } _igvn.register_new_node_with_optimizer(pk); _phase->set_ctrl(pk, _phase->get_ctrl(opd)); #ifdef ASSERT if (TraceNewVectors) { tty->print("new Vector node: "); pk->dump(); } #endif return pk; } //------------------------------insert_extracts--------------------------- // If a use of pack p is not a vector use, then replace the // use with an extract operation. void SuperWord::insert_extracts(Node_List* p) { if (p->at(0)->is_Store()) return; assert(_n_idx_list.is_empty(), "empty (node,index) list"); // Inspect each use of each pack member. For each use that is // not a vector use, replace the use with an extract operation. for (uint i = 0; i < p->size(); i++) { Node* def = p->at(i); for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { Node* use = def->fast_out(j); for (uint k = 0; k < use->req(); k++) { Node* n = use->in(k); if (def == n) { Node_List* u_pk = my_pack(use); if ((u_pk == NULL || !is_cmov_pack(u_pk) || use->is_CMove()) && !is_vector_use(use, k)) { _n_idx_list.push(use, k); } } } } } while (_n_idx_list.is_nonempty()) { Node* use = _n_idx_list.node(); int idx = _n_idx_list.index(); _n_idx_list.pop(); Node* def = use->in(idx); if (def->is_reduction()) continue; // Insert extract operation _igvn.hash_delete(def); int def_pos = alignment(def) / data_size(def); Node* ex = ExtractNode::make(def, def_pos, velt_basic_type(def)); _igvn.register_new_node_with_optimizer(ex); _phase->set_ctrl(ex, _phase->get_ctrl(def)); _igvn.replace_input_of(use, idx, ex); _igvn._worklist.push(def); bb_insert_after(ex, bb_idx(def)); set_velt_type(ex, velt_type(def)); } } //------------------------------is_vector_use--------------------------- // Is use->in(u_idx) a vector use? bool SuperWord::is_vector_use(Node* use, int u_idx) { Node_List* u_pk = my_pack(use); if (u_pk == NULL) return false; if (use->is_reduction()) return true; Node* def = use->in(u_idx); Node_List* d_pk = my_pack(def); if (d_pk == NULL) { // check for scalar promotion Node* n = u_pk->at(0)->in(u_idx); for (uint i = 1; i < u_pk->size(); i++) { if (u_pk->at(i)->in(u_idx) != n) return false; } return true; } if (VectorNode::is_muladds2i(use)) { // MulAddS2I takes shorts and produces ints - hence the special checks // on alignment and size. if (u_pk->size() * 2 != d_pk->size()) { return false; } for (uint i = 0; i < MIN2(d_pk->size(), u_pk->size()); i++) { Node* ui = u_pk->at(i); Node* di = d_pk->at(i); if (alignment(ui) != alignment(di) * 2) { return false; } } return true; } if (u_pk->size() != d_pk->size()) return false; for (uint i = 0; i < u_pk->size(); i++) { Node* ui = u_pk->at(i); Node* di = d_pk->at(i); if (ui->in(u_idx) != di || alignment(ui) != alignment(di)) return false; } return true; } //------------------------------construct_bb--------------------------- // Construct reverse postorder list of block members bool SuperWord::construct_bb() { Node* entry = bb(); assert(_stk.length() == 0, "stk is empty"); assert(_block.length() == 0, "block is empty"); assert(_data_entry.length() == 0, "data_entry is empty"); assert(_mem_slice_head.length() == 0, "mem_slice_head is empty"); assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty"); // Find non-control nodes with no inputs from within block, // create a temporary map from node _idx to bb_idx for use // by the visited and post_visited sets, // and count number of nodes in block. int bb_ct = 0; for (uint i = 0; i < lpt()->_body.size(); i++) { Node *n = lpt()->_body.at(i); set_bb_idx(n, i); // Create a temporary map if (in_bb(n)) { if (n->is_LoadStore() || n->is_MergeMem() || (n->is_Proj() && !n->as_Proj()->is_CFG())) { // Bailout if the loop has LoadStore, MergeMem or data Proj // nodes. Superword optimization does not work with them. return false; } bb_ct++; if (!n->is_CFG()) { bool found = false; for (uint j = 0; j < n->req(); j++) { Node* def = n->in(j); if (def && in_bb(def)) { found = true; break; } } if (!found) { assert(n != entry, "can't be entry"); _data_entry.push(n); } } } } // Find memory slices (head and tail) for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) { Node *n = lp()->fast_out(i); if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) { Node* n_tail = n->in(LoopNode::LoopBackControl); if (n_tail != n->in(LoopNode::EntryControl)) { if (!n_tail->is_Mem()) { assert(n_tail->is_Mem(), "unexpected node for memory slice: %s", n_tail->Name()); return false; // Bailout } _mem_slice_head.push(n); _mem_slice_tail.push(n_tail); } } } // Create an RPO list of nodes in block visited_clear(); post_visited_clear(); // Push all non-control nodes with no inputs from within block, then control entry for (int j = 0; j < _data_entry.length(); j++) { Node* n = _data_entry.at(j); visited_set(n); _stk.push(n); } visited_set(entry); _stk.push(entry); // Do a depth first walk over out edges int rpo_idx = bb_ct - 1; int size; int reduction_uses = 0; while ((size = _stk.length()) > 0) { Node* n = _stk.top(); // Leave node on stack if (!visited_test_set(n)) { // forward arc in graph } else if (!post_visited_test(n)) { // cross or back arc for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { Node *use = n->fast_out(i); if (in_bb(use) && !visited_test(use) && // Don't go around backedge (!use->is_Phi() || n == entry)) { if (use->is_reduction()) { // First see if we can map the reduction on the given system we are on, then // make a data entry operation for each reduction we see. BasicType bt = use->bottom_type()->basic_type(); if (ReductionNode::implemented(use->Opcode(), Matcher::min_vector_size(bt), bt)) { reduction_uses++; } } _stk.push(use); } } if (_stk.length() == size) { // There were no additional uses, post visit node now _stk.pop(); // Remove node from stack assert(rpo_idx >= 0, ""); _block.at_put_grow(rpo_idx, n); rpo_idx--; post_visited_set(n); assert(rpo_idx >= 0 || _stk.is_empty(), ""); } } else { _stk.pop(); // Remove post-visited node from stack } }//while int ii_current = -1; unsigned int load_idx = (unsigned int)-1; _ii_order.clear(); // Create real map of block indices for nodes for (int j = 0; j < _block.length(); j++) { Node* n = _block.at(j); set_bb_idx(n, j); if (_do_vector_loop && n->is_Load()) { if (ii_current == -1) { ii_current = _clone_map.gen(n->_idx); _ii_order.push(ii_current); load_idx = _clone_map.idx(n->_idx); } else if (_clone_map.idx(n->_idx) == load_idx && _clone_map.gen(n->_idx) != ii_current) { ii_current = _clone_map.gen(n->_idx); _ii_order.push(ii_current); } } }//for // Ensure extra info is allocated. initialize_bb(); #ifndef PRODUCT if (_vector_loop_debug && _ii_order.length() > 0) { tty->print("SuperWord::construct_bb: List of generations: "); for (int jj = 0; jj < _ii_order.length(); ++jj) { tty->print(" %d:%d", jj, _ii_order.at(jj)); } tty->print_cr(" "); } if (TraceSuperWord) { print_bb(); tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE"); for (int m = 0; m < _data_entry.length(); m++) { tty->print("%3d ", m); _data_entry.at(m)->dump(); } tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE"); for (int m = 0; m < _mem_slice_head.length(); m++) { tty->print("%3d ", m); _mem_slice_head.at(m)->dump(); tty->print(" "); _mem_slice_tail.at(m)->dump(); } } #endif assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found"); return (_mem_slice_head.length() > 0) || (reduction_uses > 0) || (_data_entry.length() > 0); } //------------------------------initialize_bb--------------------------- // Initialize per node info void SuperWord::initialize_bb() { Node* last = _block.at(_block.length() - 1); grow_node_info(bb_idx(last)); } //------------------------------bb_insert_after--------------------------- // Insert n into block after pos void SuperWord::bb_insert_after(Node* n, int pos) { int n_pos = pos + 1; // Make room for (int i = _block.length() - 1; i >= n_pos; i--) { _block.at_put_grow(i+1, _block.at(i)); } for (int j = _node_info.length() - 1; j >= n_pos; j--) { _node_info.at_put_grow(j+1, _node_info.at(j)); } // Set value _block.at_put_grow(n_pos, n); _node_info.at_put_grow(n_pos, SWNodeInfo::initial); // Adjust map from node->_idx to _block index for (int i = n_pos; i < _block.length(); i++) { set_bb_idx(_block.at(i), i); } } //------------------------------compute_max_depth--------------------------- // Compute max depth for expressions from beginning of block // Use to prune search paths during test for independence. void SuperWord::compute_max_depth() { int ct = 0; bool again; do { again = false; for (int i = 0; i < _block.length(); i++) { Node* n = _block.at(i); if (!n->is_Phi()) { int d_orig = depth(n); int d_in = 0; for (DepPreds preds(n, _dg); !preds.done(); preds.next()) { Node* pred = preds.current(); if (in_bb(pred)) { d_in = MAX2(d_in, depth(pred)); } } if (d_in + 1 != d_orig) { set_depth(n, d_in + 1); again = true; } } } ct++; } while (again); if (TraceSuperWord && Verbose) { tty->print_cr("compute_max_depth iterated: %d times", ct); } } //-------------------------compute_vector_element_type----------------------- // Compute necessary vector element type for expressions // This propagates backwards a narrower integer type when the // upper bits of the value are not needed. // Example: char a,b,c; a = b + c; // Normally the type of the add is integer, but for packed character // operations the type of the add needs to be char. void SuperWord::compute_vector_element_type() { if (TraceSuperWord && Verbose) { tty->print_cr("\ncompute_velt_type:"); } // Initial type for (int i = 0; i < _block.length(); i++) { Node* n = _block.at(i); set_velt_type(n, container_type(n)); } // Propagate integer narrowed type backwards through operations // that don't depend on higher order bits for (int i = _block.length() - 1; i >= 0; i--) { Node* n = _block.at(i); // Only integer types need be examined const Type* vtn = velt_type(n); if (vtn->basic_type() == T_INT) { uint start, end; VectorNode::vector_operands(n, &start, &end); for (uint j = start; j < end; j++) { Node* in = n->in(j); // Don't propagate through a memory if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT && data_size(n) < data_size(in)) { bool same_type = true; for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) { Node *use = in->fast_out(k); if (!in_bb(use) || !same_velt_type(use, n)) { same_type = false; break; } } if (same_type) { // For right shifts of small integer types (bool, byte, char, short) // we need precise information about sign-ness. Only Load nodes have // this information because Store nodes are the same for signed and // unsigned values. And any arithmetic operation after a load may // expand a value to signed Int so such right shifts can't be used // because vector elements do not have upper bits of Int. const Type* vt = vtn; if (VectorNode::is_shift(in)) { Node* load = in->in(1); if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) { vt = velt_type(load); } else if (in->Opcode() != Op_LShiftI) { // Widen type to Int to avoid creation of right shift vector // (align + data_size(s1) check in stmts_can_pack() will fail). // Note, left shifts work regardless type. vt = TypeInt::INT; } } set_velt_type(in, vt); } } } } } #ifndef PRODUCT if (TraceSuperWord && Verbose) { for (int i = 0; i < _block.length(); i++) { Node* n = _block.at(i); velt_type(n)->dump(); tty->print("\t"); n->dump(); } } #endif } //------------------------------memory_alignment--------------------------- // Alignment within a vector memory reference int SuperWord::memory_alignment(MemNode* s, int iv_adjust) { #ifndef PRODUCT if(TraceSuperWord && Verbose) { tty->print("SuperWord::memory_alignment within a vector memory reference for %d: ", s->_idx); s->dump(); } #endif NOT_PRODUCT(SWPointer::Tracer::Depth ddd(0);) SWPointer p(s, this, NULL, false); if (!p.valid()) { NOT_PRODUCT(if(is_trace_alignment()) tty->print("SWPointer::memory_alignment: SWPointer p invalid, return bottom_align");) return bottom_align; } int vw = get_vw_bytes_special(s); if (vw < 2) { NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SWPointer::memory_alignment: vector_width_in_bytes < 2, return bottom_align");) return bottom_align; // No vectors for this type } int offset = p.offset_in_bytes(); offset += iv_adjust*p.memory_size(); int off_rem = offset % vw; int off_mod = off_rem >= 0 ? off_rem : off_rem + vw; if (TraceSuperWord && Verbose) { tty->print_cr("SWPointer::memory_alignment: off_rem = %d, off_mod = %d", off_rem, off_mod); } return off_mod; } //---------------------------container_type--------------------------- // Smallest type containing range of values const Type* SuperWord::container_type(Node* n) { if (n->is_Mem()) { BasicType bt = n->as_Mem()->memory_type(); if (n->is_Store() && (bt == T_CHAR)) { // Use T_SHORT type instead of T_CHAR for stored values because any // preceding arithmetic operation extends values to signed Int. bt = T_SHORT; } if (n->Opcode() == Op_LoadUB) { // Adjust type for unsigned byte loads, it is important for right shifts. // T_BOOLEAN is used because there is no basic type representing type // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only // size (one byte) and sign is important. bt = T_BOOLEAN; } return Type::get_const_basic_type(bt); } const Type* t = _igvn.type(n); if (t->basic_type() == T_INT) { // A narrow type of arithmetic operations will be determined by // propagating the type of memory operations. return TypeInt::INT; } return t; } bool SuperWord::same_velt_type(Node* n1, Node* n2) { const Type* vt1 = velt_type(n1); const Type* vt2 = velt_type(n2); if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) { // Compare vectors element sizes for integer types. return data_size(n1) == data_size(n2); } return vt1 == vt2; } //------------------------------in_packset--------------------------- // Are s1 and s2 in a pack pair and ordered as s1,s2? bool SuperWord::in_packset(Node* s1, Node* s2) { for (int i = 0; i < _packset.length(); i++) { Node_List* p = _packset.at(i); assert(p->size() == 2, "must be"); if (p->at(0) == s1 && p->at(p->size()-1) == s2) { return true; } } return false; } //------------------------------in_pack--------------------------- // Is s in pack p? Node_List* SuperWord::in_pack(Node* s, Node_List* p) { for (uint i = 0; i < p->size(); i++) { if (p->at(i) == s) { return p; } } return NULL; } //------------------------------remove_pack_at--------------------------- // Remove the pack at position pos in the packset void SuperWord::remove_pack_at(int pos) { Node_List* p = _packset.at(pos); for (uint i = 0; i < p->size(); i++) { Node* s = p->at(i); set_my_pack(s, NULL); } _packset.remove_at(pos); } void SuperWord::packset_sort(int n) { // simple bubble sort so that we capitalize with O(n) when its already sorted while (n != 0) { bool swapped = false; for (int i = 1; i < n; i++) { Node_List* q_low = _packset.at(i-1); Node_List* q_i = _packset.at(i); // only swap when we find something to swap if (alignment(q_low->at(0)) > alignment(q_i->at(0))) { Node_List* t = q_i; *(_packset.adr_at(i)) = q_low; *(_packset.adr_at(i-1)) = q_i; swapped = true; } } if (swapped == false) break; n--; } } //------------------------------executed_first--------------------------- // Return the node executed first in pack p. Uses the RPO block list // to determine order. Node* SuperWord::executed_first(Node_List* p) { Node* n = p->at(0); int n_rpo = bb_idx(n); for (uint i = 1; i < p->size(); i++) { Node* s = p->at(i); int s_rpo = bb_idx(s); if (s_rpo < n_rpo) { n = s; n_rpo = s_rpo; } } return n; } //------------------------------executed_last--------------------------- // Return the node executed last in pack p. Node* SuperWord::executed_last(Node_List* p) { Node* n = p->at(0); int n_rpo = bb_idx(n); for (uint i = 1; i < p->size(); i++) { Node* s = p->at(i); int s_rpo = bb_idx(s); if (s_rpo > n_rpo) { n = s; n_rpo = s_rpo; } } return n; } LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) { LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest; for (uint i = 0; i < p->size(); i++) { Node* n = p->at(i); assert(n->is_Load(), "only meaningful for loads"); if (!n->depends_only_on_test()) { dep = LoadNode::Pinned; } } return dep; } //----------------------------align_initial_loop_index--------------------------- // Adjust pre-loop limit so that in main loop, a load/store reference // to align_to_ref will be a position zero in the vector. // (iv + k) mod vector_align == 0 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) { CountedLoopNode *main_head = lp()->as_CountedLoop(); assert(main_head->is_main_loop(), ""); CountedLoopEndNode* pre_end = get_pre_loop_end(main_head); assert(pre_end != NULL, "we must have a correct pre-loop"); Node *pre_opaq1 = pre_end->limit(); assert(pre_opaq1->Opcode() == Op_Opaque1, ""); Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1; Node *lim0 = pre_opaq->in(1); // Where we put new limit calculations Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl); // Ensure the original loop limit is available from the // pre-loop Opaque1 node. Node *orig_limit = pre_opaq->original_loop_limit(); assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, ""); SWPointer align_to_ref_p(align_to_ref, this, NULL, false); assert(align_to_ref_p.valid(), "sanity"); // Given: // lim0 == original pre loop limit // V == v_align (power of 2) // invar == extra invariant piece of the address expression // e == offset [ +/- invar ] // // When reassociating expressions involving '%' the basic rules are: // (a - b) % k == 0 => a % k == b % k // and: // (a + b) % k == 0 => a % k == (k - b) % k // // For stride > 0 && scale > 0, // Derive the new pre-loop limit "lim" such that the two constraints: // (1) lim = lim0 + N (where N is some positive integer < V) // (2) (e + lim) % V == 0 // are true. // // Substituting (1) into (2), // (e + lim0 + N) % V == 0 // solve for N: // N = (V - (e + lim0)) % V // substitute back into (1), so that new limit // lim = lim0 + (V - (e + lim0)) % V // // For stride > 0 && scale < 0 // Constraints: // lim = lim0 + N // (e - lim) % V == 0 // Solving for lim: // (e - lim0 - N) % V == 0 // N = (e - lim0) % V // lim = lim0 + (e - lim0) % V // // For stride < 0 && scale > 0 // Constraints: // lim = lim0 - N // (e + lim) % V == 0 // Solving for lim: // (e + lim0 - N) % V == 0 // N = (e + lim0) % V // lim = lim0 - (e + lim0) % V // // For stride < 0 && scale < 0 // Constraints: // lim = lim0 - N // (e - lim) % V == 0 // Solving for lim: // (e - lim0 + N) % V == 0 // N = (V - (e - lim0)) % V // lim = lim0 - (V - (e - lim0)) % V int vw = vector_width_in_bytes(align_to_ref); int stride = iv_stride(); int scale = align_to_ref_p.scale_in_bytes(); int elt_size = align_to_ref_p.memory_size(); int v_align = vw / elt_size; assert(v_align > 1, "sanity"); int offset = align_to_ref_p.offset_in_bytes() / elt_size; Node *offsn = _igvn.intcon(offset); Node *e = offsn; if (align_to_ref_p.invar() != NULL) { // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt) Node* log2_elt = _igvn.intcon(exact_log2(elt_size)); Node* invar = align_to_ref_p.invar(); if (_igvn.type(invar)->isa_long()) { // Computations are done % (vector width/element size) so it's // safe to simply convert invar to an int and loose the upper 32 // bit half. invar = new ConvL2INode(invar); _igvn.register_new_node_with_optimizer(invar); } Node* aref = new URShiftINode(invar, log2_elt); _igvn.register_new_node_with_optimizer(aref); _phase->set_ctrl(aref, pre_ctrl); if (align_to_ref_p.negate_invar()) { e = new SubINode(e, aref); } else { e = new AddINode(e, aref); } _igvn.register_new_node_with_optimizer(e); _phase->set_ctrl(e, pre_ctrl); } if (vw > ObjectAlignmentInBytes) { // incorporate base e +/- base && Mask >>> log2(elt) Node* xbase = new CastP2XNode(NULL, align_to_ref_p.base()); _igvn.register_new_node_with_optimizer(xbase); #ifdef _LP64 xbase = new ConvL2INode(xbase); _igvn.register_new_node_with_optimizer(xbase); #endif Node* mask = _igvn.intcon(vw-1); Node* masked_xbase = new AndINode(xbase, mask); _igvn.register_new_node_with_optimizer(masked_xbase); Node* log2_elt = _igvn.intcon(exact_log2(elt_size)); Node* bref = new URShiftINode(masked_xbase, log2_elt); _igvn.register_new_node_with_optimizer(bref); _phase->set_ctrl(bref, pre_ctrl); e = new AddINode(e, bref); _igvn.register_new_node_with_optimizer(e); _phase->set_ctrl(e, pre_ctrl); } // compute e +/- lim0 if (scale < 0) { e = new SubINode(e, lim0); } else { e = new AddINode(e, lim0); } _igvn.register_new_node_with_optimizer(e); _phase->set_ctrl(e, pre_ctrl); if (stride * scale > 0) { // compute V - (e +/- lim0) Node* va = _igvn.intcon(v_align); e = new SubINode(va, e); _igvn.register_new_node_with_optimizer(e); _phase->set_ctrl(e, pre_ctrl); } // compute N = (exp) % V Node* va_msk = _igvn.intcon(v_align - 1); Node* N = new AndINode(e, va_msk); _igvn.register_new_node_with_optimizer(N); _phase->set_ctrl(N, pre_ctrl); // substitute back into (1), so that new limit // lim = lim0 + N Node* lim; if (stride < 0) { lim = new SubINode(lim0, N); } else { lim = new AddINode(lim0, N); } _igvn.register_new_node_with_optimizer(lim); _phase->set_ctrl(lim, pre_ctrl); Node* constrained = (stride > 0) ? (Node*) new MinINode(lim, orig_limit) : (Node*) new MaxINode(lim, orig_limit); _igvn.register_new_node_with_optimizer(constrained); _phase->set_ctrl(constrained, pre_ctrl); _igvn.replace_input_of(pre_opaq, 1, constrained); } //----------------------------get_pre_loop_end--------------------------- // Find pre loop end from main loop. Returns null if none. CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode* cl) { // The loop cannot be optimized if the graph shape at // the loop entry is inappropriate. if (!PhaseIdealLoop::is_canonical_loop_entry(cl)) { return NULL; } Node* p_f = cl->skip_predicates()->in(0)->in(0); if (!p_f->is_IfFalse()) return NULL; if (!p_f->in(0)->is_CountedLoopEnd()) return NULL; CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd(); CountedLoopNode* loop_node = pre_end->loopnode(); if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL; return pre_end; } //------------------------------init--------------------------- void SuperWord::init() { _dg.init(); _packset.clear(); _disjoint_ptrs.clear(); _block.clear(); _post_block.clear(); _data_entry.clear(); _mem_slice_head.clear(); _mem_slice_tail.clear(); _iteration_first.clear(); _iteration_last.clear(); _node_info.clear(); _align_to_ref = NULL; _lpt = NULL; _lp = NULL; _bb = NULL; _iv = NULL; _race_possible = 0; _early_return = false; _num_work_vecs = 0; _num_reductions = 0; } //------------------------------restart--------------------------- void SuperWord::restart() { _dg.init(); _packset.clear(); _disjoint_ptrs.clear(); _block.clear(); _post_block.clear(); _data_entry.clear(); _mem_slice_head.clear(); _mem_slice_tail.clear(); _node_info.clear(); } //------------------------------print_packset--------------------------- void SuperWord::print_packset() { #ifndef PRODUCT tty->print_cr("packset"); for (int i = 0; i < _packset.length(); i++) { tty->print_cr("Pack: %d", i); Node_List* p = _packset.at(i); print_pack(p); } #endif } //------------------------------print_pack--------------------------- void SuperWord::print_pack(Node_List* p) { for (uint i = 0; i < p->size(); i++) { print_stmt(p->at(i)); } } //------------------------------print_bb--------------------------- void SuperWord::print_bb() { #ifndef PRODUCT tty->print_cr("\nBlock"); for (int i = 0; i < _block.length(); i++) { Node* n = _block.at(i); tty->print("%d ", i); if (n) { n->dump(); } } #endif } //------------------------------print_stmt--------------------------- void SuperWord::print_stmt(Node* s) { #ifndef PRODUCT tty->print(" align: %d \t", alignment(s)); s->dump(); #endif } //------------------------------blank--------------------------- char* SuperWord::blank(uint depth) { static char blanks[101]; assert(depth < 101, "too deep"); for (uint i = 0; i < depth; i++) blanks[i] = ' '; blanks[depth] = '\0'; return blanks; } //==============================SWPointer=========================== #ifndef PRODUCT int SWPointer::Tracer::_depth = 0; #endif //----------------------------SWPointer------------------------ SWPointer::SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only) : _mem(mem), _slp(slp), _base(NULL), _adr(NULL), _scale(0), _offset(0), _invar(NULL), _negate_invar(false), _nstack(nstack), _analyze_only(analyze_only), _stack_idx(0) #ifndef PRODUCT , _tracer(slp) #endif { NOT_PRODUCT(_tracer.ctor_1(mem);) Node* adr = mem->in(MemNode::Address); if (!adr->is_AddP()) { assert(!valid(), "too complex"); return; } // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant) Node* base = adr->in(AddPNode::Base); // The base address should be loop invariant if (!invariant(base)) { assert(!valid(), "base address is loop variant"); return; } //unsafe reference could not be aligned appropriately without runtime checking if (base == NULL || base->bottom_type() == Type::TOP) { assert(!valid(), "unsafe access"); return; } NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.store_depth();) NOT_PRODUCT(_tracer.ctor_2(adr);) int i; for (i = 0; i < 3; i++) { NOT_PRODUCT(_tracer.ctor_3(adr, i);) if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) { assert(!valid(), "too complex"); return; } adr = adr->in(AddPNode::Address); NOT_PRODUCT(_tracer.ctor_4(adr, i);) if (base == adr || !adr->is_AddP()) { NOT_PRODUCT(_tracer.ctor_5(adr, base, i);) break; // stop looking at addp's } } NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.restore_depth();) NOT_PRODUCT(_tracer.ctor_6(mem);) _base = base; _adr = adr; assert(valid(), "Usable"); } // Following is used to create a temporary object during // the pattern match of an address expression. SWPointer::SWPointer(SWPointer* p) : _mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL), _scale(0), _offset(0), _invar(NULL), _negate_invar(false), _nstack(p->_nstack), _analyze_only(p->_analyze_only), _stack_idx(p->_stack_idx) #ifndef PRODUCT , _tracer(p->_slp) #endif {} bool SWPointer::invariant(Node* n) { NOT_PRODUCT(Tracer::Depth dd;) Node *n_c = phase()->get_ctrl(n); NOT_PRODUCT(_tracer.invariant_1(n, n_c);) return !lpt()->is_member(phase()->get_loop(n_c)); } //------------------------scaled_iv_plus_offset-------------------- // Match: k*iv + offset // where: k is a constant that maybe zero, and // offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional bool SWPointer::scaled_iv_plus_offset(Node* n) { NOT_PRODUCT(Tracer::Depth ddd;) NOT_PRODUCT(_tracer.scaled_iv_plus_offset_1(n);) if (scaled_iv(n)) { NOT_PRODUCT(_tracer.scaled_iv_plus_offset_2(n);) return true; } if (offset_plus_k(n)) { NOT_PRODUCT(_tracer.scaled_iv_plus_offset_3(n);) return true; } int opc = n->Opcode(); if (opc == Op_AddI) { if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) { NOT_PRODUCT(_tracer.scaled_iv_plus_offset_4(n);) return true; } if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) { NOT_PRODUCT(_tracer.scaled_iv_plus_offset_5(n);) return true; } } else if (opc == Op_SubI) { if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) { NOT_PRODUCT(_tracer.scaled_iv_plus_offset_6(n);) return true; } if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) { _scale *= -1; NOT_PRODUCT(_tracer.scaled_iv_plus_offset_7(n);) return true; } } NOT_PRODUCT(_tracer.scaled_iv_plus_offset_8(n);) return false; } //----------------------------scaled_iv------------------------ // Match: k*iv where k is a constant that's not zero bool SWPointer::scaled_iv(Node* n) { NOT_PRODUCT(Tracer::Depth ddd;) NOT_PRODUCT(_tracer.scaled_iv_1(n);) if (_scale != 0) { // already found a scale NOT_PRODUCT(_tracer.scaled_iv_2(n, _scale);) return false; } if (n == iv()) { _scale = 1; NOT_PRODUCT(_tracer.scaled_iv_3(n, _scale);) return true; } if (_analyze_only && (invariant(n) == false)) { _nstack->push(n, _stack_idx++); } int opc = n->Opcode(); if (opc == Op_MulI) { if (n->in(1) == iv() && n->in(2)->is_Con()) { _scale = n->in(2)->get_int(); NOT_PRODUCT(_tracer.scaled_iv_4(n, _scale);) return true; } else if (n->in(2) == iv() && n->in(1)->is_Con()) { _scale = n->in(1)->get_int(); NOT_PRODUCT(_tracer.scaled_iv_5(n, _scale);) return true; } } else if (opc == Op_LShiftI) { if (n->in(1) == iv() && n->in(2)->is_Con()) { _scale = 1 << n->in(2)->get_int(); NOT_PRODUCT(_tracer.scaled_iv_6(n, _scale);) return true; } } else if (opc == Op_ConvI2L) { if (n->in(1)->Opcode() == Op_CastII && n->in(1)->as_CastII()->has_range_check()) { // Skip range check dependent CastII nodes n = n->in(1); } if (scaled_iv_plus_offset(n->in(1))) { NOT_PRODUCT(_tracer.scaled_iv_7(n);) return true; } } else if (opc == Op_LShiftL) { if (!has_iv() && _invar == NULL) { // Need to preserve the current _offset value, so // create a temporary object for this expression subtree. // Hacky, so should re-engineer the address pattern match. NOT_PRODUCT(Tracer::Depth dddd;) SWPointer tmp(this); NOT_PRODUCT(_tracer.scaled_iv_8(n, &tmp);) if (tmp.scaled_iv_plus_offset(n->in(1))) { if (tmp._invar == NULL || _slp->do_vector_loop()) { int mult = 1 << n->in(2)->get_int(); _scale = tmp._scale * mult; _offset += tmp._offset * mult; NOT_PRODUCT(_tracer.scaled_iv_9(n, _scale, _offset, mult);) return true; } } } } NOT_PRODUCT(_tracer.scaled_iv_10(n);) return false; } //----------------------------offset_plus_k------------------------ // Match: offset is (k [+/- invariant]) // where k maybe zero and invariant is optional, but not both. bool SWPointer::offset_plus_k(Node* n, bool negate) { NOT_PRODUCT(Tracer::Depth ddd;) NOT_PRODUCT(_tracer.offset_plus_k_1(n);) int opc = n->Opcode(); if (opc == Op_ConI) { _offset += negate ? -(n->get_int()) : n->get_int(); NOT_PRODUCT(_tracer.offset_plus_k_2(n, _offset);) return true; } else if (opc == Op_ConL) { // Okay if value fits into an int const TypeLong* t = n->find_long_type(); if (t->higher_equal(TypeLong::INT)) { jlong loff = n->get_long(); jint off = (jint)loff; _offset += negate ? -off : loff; NOT_PRODUCT(_tracer.offset_plus_k_3(n, _offset);) return true; } NOT_PRODUCT(_tracer.offset_plus_k_4(n);) return false; } if (_invar != NULL) { // already has an invariant NOT_PRODUCT(_tracer.offset_plus_k_5(n, _invar);) return false; } if (_analyze_only && (invariant(n) == false)) { _nstack->push(n, _stack_idx++); } if (opc == Op_AddI) { if (n->in(2)->is_Con() && invariant(n->in(1))) { _negate_invar = negate; _invar = n->in(1); _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int(); NOT_PRODUCT(_tracer.offset_plus_k_6(n, _invar, _negate_invar, _offset);) return true; } else if (n->in(1)->is_Con() && invariant(n->in(2))) { _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int(); _negate_invar = negate; _invar = n->in(2); NOT_PRODUCT(_tracer.offset_plus_k_7(n, _invar, _negate_invar, _offset);) return true; } } if (opc == Op_SubI) { if (n->in(2)->is_Con() && invariant(n->in(1))) { _negate_invar = negate; _invar = n->in(1); _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int(); NOT_PRODUCT(_tracer.offset_plus_k_8(n, _invar, _negate_invar, _offset);) return true; } else if (n->in(1)->is_Con() && invariant(n->in(2))) { _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int(); _negate_invar = !negate; _invar = n->in(2); NOT_PRODUCT(_tracer.offset_plus_k_9(n, _invar, _negate_invar, _offset);) return true; } } if (invariant(n)) { if (opc == Op_ConvI2L) { n = n->in(1); if (n->Opcode() == Op_CastII && n->as_CastII()->has_range_check()) { // Skip range check dependent CastII nodes assert(invariant(n), "sanity"); n = n->in(1); } } _negate_invar = negate; _invar = n; NOT_PRODUCT(_tracer.offset_plus_k_10(n, _invar, _negate_invar, _offset);) return true; } NOT_PRODUCT(_tracer.offset_plus_k_11(n);) return false; } //----------------------------print------------------------ void SWPointer::print() { #ifndef PRODUCT tty->print("base: %d adr: %d scale: %d offset: %d invar: %c%d\n", _base != NULL ? _base->_idx : 0, _adr != NULL ? _adr->_idx : 0, _scale, _offset, _negate_invar?'-':'+', _invar != NULL ? _invar->_idx : 0); #endif } //----------------------------tracing------------------------ #ifndef PRODUCT void SWPointer::Tracer::print_depth() { for (int ii = 0; ii<_depth; ++ii) tty->print(" "); } void SWPointer::Tracer::ctor_1 (Node* mem) { if(_slp->is_trace_alignment()) { print_depth(); tty->print(" %d SWPointer::SWPointer: start alignment analysis", mem->_idx); mem->dump(); } } void SWPointer::Tracer::ctor_2(Node* adr) { if(_slp->is_trace_alignment()) { //store_depth(); inc_depth(); print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: ", adr->_idx); adr->dump(); inc_depth(); print_depth(); tty->print(" %d (base) SWPointer::SWPointer: ", adr->in(AddPNode::Base)->_idx); adr->in(AddPNode::Base)->dump(); } } void SWPointer::Tracer::ctor_3(Node* adr, int i) { if(_slp->is_trace_alignment()) { inc_depth(); Node* offset = adr->in(AddPNode::Offset); print_depth(); tty->print(" %d (offset) SWPointer::SWPointer: i = %d: ", offset->_idx, i); offset->dump(); } } void SWPointer::Tracer::ctor_4(Node* adr, int i) { if(_slp->is_trace_alignment()) { inc_depth(); print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: i = %d: ", adr->_idx, i); adr->dump(); } } void SWPointer::Tracer::ctor_5(Node* adr, Node* base, int i) { if(_slp->is_trace_alignment()) { inc_depth(); if (base == adr) { print_depth(); tty->print_cr(" \\ %d (adr) == %d (base) SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, base->_idx, i); } else if (!adr->is_AddP()) { print_depth(); tty->print_cr(" \\ %d (adr) is NOT Addp SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, i); } } } void SWPointer::Tracer::ctor_6(Node* mem) { if(_slp->is_trace_alignment()) { //restore_depth(); print_depth(); tty->print_cr(" %d (adr) SWPointer::SWPointer: stop analysis", mem->_idx); } } void SWPointer::Tracer::invariant_1(Node *n, Node *n_c) { if (_slp->do_vector_loop() && _slp->is_debug() && _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)) != (int)_slp->in_bb(n)) { int is_member = _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)); int in_bb = _slp->in_bb(n); print_depth(); tty->print(" \\ "); tty->print_cr(" %d SWPointer::invariant conditions differ: n_c %d", n->_idx, n_c->_idx); print_depth(); tty->print(" \\ "); tty->print_cr("is_member %d, in_bb %d", is_member, in_bb); print_depth(); tty->print(" \\ "); n->dump(); print_depth(); tty->print(" \\ "); n_c->dump(); } } void SWPointer::Tracer::scaled_iv_plus_offset_1(Node* n) { if(_slp->is_trace_alignment()) { print_depth(); tty->print(" %d SWPointer::scaled_iv_plus_offset testing node: ", n->_idx); n->dump(); } } void SWPointer::Tracer::scaled_iv_plus_offset_2(Node* n) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx); } } void SWPointer::Tracer::scaled_iv_plus_offset_3(Node* n) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx); } } void SWPointer::Tracer::scaled_iv_plus_offset_4(Node* n) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx); print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump(); print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump(); } } void SWPointer::Tracer::scaled_iv_plus_offset_5(Node* n) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx); print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump(); print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump(); } } void SWPointer::Tracer::scaled_iv_plus_offset_6(Node* n) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx); print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump(); print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump(); } } void SWPointer::Tracer::scaled_iv_plus_offset_7(Node* n) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx); print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump(); print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump(); } } void SWPointer::Tracer::scaled_iv_plus_offset_8(Node* n) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: FAILED", n->_idx); } } void SWPointer::Tracer::scaled_iv_1(Node* n) { if(_slp->is_trace_alignment()) { print_depth(); tty->print(" %d SWPointer::scaled_iv: testing node: ", n->_idx); n->dump(); } } void SWPointer::Tracer::scaled_iv_2(Node* n, int scale) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED since another _scale has been detected before", n->_idx); print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: _scale (%d) != 0", scale); } } void SWPointer::Tracer::scaled_iv_3(Node* n, int scale) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: is iv, setting _scale = %d", n->_idx, scale); } } void SWPointer::Tracer::scaled_iv_4(Node* n, int scale) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale); print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump(); print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump(); } } void SWPointer::Tracer::scaled_iv_5(Node* n, int scale) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale); print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(2) is iv: ", n->in(2)->_idx); n->in(2)->dump(); print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump(); } } void SWPointer::Tracer::scaled_iv_6(Node* n, int scale) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftI PASSED, setting _scale = %d", n->_idx, scale); print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump(); print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump(); } } void SWPointer::Tracer::scaled_iv_7(Node* n) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_ConvI2L PASSED", n->_idx); print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset: ", n->in(1)->_idx); inc_depth(); inc_depth(); print_depth(); n->in(1)->dump(); dec_depth(); dec_depth(); } } void SWPointer::Tracer::scaled_iv_8(Node* n, SWPointer* tmp) { if(_slp->is_trace_alignment()) { print_depth(); tty->print(" %d SWPointer::scaled_iv: Op_LShiftL, creating tmp SWPointer: ", n->_idx); tmp->print(); } } void SWPointer::Tracer::scaled_iv_9(Node* n, int scale, int _offset, int mult) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftL PASSED, setting _scale = %d, _offset = %d", n->_idx, scale, _offset); print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset, in(2) %d used to get mult = %d: _scale = %d, _offset = %d", n->in(1)->_idx, n->in(2)->_idx, mult, scale, _offset); inc_depth(); inc_depth(); print_depth(); n->in(1)->dump(); print_depth(); n->in(2)->dump(); dec_depth(); dec_depth(); } } void SWPointer::Tracer::scaled_iv_10(Node* n) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED", n->_idx); } } void SWPointer::Tracer::offset_plus_k_1(Node* n) { if(_slp->is_trace_alignment()) { print_depth(); tty->print(" %d SWPointer::offset_plus_k: testing node: ", n->_idx); n->dump(); } } void SWPointer::Tracer::offset_plus_k_2(Node* n, int _offset) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConI PASSED, setting _offset = %d", n->_idx, _offset); } } void SWPointer::Tracer::offset_plus_k_3(Node* n, int _offset) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConL PASSED, setting _offset = %d", n->_idx, _offset); } } void SWPointer::Tracer::offset_plus_k_4(Node* n) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx); print_depth(); tty->print_cr(" \\ " JLONG_FORMAT " SWPointer::offset_plus_k: Op_ConL FAILED, k is too big", n->get_long()); } } void SWPointer::Tracer::offset_plus_k_5(Node* n, Node* _invar) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED since another invariant has been detected before", n->_idx); print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: _invar != NULL: ", _invar->_idx); _invar->dump(); } } void SWPointer::Tracer::offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset); print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump(); print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump(); } } void SWPointer::Tracer::offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset); print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump(); print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump(); } } void SWPointer::Tracer::offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI is PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset); print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump(); print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump(); } } void SWPointer::Tracer::offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset); print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump(); print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump(); } } void SWPointer::Tracer::offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset); print_depth(); tty->print_cr(" \\ %d SWPointer::offset_plus_k: is invariant", n->_idx); } } void SWPointer::Tracer::offset_plus_k_11(Node* n) { if(_slp->is_trace_alignment()) { print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx); } } #endif // ========================= OrderedPair ===================== const OrderedPair OrderedPair::initial; // ========================= SWNodeInfo ===================== const SWNodeInfo SWNodeInfo::initial; // ============================ DepGraph =========================== //------------------------------make_node--------------------------- // Make a new dependence graph node for an ideal node. DepMem* DepGraph::make_node(Node* node) { DepMem* m = new (_arena) DepMem(node); if (node != NULL) { assert(_map.at_grow(node->_idx) == NULL, "one init only"); _map.at_put_grow(node->_idx, m); } return m; } //------------------------------make_edge--------------------------- // Make a new dependence graph edge from dpred -> dsucc DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) { DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head()); dpred->set_out_head(e); dsucc->set_in_head(e); return e; } // ========================== DepMem ======================== //------------------------------in_cnt--------------------------- int DepMem::in_cnt() { int ct = 0; for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++; return ct; } //------------------------------out_cnt--------------------------- int DepMem::out_cnt() { int ct = 0; for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++; return ct; } //------------------------------print----------------------------- void DepMem::print() { #ifndef PRODUCT tty->print(" DepNode %d (", _node->_idx); for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) { Node* pred = p->pred()->node(); tty->print(" %d", pred != NULL ? pred->_idx : 0); } tty->print(") ["); for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) { Node* succ = s->succ()->node(); tty->print(" %d", succ != NULL ? succ->_idx : 0); } tty->print_cr(" ]"); #endif } // =========================== DepEdge ========================= //------------------------------DepPreds--------------------------- void DepEdge::print() { #ifndef PRODUCT tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx); #endif } // =========================== DepPreds ========================= // Iterator over predecessor edges in the dependence graph. //------------------------------DepPreds--------------------------- DepPreds::DepPreds(Node* n, DepGraph& dg) { _n = n; _done = false; if (_n->is_Store() || _n->is_Load()) { _next_idx = MemNode::Address; _end_idx = n->req(); _dep_next = dg.dep(_n)->in_head(); } else if (_n->is_Mem()) { _next_idx = 0; _end_idx = 0; _dep_next = dg.dep(_n)->in_head(); } else { _next_idx = 1; _end_idx = _n->req(); _dep_next = NULL; } next(); } //------------------------------next--------------------------- void DepPreds::next() { if (_dep_next != NULL) { _current = _dep_next->pred()->node(); _dep_next = _dep_next->next_in(); } else if (_next_idx < _end_idx) { _current = _n->in(_next_idx++); } else { _done = true; } } // =========================== DepSuccs ========================= // Iterator over successor edges in the dependence graph. //------------------------------DepSuccs--------------------------- DepSuccs::DepSuccs(Node* n, DepGraph& dg) { _n = n; _done = false; if (_n->is_Load()) { _next_idx = 0; _end_idx = _n->outcnt(); _dep_next = dg.dep(_n)->out_head(); } else if (_n->is_Mem() || (_n->is_Phi() && _n->bottom_type() == Type::MEMORY)) { _next_idx = 0; _end_idx = 0; _dep_next = dg.dep(_n)->out_head(); } else { _next_idx = 0; _end_idx = _n->outcnt(); _dep_next = NULL; } next(); } //-------------------------------next--------------------------- void DepSuccs::next() { if (_dep_next != NULL) { _current = _dep_next->succ()->node(); _dep_next = _dep_next->next_out(); } else if (_next_idx < _end_idx) { _current = _n->raw_out(_next_idx++); } else { _done = true; } } // // --------------------------------- vectorization/simd ----------------------------------- // bool SuperWord::same_origin_idx(Node* a, Node* b) const { return a != NULL && b != NULL && _clone_map.same_idx(a->_idx, b->_idx); } bool SuperWord::same_generation(Node* a, Node* b) const { return a != NULL && b != NULL && _clone_map.same_gen(a->_idx, b->_idx); } Node* SuperWord::find_phi_for_mem_dep(LoadNode* ld) { assert(in_bb(ld), "must be in block"); if (_clone_map.gen(ld->_idx) == _ii_first) { #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(ld->_idx)=%d", _clone_map.gen(ld->_idx)); } #endif return NULL; //we think that any ld in the first gen being vectorizable } Node* mem = ld->in(MemNode::Memory); if (mem->outcnt() <= 1) { // we don't want to remove the only edge from mem node to load #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::find_phi_for_mem_dep input node %d to load %d has no other outputs and edge mem->load cannot be removed", mem->_idx, ld->_idx); ld->dump(); mem->dump(); } #endif return NULL; } if (!in_bb(mem) || same_generation(mem, ld)) { #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(mem->_idx)=%d", _clone_map.gen(mem->_idx)); } #endif return NULL; // does not depend on loop volatile node or depends on the same generation } //otherwise first node should depend on mem-phi Node* first = first_node(ld); assert(first->is_Load(), "must be Load"); Node* phi = first->as_Load()->in(MemNode::Memory); if (!phi->is_Phi() || phi->bottom_type() != Type::MEMORY) { #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::find_phi_for_mem_dep load is not vectorizable node, since it's `first` does not take input from mem phi"); ld->dump(); first->dump(); } #endif return NULL; } Node* tail = 0; for (int m = 0; m < _mem_slice_head.length(); m++) { if (_mem_slice_head.at(m) == phi) { tail = _mem_slice_tail.at(m); } } if (tail == 0) { //test that found phi is in the list _mem_slice_head #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::find_phi_for_mem_dep load %d is not vectorizable node, its phi %d is not _mem_slice_head", ld->_idx, phi->_idx); ld->dump(); phi->dump(); } #endif return NULL; } // now all conditions are met return phi; } Node* SuperWord::first_node(Node* nd) { for (int ii = 0; ii < _iteration_first.length(); ii++) { Node* nnn = _iteration_first.at(ii); if (same_origin_idx(nnn, nd)) { #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::first_node: %d is the first iteration node for %d (_clone_map.idx(nnn->_idx) = %d)", nnn->_idx, nd->_idx, _clone_map.idx(nnn->_idx)); } #endif return nnn; } } #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::first_node: did not find first iteration node for %d (_clone_map.idx(nd->_idx)=%d)", nd->_idx, _clone_map.idx(nd->_idx)); } #endif return 0; } Node* SuperWord::last_node(Node* nd) { for (int ii = 0; ii < _iteration_last.length(); ii++) { Node* nnn = _iteration_last.at(ii); if (same_origin_idx(nnn, nd)) { #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::last_node _clone_map.idx(nnn->_idx)=%d, _clone_map.idx(nd->_idx)=%d", _clone_map.idx(nnn->_idx), _clone_map.idx(nd->_idx)); } #endif return nnn; } } return 0; } int SuperWord::mark_generations() { Node *ii_err = NULL, *tail_err = NULL; for (int i = 0; i < _mem_slice_head.length(); i++) { Node* phi = _mem_slice_head.at(i); assert(phi->is_Phi(), "must be phi"); Node* tail = _mem_slice_tail.at(i); if (_ii_last == -1) { tail_err = tail; _ii_last = _clone_map.gen(tail->_idx); } else if (_ii_last != _clone_map.gen(tail->_idx)) { #ifndef PRODUCT if (TraceSuperWord && Verbose) { tty->print_cr("SuperWord::mark_generations _ii_last error - found different generations in two tail nodes "); tail->dump(); tail_err->dump(); } #endif return -1; } // find first iteration in the loop for (DUIterator_Fast imax, i = phi->fast_outs(imax); i < imax; i++) { Node* ii = phi->fast_out(i); if (in_bb(ii) && ii->is_Store()) { // we speculate that normally Stores of one and one only generation have deps from mem phi if (_ii_first == -1) { ii_err = ii; _ii_first = _clone_map.gen(ii->_idx); } else if (_ii_first != _clone_map.gen(ii->_idx)) { #ifndef PRODUCT if (TraceSuperWord && Verbose) { tty->print_cr("SuperWord::mark_generations: _ii_first was found before and not equal to one in this node (%d)", _ii_first); ii->dump(); if (ii_err!= 0) { ii_err->dump(); } } #endif return -1; // this phi has Stores from different generations of unroll and cannot be simd/vectorized } } }//for (DUIterator_Fast imax, }//for (int i... if (_ii_first == -1 || _ii_last == -1) { if (TraceSuperWord && Verbose) { tty->print_cr("SuperWord::mark_generations unknown error, something vent wrong"); } return -1; // something vent wrong } // collect nodes in the first and last generations assert(_iteration_first.length() == 0, "_iteration_first must be empty"); assert(_iteration_last.length() == 0, "_iteration_last must be empty"); for (int j = 0; j < _block.length(); j++) { Node* n = _block.at(j); node_idx_t gen = _clone_map.gen(n->_idx); if ((signed)gen == _ii_first) { _iteration_first.push(n); } else if ((signed)gen == _ii_last) { _iteration_last.push(n); } } // building order of iterations if (_ii_order.length() == 0 && ii_err != 0) { assert(in_bb(ii_err) && ii_err->is_Store(), "should be Store in bb"); Node* nd = ii_err; while(_clone_map.gen(nd->_idx) != _ii_last) { _ii_order.push(_clone_map.gen(nd->_idx)); bool found = false; for (DUIterator_Fast imax, i = nd->fast_outs(imax); i < imax; i++) { Node* use = nd->fast_out(i); if (same_origin_idx(use, nd) && use->as_Store()->in(MemNode::Memory) == nd) { found = true; nd = use; break; } }//for if (found == false) { if (TraceSuperWord && Verbose) { tty->print_cr("SuperWord::mark_generations: Cannot build order of iterations - no dependent Store for %d", nd->_idx); } _ii_order.clear(); return -1; } } //while _ii_order.push(_clone_map.gen(nd->_idx)); } #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::mark_generations"); tty->print_cr("First generation (%d) nodes:", _ii_first); for (int ii = 0; ii < _iteration_first.length(); ii++) _iteration_first.at(ii)->dump(); tty->print_cr("Last generation (%d) nodes:", _ii_last); for (int ii = 0; ii < _iteration_last.length(); ii++) _iteration_last.at(ii)->dump(); tty->print_cr(" "); tty->print("SuperWord::List of generations: "); for (int jj = 0; jj < _ii_order.length(); ++jj) { tty->print("%d:%d ", jj, _ii_order.at(jj)); } tty->print_cr(" "); } #endif return _ii_first; } bool SuperWord::fix_commutative_inputs(Node* gold, Node* fix) { assert(gold->is_Add() && fix->is_Add() || gold->is_Mul() && fix->is_Mul(), "should be only Add or Mul nodes"); assert(same_origin_idx(gold, fix), "should be clones of the same node"); Node* gin1 = gold->in(1); Node* gin2 = gold->in(2); Node* fin1 = fix->in(1); Node* fin2 = fix->in(2); bool swapped = false; if (in_bb(gin1) && in_bb(gin2) && in_bb(fin1) && in_bb(fin1)) { if (same_origin_idx(gin1, fin1) && same_origin_idx(gin2, fin2)) { return true; // nothing to fix } if (same_origin_idx(gin1, fin2) && same_origin_idx(gin2, fin1)) { fix->swap_edges(1, 2); swapped = true; } } // at least one input comes from outside of bb if (gin1->_idx == fin1->_idx) { return true; // nothing to fix } if (!swapped && (gin1->_idx == fin2->_idx || gin2->_idx == fin1->_idx)) { //swapping is expensive, check condition first fix->swap_edges(1, 2); swapped = true; } if (swapped) { #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::fix_commutative_inputs: fixed node %d", fix->_idx); } #endif return true; } if (TraceSuperWord && Verbose) { tty->print_cr("SuperWord::fix_commutative_inputs: cannot fix node %d", fix->_idx); } return false; } bool SuperWord::pack_parallel() { #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::pack_parallel: START"); } #endif _packset.clear(); for (int ii = 0; ii < _iteration_first.length(); ii++) { Node* nd = _iteration_first.at(ii); if (in_bb(nd) && (nd->is_Load() || nd->is_Store() || nd->is_Add() || nd->is_Mul())) { Node_List* pk = new Node_List(); pk->push(nd); for (int gen = 1; gen < _ii_order.length(); ++gen) { for (int kk = 0; kk < _block.length(); kk++) { Node* clone = _block.at(kk); if (same_origin_idx(clone, nd) && _clone_map.gen(clone->_idx) == _ii_order.at(gen)) { if (nd->is_Add() || nd->is_Mul()) { fix_commutative_inputs(nd, clone); } pk->push(clone); if (pk->size() == 4) { _packset.append(pk); #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::pack_parallel: added pack "); pk->dump(); } #endif if (_clone_map.gen(clone->_idx) != _ii_last) { pk = new Node_List(); } } break; } } }//for }//if }//for #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::pack_parallel: END"); } #endif return true; } bool SuperWord::hoist_loads_in_graph() { GrowableArray loads; #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::hoist_loads_in_graph: total number _mem_slice_head.length() = %d", _mem_slice_head.length()); } #endif for (int i = 0; i < _mem_slice_head.length(); i++) { Node* n = _mem_slice_head.at(i); if ( !in_bb(n) || !n->is_Phi() || n->bottom_type() != Type::MEMORY) { if (TraceSuperWord && Verbose) { tty->print_cr("SuperWord::hoist_loads_in_graph: skipping unexpected node n=%d", n->_idx); } continue; } #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::hoist_loads_in_graph: processing phi %d = _mem_slice_head.at(%d);", n->_idx, i); } #endif for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { Node* ld = n->fast_out(i); if (ld->is_Load() && ld->as_Load()->in(MemNode::Memory) == n && in_bb(ld)) { for (int i = 0; i < _block.length(); i++) { Node* ld2 = _block.at(i); if (ld2->is_Load() && same_origin_idx(ld, ld2) && !same_generation(ld, ld2)) { // <= do not collect the first generation ld #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::hoist_loads_in_graph: will try to hoist load ld2->_idx=%d, cloned from %d (ld->_idx=%d)", ld2->_idx, _clone_map.idx(ld->_idx), ld->_idx); } #endif // could not do on-the-fly, since iterator is immutable loads.push(ld2); } }// for }//if }//for (DUIterator_Fast imax, }//for (int i = 0; i for (int i = 0; i < loads.length(); i++) { LoadNode* ld = loads.at(i)->as_Load(); Node* phi = find_phi_for_mem_dep(ld); if (phi != NULL) { #ifndef PRODUCT if (_vector_loop_debug) { tty->print_cr("SuperWord::hoist_loads_in_graph replacing MemNode::Memory(%d) edge in %d with one from %d", MemNode::Memory, ld->_idx, phi->_idx); } #endif _igvn.replace_input_of(ld, MemNode::Memory, phi); } }//for restart(); // invalidate all basic structures, since we rebuilt the graph if (TraceSuperWord && Verbose) { tty->print_cr("\nSuperWord::hoist_loads_in_graph() the graph was rebuilt, all structures invalidated and need rebuild"); } return true; }